MARKING AND SHIFTING A PART IN PARTITION
THEOREMS

KATHLEEN O’HARA AND DENNIS STANTON

ABSTRACT. Refined versions, analytic and combinatorial, are given for
classical integer partition theorems. The examples include the Rogers-
Ramanujan identities, the Gollnitz-Gordon identities, Euler’s odd=distinct
theorem, and the Andrews-Gordon identities. Generalizations of each of
these theorems are given where a single part is “marked” or weighted.
This allows a single part to be replaced by a new larger part, “shift-
ing” a part, and analogous combinatorial results are given in each case.
Versions are also given for marking a sum of parts.

1. INTRODUCTION

Many integer partition theorems can be restated as an analytic identity, as
a sum equal to a product. One such example is the first Rogers-Ramanujan
identity
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MacMahon’s combinatorial version of (1) uses integer partitions. The left
side is the generating function for all partitions whose parts are congruent
to 1 or 4 mod 5. The factor 1/(1 — ¢”) on the left side allows an arbitrary
number of 9’s in an integer partition. If we “mark” or weight the 9 by an z,
the factor 1/(1 — ¢°) is replaced by

1
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One may ask how the right side is modified upon marking a part, and
whether a refined combinatorial interpretation exists.

The result is known [8, (2.2)], and there is a refined combinatorial version.
The key to the combinatorial result is that the terms in the sum side are
positive as power series in ¢ and x.
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Theorem 1.1. Let M > 1 be any integer congruent to 1 or4 mod 5. Then
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Here is a combinatorial version of Theorem 1.1.

Theorem 1.2. Let M be positive integer which is congruent to 1 or 4
mod 5. Then the number of partitions of n into parts congruent to 1 or
4 mod 5 with exactly k M ’s is equal to the number of partitions X of n with
difference at least 2 and

(1) if A has one part, then |[n/M| =k,

(2) if A has at least two parts, then |(A\ — Ao —2)/M | = k.

The purpose of this paper is to give the analogous results for several
other classical partition theorems: the Gollnitz-Gordon identities, Euler’s
odd=distinct theorem, and the Andrews-Gordon identities. The main en-
gine, Proposition 3.1, may be applied to many other single sum identities.
The results obtained here by marking a part are refinements of the corre-
sponding classical results.

We shall also consider “shifting” a part, for example replacing all 9’s by
22’s in (1). This is replacing the factor

1 1
g Vi
We shall see that the set of partitions enumerated by the sum side is an
explicit subset of the partitions in the original identity.

Finally in section 6 we consider marking a sum of parts. We can extend
Theorem 1.2 to allow other values of M, for example M = 7, by marking
the partition 6 + 1. See Corollary 6.8.

We use the standard notation,

k—1 ' 1—qM
(Aiq = [0 - AF),  [M],= =g
7=0

If the base ¢ is understood we may write (A;q)r as (A)g.

2. THE ROGERS-RAMANUJAN IDENTITIES

In this section we give prototypical examples for the Rogers-Ramanujan
identities.

First we state a marked version of the second Rogers-Ramanujan identity,
which follows from Proposition 3.1.
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Theorem 2.1. Let M > 2 be any integer congruent to 2 or 3 mod 5. Then
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Here is a combinatorial version of Theorem 2.1.

Theorem 2.2. Let M be positive integer which is congruent to 2 or 3
mod 5. Then the number of partitions of n into parts congruent to 2 or
3 mod 5 with exactly k M ’s is equal to the number of partitions A of n with
difference at least 2, no 1’s, and
(1) if X has one part, then n = Mk+j,2<j< M—1, orj =0 or
j=M+1,
(2) if X has at least two parts, then |(A1 — Ao —2)/M | = k.

Proof. We simultaneously prove Theorems 1.2 and 2.2. We need to un-
derstand the combinatorics of the replacement in the k" term on the sum
side

1
P lp/M]
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In the classical Rogers-Ramanujan identities, the factor 1/(1 — ¢) repre-
sents the difference in the first two parts after the double staircase has been
removed. This is the second case of each theorem. O

Example 2.3. Let k =2, M =7, and n = 22. The equinumerous sets of
partitions for Theorem 2.2 are

{(8,7,7),(7,7,3,3,2),(7,7,2,2,2,2)} + {(22), (20,2), (19, 3)}.

