LATTICE PATHS AND POSITIVE TRIGONOMETRIC SUMS

M. IsmaiL! , D. Kim2 AND D. STANTON?

ABSTRACT. A trigonometric polynomial generalization to the positivity of an al-
ternating sum of binomial coefficients is given. The proof uses lattice paths, and
identifies the trigonometric sum as a polynomial with positive integer coefficients.
Some special cases of the g-analog conjectured by Bressoud are established, and new
conjectures are given.

1. Introduction.
Andrews et al [3] proved the signed sum of binomial coefficients

M+ N M+ N
1.1 M,N,K,i)= —
(1) oM. N, K. i ;(M_Ku) ()
is non-negative if M, N, K and ¢ are positive integers satisfying

—i<M-N<K-—i, 0<i<K/2.

They proved (1.1) is the number of partitions inside an M x N rectangle, satisfying
certain inequalities involving K and i.
A special case of (1.1) is i = K/2 =k,

(1.2) ) (%J_“Z)(—nl > 0if |M - N| < k.
l

In this paper we generalize (1.2) in several directions. The first generalization is
the following.
Theorem 1. If |M — N| <k, then

Z (ﬁ i— Z) cos(lz) >0

l
for any real x.

In fact we shall prove a stronger statement, that the left side of the inequality in
Theorem 1 is a polynomial in 1 + cos(z), with non-negative coefficients. A combi-
natorial interpretation for the coeflicients, which are integers, is given in Theorem
2.
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2This work was supported by KOSEF grant 95-0701-02-01-3 and RCAA.
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The case M = N, k =1 of Theorem 1 is the de la Vallée Poussin sum [4],

2N N N
(1.3) ; (N B l) cos(lz) = 27V (1 + cos(z))™ .
In [3] a g-analog of (1.1) is given. For i = K/2 = k the polynomial in g becomes,
_ M+ N\ o\ (%k(atb)+1k(b—a)) /2
4 BOLNkan =3 i lk]q( g

If M, N, k, a, bare non-negative integers with a+b < 2k, b—k < N—M < k—a, then
B(M,N,k,a,b) is a polynomial in ¢ with non-negative coefficients [3]. Bressoud [5]
conjectured that a and b may be rational.

Conjecture (Bressoud [5]). If M, N, k, ak, and bk are positive integers such
thatl < a+b<2k—1,b—k < N—M < k—a, then B(M,N,k,a,b) is a polynomial
in q with non-negative coefficients.

In §5-6 we verify (see Theorems 4 and 5) special cases of the Bressoud conjecture.
Our proof is rather unusual: the non-negativity of (1.1) (the ¢ = 1 case) implies
the non-negativity in the ¢ case. For a few cases we show that the monotonicity in
k follows from Stenger’s theorem on quadrature.

Bressoud’s conjecture was motivated by the Borwein conjecture [2]: let

TL( - *9)(1 = #+9) = 4a(6®) = 4Bald®) - PCa(d”)
=0

for some polynomials A,(q), Br(q), and Cy,(q), in q. Then all coefficients of 4,(q),
B,(q), and C,(q) are non-negative. We conjecture a cosine version of Bressoud’s
conjecture in Conjecture 1. It implies that if

n—1
[T+ q*%7e) (1 + ¢+ e7) = A (g%, 2) — e Bu(¢®,2) — P~ Cn(¢®, ),
j=0

the real part of the polynomials A,(g,z), Bn(g,z), and Cp(g,z) is non-negative
as a polynomial in ¢ and 1 + cos(z). If £ = m, Conjecture 1 implies Borwein’s
conjecture.

We shall follow the notation and terminology in [7], [8].

2. Proof of Theorems 1 and 2.

In this section we prove Theorem 1 combinatorially, the precise results are given
in Theorem 2. First we review a combinatorial proof for (1.2), which is well-known
[10, p. 6], [11, p. 12]. After finishing the proof of Theorem 2 we give an equivalent
restatement in Corollary 1.

