1. (a) We have $c_{k}=\frac{1}{2} \int_{-1}^{1} f(x) e^{-\pi i k x} d x$. We can do the integration "by hand" or using Wolfram Alpha. The expression we get from the computer in the latter case is $c_{k}=\frac{-2 \pi k \cos (\pi k)+2 \sin (\pi k)}{\pi^{3} k^{3}}$. For an integer $k \neq 0$ this gives $c_{k}=\frac{2(-1)^{k+1}}{\pi^{2} k^{2}}$. For $k=0$ we can either calculate directly $c_{0}=\frac{1}{2} \int_{-1}^{1}\left(1-x^{2}\right) d x=\frac{2}{3}$, or obtain the same result by taking the limit $k \rightarrow 0$ in the above expression we got from Wolfram Alpha. The formula $\int_{-1}^{1}\left(1-x^{2}\right)^{2} d x=2 \sum_{k}\left|c_{k}\right|^{2}$ gives $\sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90}$.
(b) One can simply calculate the Fourier series of $f^{\prime}(x)=-2 x$ on the interval $(-1,1)$, and check that its coefficients are $\pi i k c_{k}$.
One can also see it without calculation: the Fourier series computed in (a) defines a 2 -periodic function on $f_{\text {per }}$ on $(-\infty, \infty)$ which is equal to $1-x^{2}$ for $x \in(-1,1)$. The function $f_{\text {per }}$ is clearly continuous, smooth away from the points $1+2 k$ where $k \in \mathbf{Z}$ (the set of integers), and its derivative away from the points of non-differentiability is a $2-$ periodic extension of the function $f^{\prime}(x)=-2 x$ from interval $(-1,1)$ to $(-\infty, \infty) \backslash\{1+2 k, k \in \mathbf{Z}\}$. In particular $f_{\text {per }}^{\prime}$ is piece-wise smooth, and therefore its Fourier series can be differentiated term by term, see for example p. 114 of the textbook.
(c) The extended periodic function $f_{\text {per }}$ is given by the expression $1-(x-2)^{2}$ when $x \in(1,3)$. The derivatives from the left (resp. right) of the function $f_{\text {per }}$ at $x=1$ are easily calculated to be -2 and 2 , respectively. Since they are different, the periodically extended function cannot be differentiable at $x=1$. The partial sums $\sum_{k=-n}^{k=n}$ of Fourier series of the function $f^{\prime}(x)$ at $x=1$ are easily seen to vanish (note that in this particular example $c_{k} e^{\pi i k}+c_{-k} e^{-\pi i k}=0$ for each k), and hence the Fourier series for $f^{\prime}(x)$ gives 0 when evaluated at $x=1$. (Note that 0 is the average of the left and right derivative at $x=1$.)
2. We have $\cos ^{2} x=\frac{1}{2}+\frac{1}{2} \cos 2 x$ and this is the cosine series of $\cos ^{2} x$. For $\sin ^{2} x$ we can similarly write $\sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x$, but this clearly is not the sine-Fourier series of $\sin ^{2} x$. If we write $\sin ^{2} x=$ $\sum_{n=1}^{\infty} B_{n} \sin n x$, the sum on the right-hand side will be a $2 \pi-$ periodic odd function, let us call it $f_{\text {per }}$. We have $f_{\text {per }}(x)=-\sin ^{2} x$ for $x \in(-\pi, 0)$ and $f_{\text {per }}(x)=\sin ^{2} x$ for $x \in(0, \pi)$. The second derivative $f_{\text {per }}^{\prime \prime}(x)$ is easily seen to have the limit 2 as $x \rightarrow 0$ from the right and -2 as $x \rightarrow 0$ from the left. Hence $f_{\text {per }}^{\prime \prime}$ cannot be continuous at 0 and the function $f_{\text {per }}$ cannot be a finite sum of functions of the form $B_{k} \sin k x$. For the coefficients B_{n} we have $B_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin ^{2} \sin n x d x=\frac{-8}{\pi n(n-2)(n+2)}$ when n is odd, and $B_{n}=0$ when n is even. As we have seen, the second derivative of $f_{\text {per }}$ is discontinuous at $k \pi$ for integer k, and smooth away from those points. Hence the Fourier series of $f_{\text {per }}^{\prime \prime}$ still converges point-wise. On the other hand the Foureir series of $f_{\text {per }}^{\prime \prime \prime}(x)$ cannot converge (point-wise), as its n-th term does not approach zero: differentiation gives (formally) $f_{\text {per }}^{\prime \prime \prime}(x)=\sum_{n=1}^{\infty}-n^{3} B_{n} \cos n x$, and $n^{3} B_{n}$ does not approach 0 for $n \rightarrow \infty$.
3. Our machine can do the Fourier series only for 2π-periodic functions, so we change of variables as follows: For $x \in(0, L)$ we will write $u(x, t)=v\left(\frac{\pi x}{L}, t\right)$, where $v=v(y, t)$ is an odd 2π-peridoc function on the real line. The function v is defined in three steps: (i) For $y \in(0, \pi)$ we set $v(y, t)=u\left(\frac{y L}{\pi}, t\right)$. (ii) For $y \in(-\pi, 0)$ we let $v(y, t)=-v(-y, t)$. (iii) we extend v from $(-\pi, \pi)$ to $(-\infty, \infty)$ as a $2 \pi-$ periodic function. Substituting the expression into the equation for u the function $u(x, t)=v\left(\frac{\pi x}{L}, t\right)$, we obtain the equation satisfied by $v(y, t)$, namely