Equivalent combinatorial versions of Theorems 1.2 and 2.2 may be given
(see [8, Theorem 2, Theorem 3]). This time the terms & > M of the sum
side are considered, and the replacement considered is

1 1

%
1—gM " 1—agM

namely the part M is marked on the sum side. We need notation for when
a double staircase is removed from a partition with difference at least two.

Definition 2.4. For any partition A with k parts whose difference of parts
is at least 2, let A\* denote the partition obtained upon removing the double
staircase (2k — 1,2k — 3,--- ,1) from A, and reading the result by columns.
For any partition A with k parts and no 1’s whose difference of parts is
at least 2, let \** denote the partition obtained upon removing the double
staircase (2k,2k —2,---,2) from A, and reading the result by columns.
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Theorem 2.5. Let M be positive integer which is congruent to 1 or 4
mod 5. Then the number of partitions of n into parts congruent to 1 or
4 mod 5 with exactly k M ’s is equal to the number of partitions X of n with
difference at least 2 and

(1) if A has one part, then |[n/M| =k,

(2) if A has between two and M — 1 parts, then | (A1 — Ao — 2)/M | = k,

(3) if X has at least M parts, then \* has exactly k M ’s.

Example 2.6. Let k = 2, M = 4, and n = 24. The equinumerous sets of
partitions for Theorem 2.5 are

{(16,4%), (14,4%,1%), (11,42,1°),(9,6,4%,1),(9,4%,17), (6,6, 4%, 1%),
(6,4%,1%), (42,17} ¢
{(9,7,5,3),(18,5,1),(17,6,1), (17,5, 2), (16,6,2), (16, 5,3), (17,7), (18,6) }.

Theorem 2.7. Let M be positive integer which is congruent to 2 or 3
mod 5. Then the number of partitions of n into parts congruent to 2 or
3 mod 5 with exactly k M ’s is equal to the number of partitions A of n with
difference at least 2, no 1’s and

(1) if X has one part, then n = Mk +j,2<j< M —1, 0orj=0 or

j=M+1,
(2) if A has between two and M — 1 parts, then | (A1 — Ao — 2)/M | =k,
(3) if X has at least M parts, then \** has exactly k M ’s.

3. A GENERAL EXPANSION

In this section we give a general expansion, Proposition 3.1, for marking
a single part.
Many partition identities have a sum side of the form
o0
&

= (©9);

)

where a; has non-negative coefficients as a power series in g.
These include

1) the Rogers-Ramanujan identities, o = ¢/ or i,

o

2) Euler’s odd=distinct theorem, a; = q(]2 ),

3) the Gollnitz-Gordon identities, ¢ replaced by qQ, aj = qj2(—q; qg)j,

4) all partitions by largest part, a; = ¢/,

(5) all partitions by Durfee square, oj = /(g q);-

o~~~ o~

A part of size M may be marked in general using the next proposition.

Proposition 3.1. For any positive integer M, if ag = 1,

=1+ :
1—wg = (g;9); 1 —wg =1 - wg™ (6% 9)j

1- qM > ] a1[M], — qM +qu - [M], ]
o Ly
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As long as «q has the property that
o [M]g — qM

is a positive power series in ¢, the right side has a combinatorial interpreta-
tion.
There are two possible elementary combinatorial interpretations. For any

j > 2, the factor
Popylp/M]
. oo Zq w

replaces 1/(1 — q), which accounts for parts of size 1 in a partition. This is
a weighted form of the number of 1’s.
The second interpretation holds for terms with j > M. Here

[M], 1 1

1—wg™ (¢%q)j-1 (1—q)- -1 —g" 1)1 —wgM)(1 —gMh)- - (1-¢f)
In this case the part of size M is marked by w.

