Theory of Ordinary Differential Equations

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

- Homework 7 -
(1) Consider a saddle

$$
u^{\prime}=-u+f(u, v), \quad v^{\prime}=\rho v+g(u, v), \quad \rho>0
$$

with $f, g=\mathrm{O}(2)$ and smooth.
Let $(u, v)(t) \rightarrow 0$ be a solution in the stable manifold. Show that the solution possesses an exponential expansion, that is,

$$
(u, v)(t)=\left(u_{1}, v_{1}\right) \mathrm{e}^{-t}+\left(u_{2}, v_{2}\right) \mathrm{e}^{-2 t}+\mathrm{o}\left(\mathrm{e}^{-2 t}\right)
$$

(you will see that you can continue to higher orders).
Optional: Compute the coefficients u_{j}, v_{j} assuming that $u_{1}=\delta \ll 1$ to order δ^{2}, using the Taylor expansion of f, g.
(2) Recall the amplitude equations for rotating convection

$$
\begin{aligned}
& x^{\prime}=x\left(1-x^{2}-b y^{2}-c z^{2}\right), \\
& y^{\prime}=y\left(1-y^{2}-b z^{2}-c x^{2}\right), \\
& z^{\prime}=z\left(1-z^{2}-b x^{2}-c y^{2}\right) .
\end{aligned}
$$

(a) Find all equilibria, determine their linear stability, and their nonlinear stability when the linearization is hyperbolic.
(b) Find the parameters b, c such that there are no equilibria with $x=0, y z \neq 0$ and such that all equilibria are unstable.
(c) Simulate the case $c=3, b=0$ in the octant $x, y, x \geq 0$. What do you see in the coordinate planes? What happens to solutions in $x, y, z>0$?
(d) Show that in the parameter regime (b) (or, specifically, for the parameters in (c)), the ω-limit set of a solution in $x>y>z>0$ cannot be a single equilibrium.
(3) Consider $u^{\prime}=-u+v, v^{\prime}=-v+u^{2}$. Show that there exists a one-dimensional, smooth invariant manifold tangent to the eigenspace. Compute its quadratic expansion. Hint: Use projection coordinates $v_{1}=v / u, u_{1}=u$ and find the strong stable manifold of the origin in the new coordinates.
(4) Consider $x^{\prime}=-x, y^{\prime}=-2 y+x^{2}$. The linear equation possesses a weak stable subspace $E^{\mathrm{s}}=\{y=0\}$.
(a) Assume that there exists a C^{2}-invariant manifold tangent to this subspace and try to compute its quadratic terms at the origin: what goes wrong?
(b) Find solutions explicitly and show that manifolds tangent to E^{s} are not of class C^{2}.

Homework is due on Monday, November 19, in class.
For full score, 4 correct exercises!