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial t^{2}}=a^{2} \frac{\partial^{2} v}{\partial y^{2}}-\gamma v, \quad a=c \frac{\pi}{L} \tag{1}
\end{equation*}
$$

We note that the boundary condition for v is $v(0, t)=v(\pi, t)=0$, and is satisfied automatically in view of the requirement that v be odd and 2π-periodic. The functions u_{0}, u_{1} ate transformed to v_{0}, v_{1} by $u_{i}(x, t)=v_{i}\left(\frac{\pi x}{L}\right), i=0,1$. We seek $v(y, t)$ as a Fourier series

$$
\begin{equation*}
v(y, t)=\sum_{k} c_{k}(t) e^{i k x} \tag{2}
\end{equation*}
$$

Our task is to determine the coefficients $c_{k}(t)$. Once we have them, the machine can be used to calculate $v(y, t)$ and then $u(x, t)=v\left(\frac{\pi x}{L}, t\right)$. The equation for $c_{k}=c_{k}(t)$ is $\ddot{c}_{k}=-a^{2} k^{2} c_{k}-\gamma c_{k}$ and its general
solution is

$$
\begin{equation*}
c_{k}(t)=A_{k} \cos \omega_{k} t+B_{k} \sin \omega_{k} t, \quad \omega_{k}=\sqrt{a^{2} k^{2}+\gamma} \tag{3}
\end{equation*}
$$

We now determine the values of A_{k}, B_{k} for our particular solution from the conditions $c_{k}(0)=A_{k}$ and $\dot{c}_{k}(0)=\omega_{k} B_{k}$. The values of $c_{k}(0)$ and $\dot{c}_{k}(0)$ are known from the initial conditions: the Fourier coefficients of v_{0} are $c_{k}(0)$ and the Fourier coefficients of v_{1} are $\dot{c}_{k}(0)$. Our algorithm can be summarized as follows:

1. Set $v_{i}(y)=u_{i}\left(\frac{L y}{\pi}\right), i=0,1$, and extend v_{i} as an odd function of $(-\pi, \pi)$.
2. Let $c_{k}(0)$ be the Fourier coefficients of v_{0} and $\dot{c}_{k}(0)$ the Fourier coefficients of v_{1}. (Here we use our machine for the first time, to calculate Fourier coefficients.)
3. Determine A_{k}, B_{k} by the formulae above.
4. Sum the Fourier series $v(y, t)=\sum_{k}\left(A_{k} \cos \omega_{k} t+B_{k} \sin \omega_{k} t\right) e^{i k y}$. (Here we use our machine for the second time, this time to sum a Fourier series.)
5. $u(x, t)=v\left(\frac{x \pi}{L}, t\right)$.
6. The general solution of the wave equation in our situation is a sum of terms of the form $B_{k} \sin \left(\frac{k \pi x}{L}\right) \sin \left(\omega_{k}\left(t-t_{k}\right)\right)$, where $\omega_{k}=k \frac{c \pi}{L}$, with $c=\sqrt{\frac{T}{\rho}}$. See, for example, Chapter 4 in the textbook (formula 4.4.11). Here we are only interested in the "base frequency" of the string, corresponding to $k=1$. Hence we can work with the formula $\omega=\frac{\pi}{L} \sqrt{\frac{T}{\rho}}$. The answers can be now easily obtained from the formula. (a) The ratio $\frac{T}{\rho}$ has to remain the same, so we have to change the density to $\frac{\rho}{2}$. (b) The expression $\frac{\pi}{L} \sqrt{\frac{T}{\rho}}$ has to remain the same, so we have to increase T to $4 T$.
7. (a) From the chain rule we have $\frac{\partial u}{\partial t}=\frac{\partial u}{\partial \tilde{t}} \frac{\partial \tilde{t}}{\partial t}+\frac{\partial u}{\partial x} \frac{\partial x}{\partial \tilde{t}}=\frac{\partial u}{\partial \tilde{t}}-v \frac{\partial u}{\partial \tilde{x}}$. A similar (but easier) calculation gives $\frac{\partial u}{\partial x}=\frac{\partial u}{\partial \tilde{x}}$. (Here we have a convention which is usual in similar situations: when we take $\frac{\partial}{\partial \tilde{t}}$ we keep \tilde{x} constant and when we take $\frac{\partial}{\partial \tilde{x}}$ we keep \tilde{t} constant, and similarly with the t, x variables. Hence in the new coordinates the equation becomes $\left(\frac{\partial}{\partial \tilde{t}}-v \frac{\partial}{\partial \tilde{x}}\right)^{2} u=c^{2} \frac{\partial^{2} u}{\partial \tilde{x}^{2}}$, which is the same as $\frac{\partial^{2} u}{\partial \tilde{t}^{2}}-2 v \frac{\partial^{2} u}{\partial \tilde{t} \partial \tilde{x}}=\left(c^{2}-v^{2}\right) \frac{\partial^{2} u}{\partial \tilde{x}^{2}}$. If we know c and can measure u (including its derivatives) in the coordinate frame (\tilde{t}, \tilde{x}), we can determine v.
(b) Consider the motion of the point $\tilde{x}=0$ watched from the frame (t, x). Setting $\tilde{x}=0$ in transformation
(6) in the hw2 assignment, we obtain $t=\tilde{t} \cosh \theta$ and $x=c \tilde{t} \sinh \theta$, which then gives $\frac{d x}{d t}=c \frac{\sinh \theta}{\cosh \theta}=$ $c \tanh \theta$. This is the velocity v of the origin of the frame (\tilde{t}, \tilde{x}) when observed from the frame (t, x).
(c) Using the formulae $\cosh ^{2} \theta-\sinh ^{2} \theta=1, \tanh \theta=\frac{\sinh \theta}{\cosh \theta}$ and $\tanh \theta=\frac{v}{c}$, one obtains $\cosh \theta=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$ and $\sinh \theta=\frac{\frac{v}{c}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$. This gives $t=\frac{\tilde{t}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}+\frac{\frac{v}{c^{2}} \tilde{x}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$ and $x=\frac{v \tilde{t}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}+\frac{\tilde{x}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$, which one can find in any textbook of special relativity.
8. (a) Let us first show that $A A^{*}=n I$, where I is the identity matrix. We have
$\left(A A^{*}\right)_{k l}=\sum_{m=1}^{n} A_{k m}\left(A^{*}\right)_{m l}=\sum_{m} w^{(k-1)(m-1)} w^{-(m-1)(l-1)}=\sum_{m} w^{(m-1)(k-l)}$. When $k=l$, the last sum is clearly equal to n. For $k \neq l$, let us set $\xi=w^{k-l}$. We note that $\xi \neq 1$ but $\xi^{n}=1$. The last sun can then be written as $1+\xi+\cdots+\xi^{n-1}=\frac{\xi^{n}-1}{\xi-1}=0$.
(b) One can either say that we have shown in (a) that the matrix $\frac{1}{\sqrt{n}} A$ is unitary and this implies the identity $\frac{1}{n} \sum_{k}\left|f_{k}\right|^{2}=\sum_{k}\left|c_{k}\right|^{2}$ in the hw2 assignment. Alternatively, one can show this identity directly, more or less repeating the calculation in (a): we have $\sum_{k} f_{k} \bar{f}_{k}=\sum_{k l m} A_{k l} c_{l} \bar{A}_{k m} \bar{c}_{m}$. In the tripple sum we first sum over k, using $\sum_{k} A_{k l} \bar{A}_{k m}=n \delta_{m l}$, where $\delta_{m l}=1$ for $k=l$ and 0 for $m \neq l$, and obtaining $\sum_{k} f_{k} \bar{f}_{k}=\sum_{m l} n \delta_{m l} c_{m} \bar{c}_{l}=n \sum_{l} c_{l} \bar{c}_{l}$.