For a particular combinatorial application of Proposition 3.1 one must
realize what the denominator factors (1 — ¢) and (1 — ¢™) represent on the
sum side. For example, in the Rogers-Ramanujan identities these factors
account for 1’s and M’s in A*. Since

(#1'sin \*) = A\ — Ao — 2,

the two interpretations are Theorem 1.2 and Theorem 2.5.

j4+1

3.1. Distinct parts. Choosing a;; = q( ) in Proposition 3.1 gives distinct
partitions, which by Euler’s theorem are equinumerous with partitions into
odd parts. Here is the marked version.

Corollary 3.2. For any odd positive integer M,

1
(I=q) (=g (1 - 2)(1 —wg)(1 - gM*2)...
-
1@t e g S '2) (M,
1 —wgM = (@%0)j-11 —wg™

Definition 3.3. For any partition X\ with j distinct parts let X5t be the
partition obtained upon removing a staircase (j,j — 1,---,1) from X\, and
reading the result by columns.

Example 3.4. If A\ = (8,7,3,1), then A5 = (3,2,2,2).

Here is the combinatorial version of Corollary 3.2, generalizing Euler’s
theorem.

Theorem 3.5. For any odd positive integer M, the number of partitions of
n into odd parts with exactly k parts of size M, is equal to the number of
partitions A of n into distinct parts such that
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(1) if X has one part, then |[n/M| =k,
(2) if A has at least two parts, then |(A\ — o — 1)/M | = k.

Example 3.6. Let k = 2, M =5, and n = 18. The equinumerous sets of
partitions for Theorem 3.5 are

{(7,5,5,1),(5,5,3,3,1,1), (5,5,3,1%), (5,5,1%)}
~ {(16,2), (15,3), (15,2,1), (14,3,1)}.

Proposition 3.7. There is an M -version of the Sylvester “fishhook” bijec-
tion which proves Theorem 8.5.

Proof. Let F'H be the fishhook bijection from partitions with distinct parts
to partitions with odd parts. If FH(\) = p, it is known that the number of
I'sin pis Ay — A2 — 1, except for FH(n) = 1". This proves Theorem 3.5 if
M =1, and F'H is the bijection for M = 1.

For the M-version, M > 1, let A have distinct parts. For A = n a single
part, Define the M-version by FHM (n) = (MF,1""%¥M) which has k parts
of size M. Otherwise X\ has at least two parts, and

EM <X\ —X—1<(k+1)M—1.
Let 6 be the partition with distinct parts where A1 has been reduced by kM,
0<6;—0,—1<M-—1.

Finally put v = FH(0), and note that v has at most M — 1 1’s.

There are 2 cases. If v has no parts of size M, define FHM (\) = yU M*,
so that FHM()\) is a partition with odd parts, exactly k parts of size M,
and at most M — 1 1’s.

If v has r > 1 parts of size M, change all of them to rM 1’s to obtain +/
with at least M 1’s. Then put FHM()\) = 4/ U M* so that FHM()\) is a
partition with odd parts, exactly k parts of size M, and at least M 1’s. [

Theorem 3.8. For any odd positive integer M, the number of partitions of
n into odd parts with exactly k parts of size M, is equal to the number of
partitions A of n into distinct parts such that

(1) if A has one part, then |[n/M| =k,
(2) if X has between two and M — 1 parts, then | (A1 — Ao — 1)/M| =k,
(3) if X has at least M parts, then N5t has exactly k M ’s.

Example 3.9. Let k = 2, M = 3, and n = 18. The equinumerous sets of
partitions for Theorem 3.8 are

{(11,3,3,1),(9,3,3,1*),(7,5,3,3),(7,3,3,1°),(5,5,3,3,1,1), (5,3,3,17), (3,3, 1'%)}

« {(7,6,4,1),(8,5,4,1), (11,4, 3), (10,5, 3), (9,6, 3),(8,7,3), (13,5)}.
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3.2. Gollnitz-Gordon identities. The Gollnitz-Gordon identities are (see

[1], (4], [5])
o (— ; M 1
(3) z:oq” ((qzq;jz))n = 7.8 1.8

(45 4%)o0 (0% ¢®) 00 (475 ¢®) 0

e 2
(@ S g O 1
= (@) (2%56%)0(a"6%) o0 (0% 0%) oo

We apply Proposition 3.1 with g replaced by ¢, M replaced by M /2, and
aj = qu(—q; q?); to obtain the next result.