We will use lattice paths P in the plane. All lattice paths pass through integer
points in the plane, and consist of unit steps of two types: in the north and east
directions. Two lattice paths are called disjoint if they have no steps in common.
(They are allowed to intersect at a point.) We shall at times cut a given lattice path
into smaller disjoint paths P = (P, Py,--- , Ps), by cutting P at a set of integer
points of P.



Proposition 1. The number of lattice paths from (0,0) to (M, N) which do not
intersect the linesy =z + k, |M — N| < k is given by (1.2).

Proof. The total number of lattice paths P from (0,0) to (M,N) is (V) the
I = 0 term in (1.2). More generally, let Path; be the set of lattice paths from
(Ik, —1k) to (M, N). If we weight each path in Path; by (—1)!, then the sum of the
weights of all paths in Path = U® ___ Path, is given by (1.2).

Next we define a sign-reversing involution on Path, whose fixed points are the
paths in Pathg which do not intersect the lines y = z £+ k. Since all terms in Pathg
have weight +1, the number of these paths is given by (1.2).

For the involution, note that all paths in Path — Patho must intersect a line of
the form y = z + (2j — 1)k for some j, since |[M — N| < k, as do some paths in
Pathg. Given such a path, we find the first such intersection, and reflect the initial
segment of the path in this line. Under this map, a path beginning at (lk, —lk)
would intersect y = z + (2l — 1)k or y = x + (21 + 1)k. The reflected path begins at
(I =1k, —(—=1)k), (I + 1)k, (I + 1)k) respectively, and has the same intersection
point. Thus the sign is reversed. [

For Theorems 1 and 2, we consider the same model. Any path P from (0, 0) to
(M, N) is a union of disjoint “Catalan” paths P = (Py, P»,- -+, Ps11), obtained by
cutting P at its intersections with the line y = z. The paths P;, 1 < i < s intersect
the line y = = at only the initial and final points P;, while the path Ps,; begins
on the line y = z and terminates at (M, N). If p of the paths P; intersect the lines
y =x £ k, we say P has class p. Note that P can have class 0 if P also lies inside
the linesy =z + k.

Theorem 2. If |M — N| <k, then

Z (]\]\/.; __'_ Z) cos(lz) = Z ap(1 + cos(z))P
1 P

where a, is the number of lattice paths from (0,0) to (M,N) of class p which do
not intersect the lines y = x £+ 2k.

For example, if M = N, k = 1 in Theorem 2, any path P must satisfy P =
(Py,---,Pn), where each P; has 2 steps. So the class of P is always N, and there
are 2V such P, giving (1.3).

Proof. Clearly ag > 0 is given by Proposition 1, so we assume that p > 0.
By expanding the Chebyshev polynomial Tj(cos(z)) = cos(lz) in terms of (1 +
cos(z)), [7], we find that the coefficient of (1 + cos(z))? in Theorem 2 is

_ N (M ANY (DM (1)
=30l

en (I () e

Fix p > 0. We consider the same set of paths Path, but weight each path in Path;

by
_(lU+p U +p =1\ op1,_1\lil-p
it = (g 1) + (g Ty o prent
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Since the weight is 0 for |/| < p, we may assume |I| > p > 0. We will collect many of
these paths (with weights) together to give 0. The remaining paths (with weights)
all will have || = p, and are thus positive. We then give a bijection from this
multiset of paths to the paths stated in Theorem 2.

Clearly by symmetry we can take N > M. The paths @ € U;>,Path_; all begin
in the second quadrant and end at (M,N). Any ) € Path_; uniquely defines a
sequence of integers (a1, az,--- ,as), where a; = 2l, |a; —a;i41|=1,1<i <s—1,
as = 0 or 1, defined by finding the lines y = x + a;k that @ successively intersects.
We also decompose @ = (@1, - ,Qs,Qs+1) by cutting @ at the location of the
successive initial intersection points with the lines y = x + a;k. Moreover there can
be a “tail” path Qs4+1, which always exists if M # N.

