Theory of Ordinary Differential Equations

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

(1) Consider the feedforward chain,

$$x'_j = x_{j-1} - x_j \in \mathbb{R}$$

where at each lattice sit j the system attempts to "mimic" the left neighbor, that is, for fixed x_{j-1} , x_j will relax to x_{j-1} (why?).

- (a) Take $1 \le j \le N$ and set $x_0 \equiv 0$. Write the system in vector form x' = Ax and find the eigenvalues. Conclude asymptotic stability.
- (b) Take $1 \leq j \leq N$ but now set $x_0 \equiv x_N$ in the equation for x_1 (the chain is a ring!). Compute the eigenvalues and conclude stability (but not asymptotic stability). *Hint: To find the eigenvalues, use discrete Fourier transform* $x_j = e^{ij\sigma}$ with σ such that $x_N = x_0$.
- (c) Solve numerically for large N, $x_j(t=0) \equiv 1$. Demonstrate and explain why the limits $N \to \infty$ and $t \to \infty$ do for the linear evolution do not commute, that is,

$$\lim_{N \to \infty} \lim_{t \to \infty} |\mathbf{e}^{At}| = 0, \qquad \lim_{N \to \infty} \lim_{t \to \infty} \lim_{N \to \infty} |\mathbf{e}^{At}| = 1.$$

- (d) Consider an ε -feedback, $x'_1 = \varepsilon x_N x_1$. Find the eigenvalues and conclude that for ε small fixed, we find arbitrarily slow decay when N is large. How large does N have to be to create an eigenvalue $\lambda = -0.1$ when $\varepsilon = 10^{-8}$?
- (2) Construct an example where A(t) = A(t+1) is asymptotically stable for every t but not the non-autonomous equation. *Hint: Try* A(t) piecewise constant, with $A(t) = A_1$, 0 < t < 1/2, and $A(t) = A_2$, 1/2 < t < 1, and choose A_j asymptotically stable but not commuting.

Homework is due on Wednesday, November 7, in class. This homework counts for extra credit.

Those who may, vote before you turn this in!