Corollary 3.10. Let M be a positive integer. Then

1—gM 1
1 — wgM (q;qs)oo(q‘*'qs) (4% ¢%) 0
L A +wq Z 2 Ml (=¢% %)
1- —wgM (g% ¢%)j—1
We used

q(1+ q)[M/Z]qz —qM + wgM _ qM — 1], + wgM
1— qu 1-— qu

to simplify the second term in the sum in Corollary 3.10. Note that the
numerator has positive coefficients, and thus a simple combinatorial inter-
pretation.

Here is the combinatorial restatement [5, Theorem 2] of the first Gollnitz-
Gordon identity.

Theorem 3.11. The number of partitions of n into parts congruent to
1,4, or 7 mod 8 is equal to the number of partitions of n into parts whose
difference is at least 2, and greater than 2 for consecutive even parts.

For the combinatorial version of Corollary 3.10, we need to recall why the
sum side of (3) is the generating function for the restricted partitions with
difference at least 2. In particular we must identify what the denominator
factor 1 — ¢ represents in the sum side.

Suppose A is such a partition with j parts. This is equivalent to showing
that the generating function for \* is

5) (—¢:6%); _ 1+4q (=¢*d%);—

(¢*¢%); 1-¢* (¢%¢*)j—
The partition g = A — (25 — 1,25 — 3,--- ,1) has at most j parts, and the
odd parts of p are distinct. The column read version \* = ,ut can be built in
the following way. Take arbitrary parts from sizes j j—1,---,1 with even

multiplicity, whose generating function is 1/(¢%; ¢?);. The rows now have
even length. Then choose a subset of the odd integers 140, 2+1, - - - j+(j—1).
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For each such odd part k£ + (k — 1) add columns of length k& and k& — 1. This
keeps all rows even, except the k' row which is odd and distinct.

We see that the factor (1+q)/(1 —¢?) =1/(1—gq) in (5) accounts for 1’s
in A\*. In Corollary 3.10 this quotient is replaced by

1+gq M), ~— , [p/M]
1_q2—>1_qu—p§%qw .

There is one final opportunity for a 1 to appear in A\*: when 3 =2+ 1 is
chosen as an odd part. This occurs only when the second part of A is even.

Theorem 3.12. Let M be a positive integer which is congruent to 1,4 or 7
mod 8. The number of partitions of n > 1 into parts congruent to 1,4 or 7
mod 8 with exactly k M ’s, is equal to the number of partitions A of n into
parts whose difference is at least 2, and greater than 2 for consecutive even
parts such that

(1) if X has a single part, then [n/M] =k,
(2) if A has at least two parts and the second part of A is even,

[(A1 = A2 = 3)/M]| =k,
(3) if A has at least two parts and the second part of A is odd,
(A1 — A2 —2)/M| = k.

Example 3.13. Let k=3, M =7, and n = 31. The equinumerous sets of
partitions for Theorem 3.12 are

{(9,7,7,7,1),(7,7,7,4,4,1,1),(7,7,7,4,1%),(7,7,7,1'%)} &
{(30,1),(29,2),(28,3),(27,3,1)}.
Note that A = (27,4) is not allowed because the second part of X is even.
For the second Gollnitz-Gordon identity, the version of Corollary 3.10 is

1—¢M 1

1 —wg™ (4% ¢%)oo(q%; 4%) o0 (4% 4%) oo

Bt ML LM 4 ML 4 M2
1 —wgM

(6) =1+

v (g% ¢?) -1

Here is the combinatorial refinement of [5, Theorem 3].

o 3. .2
242y Mg (=¢%¢7)—1
+jz;q 1—w

Theorem 3.14. Let M be a positive integer which is congruent to 3,4 or 5
mod 8. The number of partitions of n > 1 into parts congruent to 3,4 or 5
mod 8 with exactly k M ’s, is equal to the number of partitions A of n into
parts whose difference is at least 2, greater than 2 for consecutive even parts,
smallest part at least 3, such that
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(1) if X has a single part, thenn = Mk, orn = Mk+j,3<j < M+2,
J#M,
(2) if A has at least two parts and the second part of A is even,

(AL = A2 =3)/M| =k,
(3) if A has at least two parts and the second part of A is odd,
[ = g — 2)/M] = k.