If the sequence (a1, as,--- ,as) is strictly decreasing, we say @ has no violations.
The sequence (a1, a2, - ,as) for paths @) € Path; are defined analogously using
the lines y = = — a;k.

We first consider the case of N = M. Suppose that () € Path_; has no violations
so that a; = 2l + 1 —14, s = 2], and Q; is the path starting on the line y =
z+ (20 + 1 —14)k and ending on the line y = xz + (21 — i)k. If we choose any v of the
Q;, and interchange all of their edges, we obtain a path @ from (—(I —v)k, (I —v)k)
to (M, M) with v violations. We consider all such paths Q obtained from a fixed Q
for any 0 <wv <[ —p. All such Q begin in the second quadrant since l —v > p > 0.
The total weight obtained for these paths is

(2.2(a) 5 (2wt - v

v=0

It is easy to show from the 2Fj(1) evaluation [7] that this sum is zero if [ > p.

Since any path with violations can be obtained from a path with no violations,
we may consider only paths () € Path_,, with no violations.

For paths starting in the fourth quadrant, U;>,Path;, an analogous argument
applies. We can reflect the previous argument in the line y = z. The remaining
paths whose weights do not sum to 0 are those paths ) € Path,, with no violations.

Since w(£p,p) = 2P~!, each non-violating path in Path, U Path_, must be
counted 2P~! times. We now give a bijection between the paths of Theorem 2, and
this multiset of paths. Suppose that P = (Py,---, Ps) has class p. If the last path
which intersects the lines y = = + k intersects y = z + k, we map P to Path_,,
otherwise Path,. By flipping the other p — 1 paths P; which intersect the lines
y = x £+ k across the diagonal y = x, we obtain 2P~! paths of class p, all of which
are mapped to the same path in Path, U Path_,. To obtain a path P from a
non-violating path @ = (Q1,--- ,Q2p) € Path_,, switch all edges of the odd paths
Q2ir1 = Q2it1, P = (Q1,Q2,- -+ ,Q2p-1, Q). For P, the p—1 paths P; intersect
the line y = & + k. An analogous argument works for Q = (Q1,--- ,Q2p) € Pathy,
which are mapped to paths P whose last intersection with the lines y = z £ k is
with the line y = x — k. This completes the proof of the M = N case.

For M + k > N > M, non-violating paths ) € Path_; must have either s = 2]
or s = 2] — 1, and non-violating paths @) € Path; have s = 2] or s = 2] + 1. Again
we choose any v of these subpaths and switch all edges to find violating paths. The
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cases s = 2] sum to zero as before, leaving only the cases s = 2l — 1,Q € Path_;
and s = 2l + 1,Q € Path;. The appropriate sum of weights is given by (2.2) with
2l — 1 and 2 + 1 replacing 2/ in the binomial coefficient,

l—p _
(2:2()) > (" wa -,
v=0
2P o141
(2.2(c)) w(l — v, p).
C 3 ()

This time the Fj(1) evaluation implies that (2.2)(b),(c) are respectively

_op—1 (I - p)l—p—l
2

and
op—1 (I=p+1)yp
(l—-p+1)!7°
so that the sum for Path_;_, cancels that for Path;. Thus the only remaining
paths are the
(1) non-violators in Path_p, and
(2) the non-violators in Path, which have s = 2I, so do not intersect y =  + k.
Note that if [ is maximized, (I = [M/k]), paths in Path; have s = 2] +1 only when
Path_;_; has paths with s = 2] + 1, so this boundary term also is cancelled.
Finally we use the same bijection between the paths of Theorem 2 and the
remaining multiset of non-violating paths. Again each path () € Path, U Path_,
has weight 27~ 1. For Q = (Q1,--- ,Qa,) € Path_,, switch edges in all odd paths
to obtain Q from (0,0) to (M, N), whose last intersection with the lines y = = + k
is with the line y = z + k. The remaining p — 1 Catalan parts of  intersecting
y = x + k lie above the line y = z, flipping them about y = x gives the multiplicity
2P~1. The same idea on the multiset of paths @ € Path, which do not intersect
y = x + k gives all paths of class p from (0,0) to (M, N) whose last intersection
with the lines y = z + k is with the liney =2z — k. O

If we let

(2.3) f(M,N k,z) = Z (g/l/[ __}_ ;Z) cos(lz),
1

the Pascal triangle relation for the binomial coefficients implies that
(24) f(M,N,k,z) = f(M —1,N,k,z) + f(M,N — 1,k, ).

