Theory of Ordinary Differential Equations

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

- Homework 5 -
(1) Consider the linear equation $\dot{x}=A x, A=\operatorname{diag}\left(\lambda_{j}\right), \lambda_{1}>\lambda_{2}>\ldots>\lambda_{n}$.
(a) Derive an equation for the projectivized flow, that is, write $x=u \cdot|x|$ and derive an equation for $u \in S^{n-1}$. Find all equilibria of this flow on the sphere.
(b) Show that the Rayleigh quotient $V(u)=-\frac{1}{2}\langle A u, u\rangle$ is a strict Lyapunov function, that is, strictly decreasing for non-equilibrium stolutions. Which equilibria are stable?
(c) Conclude that all trajectories are heteroclinic and describe heteroclinic orbits.
(d) Describe equilibria and heteroclinic orbits for the flow on S^{1} associated with the (non-self-adjoint) $A=\left(\begin{array}{cc}0 & 1 \\ \mu & 0\end{array}\right)$ for all $\mu \in \mathbb{R}$?
(e) Optional supplement:
i. Let x_{1}, \ldots, x_{k} be k linearly independent vectors in \mathbb{R}^{n} and denote by E the linear subspace spanned by those vectors. Show that the linear equation induces a flow on the set of k-dimensional subspaces of \mathbb{R}^{n}.
ii. Show that the space of subspaces is a smooth manifold (the Grassmannian) by locally writing subspaces as graphs: any subspace F "near" E can be written as a graph of a linear map $h(F): E \mapsto E^{\perp}$.
iii. Show that the flow on subspaces is a smooth flow, that is, compute the vector field for $h^{\prime}=f_{A}(h)$.
iv. Determine all equilibria of this flow. Find the (unique) stable equilibrium.
(2) Some facts on Lie groups:
(a) Show that $\Phi_{t}=\mathrm{e}^{A t}$ is an orthogonal matrix for all $t \in \mathbb{R}$, that is $\Phi_{t}^{-1}=\Phi_{t}^{T}$, if and only if A is skew symmetric, that is, $A^{T}=-A$.
(b) For which matrices A are all $\mathrm{e}^{A t}, t \in \mathbb{R}$, self-adjoint?
(c) Find a real matrix $M \in \mathbb{R}^{n \times n}$ such that there does not exist a real matrix A with $M=\exp (A)$.
(d) For symmetric or orthogonal M, can you always write $M=\exp (A)$ for some real A ?
(3) Compute a Jordan normal form transformation and the general solution for the differential equation $\dot{x}=A x, x(0)=x_{0}{ }^{1}$, where

[^0](a) $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
(b) $A=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
(c) $A=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
(d) $A=\left(\begin{array}{ccc}0 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 1 & -1\end{array}\right)$

Also try to sketch phase portraits.
(4) We consider the coupled linear system $\dot{x}=A x+D(y-x), \dot{y}=A y+D(x-y)$, with $x, y \in \mathbb{R}^{n}, D=\operatorname{diag}\left(d_{1} \ldots, d_{n}\right)$, and $d_{i}>0$. We assume throughout that the eigenvalues of A are contained in the open left complex half plane $\operatorname{Re}(\operatorname{spec} \mathrm{A})<0$.
(a) Note that for initial conditions where $x(0)=y(0)$, the solution $(x(t), y(t))$ converges to zero as $t \rightarrow \infty$.
(b) Find matrices A, D such that $x(t) \rightarrow \infty$ for suitable initial conditions $(x(0), y(0))$ and $t \rightarrow+\infty$.

Try to interpret (see also A. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. B 237 (1952), 37-72)
(5) Set $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$ and consider $x^{\prime}=A x, x(0)=(1,0)^{T},(1,1)^{T},(1,-1)^{T}$.
(a) Find the solutions $x(t)$ explicitly for the three initial conditions listed.
(b) Solve numerically using and compute $x(T), t=1,3,5,10,15,20$; compare with the prediction (try Euler's method with $h=10^{-3}$ and Matlab's ode45 with tolerance 10^{-8}).
(c) Take $x(T)$ as an initial condition for $x^{\prime}=-A x$ and solve for time T, such that the result should be $x(0)$. Compare the numerical results and explain why and when they drastically differ. How much does this depend on the numerical method?
(d) Find $\operatorname{det}\left(\mathrm{e}^{A t}\right)$ theoretically. Then find it numerically by computing $\operatorname{det}\left(x_{1}(t) \mid x_{2}(t)\right)$ with initial conditions $x_{1}(0)=(1,0)^{T}$ and $x_{2}(0)=(0,1)^{T}$. Show how the numerical determinant agrees for moderate times and then deviates. Why?

Homework is due on Monday, October 29, in class.
For full score, 4 correct exercises!

[^0]: ${ }^{1}$ The idea is to not use computer algebra but that's not enforceable.