4. AN ANDREWS-GORDON VERSION
The Andrews-Gordon identities are

Theorem 4.1. If 0 < a < k, then

q2k+3, q) _ Z

(Q; Q)oo 71 >N > >np >0 (Q)n1—n2 T (Q)nk,l—nk (Q)nk '

k+l—a ,k+2+a qn%—l—n%—i---~+nz+nk+1_a+--~+nk

(q . q

The Rogers-Ramanujan identities are the cases k=1, a =0, 1.

Because Theorem 4.1 has a multisum instead of a single sum, we cannot
apply Proposition 3.1. Nonetheless the same idea can be applied to obtain
a marked version of Theorem 4.1.

Let F} denote the right side multisum of Theorem 4.1 for 0 < a < k, and
let F! = F,g for a < 0. So we have

Fp=rFl 4+ >

n1>n2>>nk21 <q)7’7,1—712 T (q>nk—1_nk (q>nk '

qn%+n§+---+n§+nk+1,a+---+nk

Multiplying by - - M ylelds

1-— (] a _ 1-— q a—1
1—agM ™k~ 1 g™ k1
qn%+n§+~~+n%+nk+1—a+”'+”k [M],

o

ni>ng>>ng>1 (q)”l_"2 T (q)nk—l_nk (qZ; Q)nk—l 1- qu

which, upon iterating, is the following weighted version of the Andrews-
Gordon identities.

Theorem 4.2. For 0 <a < k, let M be any positive integer not congruent
to 0, £(k + 1 — a) modulo 2k + 3. Then
1— M k+1—a, qk+2+a q2k+3 ) nl—i-B [M}q

¢ (¢
—1+A+
1—agM (¢ 4)oc —~, (6% @)n;—1 1 — g™

S S S

r=2n1>no>->n,>1 (@)1 —ns

ni4n3+-4nZ4ng 1o+t (M),

o (q)nrflfnr (q27 q)nrfl 1 - qu

where
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(1) for0<a<k, B=0, A=q(M—1;+z¢"")/(1~zq")

(2) fora=k, B=n, A:qQ([M—Q]q+$qM_2+qM_1)/(1—a:qM).

For a combinatorial version of Theorem 4.2 we use Andrews’ Durfee dis-
sections, and (k + 1,k + 1 — a)-admissible partitions, see [2].

Definition 4.3. Let k be a positive integer and 0 < a < k. A partition \ is
called (k+ 1,k 4+ 1 — a)-admissible if X may be dissected by r < k successive
Durfee rectangles, moving down, of sizes

N1 XN,y Ng—g X NE—q, (nk7a+1 + 1) X Ng—qgy" a(nr + 1) X Ny

such that the (ny +mng + -+ ng_qps + )" part of X is ng_qys, for 1 <i <
r—(k—a).

Note that r < k — a is allowed, in which case all of the Durfee rectangles
are squares. Also, the parts of A to the right of the Durfee rectangles are
not constrained, except at the last row of the non-square Durfee rectangle,
where it is empty.

Example 4.4. Suppose k = 3 and a = 2. Then A = 91 is not (4,2)-
admissible: the Durfee square has size ny = 1, but the next Durfee rectangle
of size 2 x 1 does not exist, so the second part cannot be covered if r > 2.

Theorem 2 in [2] interprets Theorem 4.1.

Proposition 4.5. The generating function for all partitions which are (k+
1,k + 1 — a)-admissible is given by the sum in Theorem 4.1.