Thus another approach to Theorem 1 is to verify non-negativity for f(0, N, k, z),0 <
N <k, f(M,0,k,x),0 < M <k, and f(M,M + k,k,x). The first two cases are
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trivial, while the last case is not. For k € {1,2,3} there are explicit formulas for
the last case which verify Theorem 1,

(2.5) F(M+1,M,1,z) = 2M(1 + cos(z))M*!,
M+1\ L
(26) f(M + 27M727$) = IZZO (2l + 1>2M l((l + COS(-'E))H_ ’

2l3M7173l(1 + COS(.’L’))Z—H.

(2.7) F(M+3,M,3,2) =)

(M —l) 2M + 3
1>0

21 2l +1

Equations (2.6) and (2.7) can be proven directly from Theorem 2. From (2.3) they
represent a quadratic oF) and a cubic 3F5 transformation. The k =2,3, M = N
versions are

f(M,M,2,z) = Z (]2\/‘;) 2M=1(1 + cos(z))".

1>0

M—l) L2l+13M_1_3l(1+cos(a:))l.

F(M, M, 3,z) =Z( o )=

>0

In [3], it is shown that f(M, N, k,n) is the number of partitions which lie inside
an M x N rectangle, whose hook differences are > 2 — k and < k — 2. For example,

f(Nﬂ N’ 27 ﬂ-) = 2N7

because there are 2V self-conjugate partitions inside an N x N rectangle. From
Theorem 2 we have
f(M7 N’ 2k7 Tr) = f(M7 N7 k7 7T/2)'

We can therefore reinterpret the class p of a path P as some statistic on the parti-
tions whose hook differences lie between 2 — 2k and 2k — 2. Such a statistic is given
in [9].

3. Extensions of Theorem 2.

In this section we give Theorem 3, which generalizes Theorem 2 to arbitrary
polynomials. It is applied to Jacobi polynomials to obtain a sine version of Theorem
1 in Corollary 3.

In the proof of Theorem 2, the non-negativity of the coefficient of (1+cos(z))? =
2P for p > 0 follows from the non-negativity of (2.2)(a)(b)(c). Thus the proof of
Theorem 2 applies to weights w(l, p) besides the T-Chebyshev weight.

Theorem 3. Suppose pi(z) = Zézo w(l,p)z?P is a polynomial in z of degree at

most l. If | M — N| <k, and (2.2)(a)(b)(c) are non-negative, then

> (% t Z)pu(z) =Y a2,

l p>0



where a, > 0 for p > 0.
For example, if
n(e) = CHEE DN
is a Jacobi polynomial [7], then the 2Fj(1) evaluation implies
(2.2)(a) =Cl,p) U —p—a— B)i—p,
(3.1) 22)0)=Clpl-p—a—B—1)p,
22)(c)=CU,pl-p—a=B+1)i—p,

where
(l+a+ﬂ+1)p(a+,3+1)l

C(l,p) = .
P = B+ 0,2 +a+ B+ 2,
Clearly if —1 < a+ 3 <1, and —1 < 3, we have non-negativity in (3.1).
Corollary 2. If [ M — N| <k, and -1 <a+ <1, —1<f, then
M+N>(a+,8+1)|l| (a,B)
3 P (1) =3 a,e?
l pe
: (3 2k) G, =
where a, > 0 for p > 0.