We need to understand the replacement

1 1 1 [M],

= —
@n. A=0)(@*Dn—1 (@11 — 2"
in the factor (¢),, to give a combinatorial version of Theorem 4.2.
First we recall [2] that if the sizes of the Durfee rectangles are fixed by
ni, N, -+ , Ny, then the generating function for the partitions which have
this Durfee dissection is

r—

1

1 r—1 n; B 1 1
(q)n1 ]131 |:nj+1]q B (Q)nr =1 (Q)nj—nj+1 '
[

(A simple bijection for this fact is given in [6].) Upon multiplying by

(1—¢")/(1 —zg™)
we have

-1
[M], 1 H [ 1 ] _ [M], 1 1
1—2qM (6% @)ny—1 -+ [0y ],  1—2¢™ (@5 @)n -1 12 (Dnj—n;a
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Consider the factor 1/(q),,, which accounts for the portion of the partition
to the right of the first Durfee rectangle of \. In this factor we are replacing

1 M
LM,
1—q¢ 1—agM

As before, the M 1’s in the columns to the right of the first Durfee rectangle
are weighted by x. These 1’s are again a difference in the first two parts of
A

Putting these pieces together, the following result is a combinatorial re-
statement of Theorem 4.2.

Theorem 4.6. Fix integers a,k, M satisfying 0 < a <k and M # 0, £(k +
1 —a) mod 2k + 3. The number of partitions of n into parts not congruent
to 0, £(k+1—a) mod 2k + 3 with exactly j M’s, is equal to the number of
partitions A of n which are (k+ 1,k + 1 — a)-admissible with r < k Durfee
rectangles of sizes

Ny XNy, Ng—g X Nk—aq, (nk—a+1 + 1) X Ng—q,y " 7(”7“ + 1) X Ty
of the following form:

(1) ifr =ny =1, and 0 < a < k, X is a single part of size Mj,
M.7+17 7M]+(M_1)’ or

(2) ifr=n1=1,anda =k, A\ = (A1, 1) has size Mj, Mj+2,--- , Mj+
(M —1), or Mj+ (M +1).

(3) ifny =1 andr > 2, then [(\ —n1)/M| = j,

(4) if?’Ll Z 2, then I_()‘l — AQ)/MJ :j.

5. SHIFTING A PART

The weighted versions allow one to shift a part. For example in first
Rogers-Ramanujan identity, what happens if parts of size 11 are replaced
by parts of size 28? All we need to do is to choose M = 11 and = = ¢'7 in
Theorem 1.1.

Corollary 5.1. Let M be a positive integer which is congruent to 1 or 4
modulo 5. Let N > M be an integer not congruent to 1 or 4 modulo 5. The
number of partitions of n into parts congruent to 1 or 4 modulo 5, except M,
or parts of size N, is equal to the number of partitions A of n with difference
at least 2, such that

(1) X has a single part, which is congruent to 0,1,---, or M—1 mod N,
(2) A has at least two parts, and A\ —No—2 is congruent to 0,1,---, or M —
1 mod N.

Example 5.2. Let N =8, M = 4, and n = 9. The equinumerous sets of
partitions for Corollary 5.1 are

{(9),(6,1,1,1),(8,1), 1)} ¢ {(9),(6,3),(7,2),(5,3,1)}.
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TABLE 1. Theorem 4.6 when a =2,k =3, M =3

partition of 10 without 2,7,9 # of 3’s (4,2)-admissible partition of 10 value of j

10 0 10 3
811 0 61111 1
64 0 421111 0
631 1 322111 0
61111 0 331111 0
55 0 811 2
541 0 6211 1
5311 1 5311 0
511111 0 5221 1
4411 0 22222 0
433 2 4411 0
43111 1 4321 0
4111111 0 82 2
3331 3 73 1
331111 2 64 0
31111111 1 55 0
1111111111 0 433 0

An related example occurs when two parts are shifted: 1 and 4 are re-
placed by 2 and 3. The appropriate identity is

1
- (1— q2)(1 - q3)(q6‘ 7)o (qg' 7)o
=1+ cira) +Z q3'
1—q (g% lel_q

Theorem 5.3. The number of partitions of n into parts from
{2,3,5k+ 1,5k +4: k> 1}

s equal to the number of partitions A of n with difference at least 2 and

(1) if A has a single part, then n # 1 mod 3,
(2) if X has at least two parts, then (A1 — A2 —2) 1 mod 3.

Example 5.4. Let n = 13. The two equinumerous sets of partitions in
Theorem 5.3 are

{(11,2),(9,2,2),(6,3,2,2),(3,2,2,2,2,2),(3,3,3,2,2)}
< {(12,1),(10,3),(9,4), (8,4,1),(7,5,1)}.
The possible partitions with difference at least 2
{(13),(11,2),(8,5),(9,3,1),(7,4,2)}

are disallowed.
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Corollary 5.5. Let M be an odd positive integer. Let N > M be an even
integer. The number of partitions of n into odd parts except M, or parts of
size N, is equal to the number of partitions X\ of n into distinct parts, such
that

(1) X has a single part, which is congruent to 0,1,---, or M—1 mod N,
(2) X has at least two parts, and \y—Na—1 is congruent to 0,1,--- | or M—
1 mod N.

Example 5.6. If N = 8, M = 3, and n = 9 the equinumerous sets in
Corollary 5.5 are

{(9),(8,1),(7,1,1),(5,1%),(1”)} > {(9),(5,4), (6,3), (5,3,1), (4,3,2)}.

6. MARKING A SUM OF PARTS

One may ask if Theorems 1.1 and 2.1 have combinatorial interpretations
without the modular conditions on M. The sum sides retain the interpreta-
tions given by Theorems 1.2 and 2.2 and are positive as a power series in ¢
and w. It remains to understand what the product side represents as a gen-
erating function of partitions. We give in Proposition 6.4 a general positive
combinatorial expansion for the product side. We call this “marking a sum
of parts”.

As an example suppose that M = A+ B, is a sum of two parts, where A
and B are distinct integers congruent to 1 or 4 mod 5. The quotient in the
product side of Theorem 1.1

1— qA+B 1 1 qA

T wg B (1= g1 qP) (1 - ¢P)(1 —wgdB) " (1 - gA)(1 — wg?P)
is a generating function for partitions with parts A or B. The first term
allows the number of B’s to be at least as many as the number of A’s. The
second term allows the number of A’s to be greater than the number of B’s.
The exponent of w is the number of times a pair AB appears in a partition.
For example, if A = 6, B = 4, the partition (6, 6,4,4,4,4) contains 64 twice,
along with two 4’s. We have found a prototypical result.

Proposition 6.1. Let M = A+ B for some A,B = 1,4 mod 5,A # B.
Then

1—¢M 1

1 —wg™ (¢;¢°) (¢ ¢°) oo
is the generating function for all partitions p with parts = 1,4 mod 5 by
the number of occurrences of the pair AB

A more general statement holds for partitions other than M = A+ B. To
state this result, we need to define an analogue of the multiplicity of a single
part to a multiplicity of a partition. We again use the multiplicity notation
for a partition, for example (73,4, 23) denotes the partition (7,7,7, 4, 2,2, 2).
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Definition 6.2. Let A = (A", .-, A7"") be a partition. We say X is inside
w k times, k = Ex(u), if

k =maz{j:j > 0,u contains at least jms parts of size Ag for all s}.

Example 6.3. Let A = (6',4%,1'), u = (9',67,4%,1%). Then E)(u) = 2 but
not 3 because p contains only five 4’s.

With this definition, Proposition 6.1 holds for any partition.

Proposition 6.4. Let A= M be a fixed partition into parts congruent to 1

or4 mod 5. Then
1—gM 1

1 — wg™ (¢56°)o (4% ¢°) oo
is the generating function for all partitions p into parts congruent to 1 or 4

mod b,
ZQHMHU,EA(#)
m

where Ex(u) is the number of times X appears in p.

The modular condition on the parts in Proposition 6.4 is irrelevant.

Proposition 6.5. Let A = {A1, Ag,---} be any set of positive integers.
Suppose that X = (B, - 7B/,T’“) is a partition whose parts come from A

and M = 2?21 m;B;. Then
1—g"
1-— qu H
is the gemerating function for all partztwns w with parts from A

Zq\lﬂ\lex(u)
“w

Proof. We start with the telescoping sum
1 _ qM — 1 _ qmlBl + qmlBl(l _ qmng) + +C]Z’ 1 mlB,(l _ quBk)

which implies
k
(1—q¢M H (1—¢P
i=1
i—1

k
qm1B1+~~mi71Bi71 H(l _ q ) 11L H (1 — qBj)_1.