Note that if & = 8 in Corollary 2, the Jacobi polynomials are normalized to be
the Gegenbauer polynomials. The constant terms ag are not always positive. For
exampleif a =8, M = N =3, k = 2 then

ap = 8(1 —3a), a1 =12(1+ 2a).

One may agsk if a sine version of Theorem 1 holds. Clearly Theorem 2 implies
that
Z M + N\ lsin(lz) >0
—~ \M —kl sin(z) —

for any real . Another version is given in Corollary 3.
Theorem 3 may be applied to

(32) » {0 if 1 =0,
. z) = o i
P (e Pty ples? (; — 1) if 1> 0.

The argument of Theorem 2 also proves the constant term is non-negative in this
case. What prevents the argument from always showing ag > 0 is that if v = [, a
single path Q starting at the origin may be obtained by flipping two different paths,
from Q € Path; and Q € Path_;. Thus Q is not obtained exactly once. However,
if (3.2) applies, then all paths () starting at the origin have weight 0, and they can
be safely counted twice.

To verify that Theorem 3 may be applied, we again use the »Fj(1) evaluation

to find
22)(@)=C(-1,p(l-p—a=-B+1)ip,
22)(0) =Cl-1Lp)(l-p—a—PB)i—p-1,
(22)(c)=C(l-Lp(l-p—a—=B+2)ip1

so that non-negativity holds if —1 < a+ 8 < 2, and —1 < 3. The special case
a = =1/2 gives the U-Chebyshev polynomials, thus the next corollary.
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Corollary 3. If |[M — N| < k, then
Z M + N\ sin(|l|z) >0
— \M — kl sin(z) —

for any real x.

4. Discrete Chebyshev polynomials.
For the proof of the special cases of Bressoud’s conjecture, we need some facts
about roots of unity. These facts are properties of the Chebyshev polynomials

Tn(cos((25 + 1)7/2k)) = cos(n(2j + 1)7/2k) = cos(nbj k),
where
Ok = (2§ + 1) /2k.
In this section we prove technical Lemma 1, which is necessary for Theorem 5. We
also explain how these results are related to Stenger’s theorem on quadrature.
Let da(x) = (1 — 2%)~'/2dx on [-1,1], the T-Chebyshev measure. For a poly-
nomial p(z), let

I(p) = / p(z)do(z).

-1

The Gaussian quadrature approximation [6] to I(p) on k points is

S

-1

p(cos(8;.1))-

el N

Ii(p) =

i
<

J

It is clear from the binomial theorem that f(M, N, k,x) may be written as a sum
over the kth roots of unity. The result is

k—1
(4.1) f(M,N,k,z) = % > cos((M — N)(z + 2mj) /2k) (2cos((x + 2mj) /2k)) VN
j=0

Certainly (4.1) implies that for real z, f(M, M, k,z) > 0. We also see that
(42) f(MJ N,k,ﬂ') = 2M+NIk(:L.M+NTM7N(a:))'

Theorem 2 (or [3]) implies that f(M, N, k,n) is an increasing function of k for
|M — N| < k. This result for M = N follows immediately from (4.2) and Stenger’s
theorem.

Theorem (Stenger [13]). Suppose that da(z) = da(—z) is a probability measure
on a finite interval [—a, a] having finite moments of all orders. If p(z) =, sz
is a polynomial with as; > 0, then the Gaussian quadrature approzimation on k
points

k-1
I(p) = Z Wi, P(Tk, ;)
=0
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to I(p) is a monotonically increasing function of k.
The discrete orthogonality relations for T-Chebyshev polynomials are
1/2 if n =+l (mod 4k),

(4.3) (T, T)) =< —1/2 ifn=+(2k—1) (mod 4k),
0 otherwise.

Also recall [7] that the T-Chebyshev polynomials satisfy

1

(4.4) 2t =3 (i) Ti_os(z).

s=0

Since Ton(z) = Tn(To(z)) = Tn (222 — 1), (4.4) implies

(4.5) 2222 — 1) = ;ZO (i) Tora5().

We use (4.3) and (4.5) for a positivity lemma.
Lemma 1. If N, I, k are positive integers such that N < k, and N is even, then

L(N,k,1) = It (zTn—1 ()2 (22 — 1)}) > 0.

Moreover L(N, k,l) is a monotonically increasing function of k.

Proof. First we consider

1

Ie(Tn ()2' (22 — 1)) = ) (S>Ik (TN (2)T2r-15())-

s=0

From (4.3) we have

2 —_ l l
(40) B(Tw(@)2(2’ 1) = 3 ((21 _N)/4+ tk) B ((21 — N —2k)/4+ tk>‘

We interpret any non-integer binomial coefficient in (4.6) as 0.

For Lemma 1, we have two terms of the type (4.6), since 2¢Tny_1 = Tn(z) +
Tn_2(z). There are four cases, depending upon the mod 4 values of 2l — N and
2k. The results are (see (1.1))

g([(2L = N) /4], (2l + N) /4|, k, k/2) if k is even,

L(N,k,l) = { g([(21 = N)/41, (2l + N) /4], k, (k — 1)/2) if k is odd.

Since N < k, each of the four cases is non-negative. The monotonicity follows from
the monotonicity in k of (1.1), which is given in [3]. O



5. Analytic proofs for M = N.

In this section we give elementary analytic proofs of the Bressoud conjecture for
special values of @ and b if M = N.

Two possible g-analogs of (4.1) (for M = N) obtained from kth roots of unity
are

oM 2po
; [M—kl]qqk FR2cos(lz) =

6. LS T~ a29)2 + g/ Pcos? (@ + 2mj)[2K).
j=0 p=0
and
Z [Mﬂl/lkl] q(k;)cos(la:) =
k—1 M-1
65:2) L 0TS TT (1 = )2 + daPeos?(z + 2n1) /28),
7j=0 p=0

Clearly the right sides of both (5.1) and (5.2) are non-negative, as real numbers for
g > 0 and any real . But we can also use (5.1) and (5.2) to verify an extension of
a special case of the Bressoud conjecture.

Theorem 4. The Bressoud conjecture holds if k = 2K is even,

(1) M=N,a=(k+1)/2=0b+1,

(2) M=N,a=b=k/2.
Moreover in these cases, if K increases, the coefficients weakly increase.
Proof. Put z = 7 in (5.2) so that M = N, a=(k+1)/2 =b+ 1, and consider

14 gM k1M1 2j + )7
PO L@+ g + 20 eos(BLEDT) )
7=0 p=0

(5.3) S = -

Then

S =Y ealg)lr((22® — 1)h,

M=

1

Il
<

for some polynomials ¢;(g) with non-negative coefficients. We have

Ix(2') > 0if I is even,

122—1l={
W@ =10 =10 Citris odd,

so S is a polynomial in ¢ with non-negative coefficients. The monotonicity in K
follows from Stenger’s theorem.
The second case is done in the same way, using (5.1). O

We can use (5.3) to find explicit products verifying Bressoud’s conjecture for
k =1,2,3. We also give the analogous results for M # N.
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Proposition 2. We have
(1) B(M,M,1,1,0) =0,
) B(M +1,M,2,1,1) = B(M, M,2,1,1) = [T, (1 + ¢ 1),

3) B(M,M,2,3/2,1/2) = (1+¢ )HM11(1+q2"),
) B(M +1,M,2,3/2,1/2) = [[X, (1 + ¢%),

) B(M,M,3,2,1) = (1+¢")[T}5" (1 + ¢ +¢%),
6) B(M +1,M,3,2,1) = B(M +2,M,3,2,1) = [["X, (1 + ¢’ + ¢%).
6. The N # M-case.