1—

(8)

I
-
I M -
I,

We see that (8) is the generating function for partitions p with parts from
{By, By, , B} such that Ey(u) = 0. The i'® term of the sum represents
partitions p = (B}*, By?,--- , B.¥)

ny = mi, Ng = Mo, -+ ,Mi—1 = Mi—1, Ny < M.

These disjoint sets cover all p with Ey(u) = 0.
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Adding back the multiples of A by multiplying by (1 — wg¢™)~!, and also
the unused parts from A, gives the result. O

Definition 6.6. Let A be a set of parts. If X has parts from A, let Ef(n, k)
be the number of partitions u of n with parts from A such that Ex(u) = k.

Corollary 6.7. For any set of part sizes A, let Ay and Ao be two partitions
of M into parts from A. Then for all n,k >0

E} (n,k) = EX (n, k).

Here are the promised versions of Theorem 1.2 and Theorem 2.2 when M
does not satisfy the mod 5 condition.

Corollary 6.8. Suppose that X is a partition of M into parts congruent to
1 or 4 mod 5. Then Theorem 1.2 holds if the number of partitions having
M of multiplicity k is replaced by E3(n,k), A = {1,4,6,9,---}. Also, if X is
a partition of M into parts congruent to 2 or 3 mod 5, then Theorem 2.2
holds if the number of partitions having M of multiplicity k is replaced by
E3¥(n,k), B=1{2,3,7,8,---}.

Example 6.9. Let A\ = (6,1), M =7, and n = 17. The equinumerous sets
of partitions for Corollary 6.8 are

{(9,6,1,1),(6,6,4,1),(6,4,4,1,1,1),(6,4,17), (6, 1*)}
{(16,1), (15,2), (14, 3), (13,4), (13,3,1)}.

One corollary of the Rogers-Ramanujan identities is that there are more
partitions of n into parts congruent to 1 or 4 mod 5 than into parts con-
gruent to 2 or 3 mod 5. Kadell [7] gave an injection which proves this, and
Berkovich-Garvan [3, Theorem 5.1] gave a stronger injection for modulo 8.
We can use Corollary 6.7, Theorem 1.1, and Theorem 2.1 to generalize this
fact.

Theorem 6.10. Let
A={bk+1,5k+4:k>0}, B = {5k + 2,5k +3:k > 0}.

Fiz partitions A\ M and 6 - M, M > 3, with parts from A and B respec-
tively. Then for all n,k >0

EZ(n, k) < E¥(n, k).
Proof. By Corollary 6.7, Theorem 1.1, and Theorem 2.1 we have

ZZq (E{(n,k) — E§(n, k)

n=0 k=0

q—q +Z k2 M], 1

M (g2 q)p—
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All terms are positive except for the first term. If we add the k = 2 term to
the first term we have
g — ¢"* + ¢*[M],
1 —wgM

whose numerator is positive for M > 3. U

7. REMARKS

In [8] marked versions of the 2nd Rogers-Ramanujan identity are given
for
(1) a single part {M},
(2) two parts {2, M},
(3) four parts {2,3,7,8}.

We do not have a general version of Proposition 3.1 which gives the last
marked version.

A g-analogue of Euler’s odd=distinct theorem [9, Theorem 1] is the fol-
lowing. Let g be a positive integer. The number of partitions of N into
g-odd parts [2k +1], is equal to the the number of partitions of N into parts
[m], whose multiplicity is < ¢™. A generating function identity equivalent
to this result is

oo 1 i 1 — ¢a™mlg M2 p(@ D[R
R [m]
UO 1 — tl2n+1g L+ Z_:lt Rp—r kUl 1 — tlka

We do not know how to perturb this identity to mark a part.
Given A and p, F)(u) is an integer which counts the number of \’s in p.
One could imagine defining instead a rational value for this “multiplicity”.
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