In this section we apply the roots of unity technique of §4 to the g-case if M # N.
It develops that we need Lemma, 1, which followed from the ¢ = 1 case, to prove

this ¢-case.
We let
(6.1)  B(M,N,k,a,bz)=_ [% i Z] g HRE=0) 2 o5 1),
1 q

so that B(M, N, k,a,b,7) = B(M,N, k,a,b).
This time the g-binomial theorem implies
B(M,N,k,a,k —a,z) =

(6.2)
k—1 M-1 N

1 L i
E Z H 1 + q —(2a—1— k)/Ze( T— 27rg)z/k) H(]' + qp+(2a 1 k)/2e(z+2 J)z/k)))
j=0 p=0 p=1
The idea is to suitably specialize the remaining parameters to obtain the square
of an absolute value.
Theorem 5. The Bressoud conjecture holds if M + N is even, a+b = k, and
k—2a=N-M=F1.
Proof. Take k —2a=N —M —1,a+ b=k, in this case (6.2) with z = 7 is

1
B :B(M,N,k‘,a,b,ﬂ') = qu(

k—1
") S 2c0s((24 + 1)m/2k)
=0
(cos((2j + 1)(N = M = D)m/2k) + ¢ = cos((2j + 1)(N — M + 1)« /2k))
(M+N)/2-1
II  (+d* +2¢°cos((2) + 1)n/k))
p=1
After expanding the inner product as a polynomial in cos((2j + 1)7/k), we have
(M+N)/2—1
B = Z al(q)L(N_Makal)+bl(q)L(M_NJk7l)7
=0
for some polynomials a;(q) and b;(¢g) with non-negative coefficients. Lemma 1 then

may be applied because N — M is even, |[N — M| < k.
The case k —2a = N — M + 1 is done similarly. O
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7. Conjectures and remarks.

The Borwein conjecture [5] follows from the k£ = 3 case of Bressoud’s conjecture.
For general k, we state the generalized Borwein conjecture. It is easy to prove if
n = oo from the Jacobi Triple product identity.

Conjecture 1. Let a and k be relatively prime positive integers, 1 < a < k/2, k
odd, and put

n—1
H (1- qa+ik)(1 _ qk—a+zk) — ijqj‘
i=0 >0

The sign of b; is determined by j (mod k). If j = £(2l+1)a for somel, 0 <1 < k/2,
then b; <0, otherwise b; > 0.

It appears that the g-analog of Theorem 1 holds for k > 3.
Conjecture 2. If M, N, k, ak, and bk are positive integers such that 1 < a+b <
2k—1,b—k<N-M<k-a,3<k, then B(IM,N,k,a,b,z) is a polynomial in
1+ cos(z) and q with non-negative coefficients.

If x is real, we need only assume k > 2.

Conjecture 3. If M, N, k, ak, and bk are positive integers such that 1 < a+b <
2k—1,b—k<N-M<k-a,2<k, then B(IM,N,k,a,b,z) is a polynomial in
q with non-negative coefficients.

Conjecture 2 is related to the following generalization of the Borwein conjecture.
If
n—1
[T =g"e=) 1 = e~ ) = An(¢®,2) — ¢Ba(d’,2) — ¢*Cr(d®, @)
j=0
then the real part of the coefficients of the polynomials in ¢ A,,(q,z) is non-negative.
In [9] a different g-analog of Theorem 1 is discussed. The T-Chebyshev polyno-
mial T;(z — 1) is replaced by a g-version T;(z — 1,q). Several g-enumerations are
given there, see also [12].
Finally, note that a heuristic for f(M, N,k ,x) > 0 is that the largest binomial
coefficient should dominate, and it is positive. If we consider instead

USRS o G INCE
l

the larger of the two tail terms should dominate, since the binomial coefficient is
the smallest there. The next Proposition verifies this idea.
Proposition 3. Let M = kCy +r1, N = kCy + ry, where 0 < rq,ry < k.
(1) If Cy — Cs is even, then
M+N>1 N (M+N>1

0 < (=1)*A(M,N,k) < ( .

1

(2) If Cy — Cs is odd, then for 1y =rs, A(M,N,k) =0, otherwise for r1 <rs,

1 1
(1)@ A(M, N, k) > (M: N) - (M: N) > 0.
1 2
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