1. (a) We have $c_k = \frac{1}{2} \int_{-1}^{1} f(x) e^{-\pi i k x} dx$. We can do the integration "by hand" or using Wolfram Alpha. The expression we get from the computer in the latter case is $c_k = \frac{-2\pi k \cos(\pi k) + 2\sin(\pi k)}{\pi^3 k^3}$. For an integer $k \neq 0$ this gives $c_k = \frac{2(-1)^{k+1}}{\pi^2 k^2}$. For k = 0 we can either calculate directly $c_0 = \frac{1}{2} \int_{-1}^{1} (1 - x^2) dx = \frac{2}{3}$, or obtain the same result by taking the limit $k \to 0$ in the above expression we got from Wolfram Alpha. The formula $\int_{-1}^{1} (1 - x^2)^2 dx = 2 \sum_k |c_k|^2$ gives $\sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{\pi^4}{90}$. (b) One can simply calculate the Fourier series of f'(x) = -2x on the interval (-1, 1), and check that its

(b) One can simply calculate the Fourier series of f'(x) = -2x on the interval (-1, 1), and check that its coefficients are $\pi i k c_k$.

One can also see it without calculation: the Fourier series computed in (a) defines a 2-periodic function on f_{per} on $(-\infty, \infty)$ which is equal to $1 - x^2$ for $x \in (-1, 1)$. The function f_{per} is clearly continuous, smooth away from the points 1 + 2k where $k \in \mathbb{Z}$ (the set of integers), and its derivative away from the points of non-differentiability is a 2-periodic extension of the function f'(x) = -2x from interval (-1, 1)to $(-\infty, \infty) \setminus \{1 + 2k, k \in \mathbb{Z}\}$. In particular f'_{per} is piece-wise smooth, and therefore its Fourier series can be differentiated term by term, see for example p. 114 of the textbook.

(c) The extended periodic function f_{per} is given by the expression $1 - (x - 2)^2$ when $x \in (1, 3)$. The derivatives from the left (resp. right) of the function f_{per} at x = 1 are easily calculated to be -2 and 2, respectively. Since they are different, the periodically extended function cannot be differentiable at x = 1. The partial sums $\sum_{k=-n}^{k=n}$ of Fourier series of the function f'(x) at x = 1 are easily seen to vanish (note that in this particular example $c_k e^{\pi i k} + c_{-k} e^{-\pi i k} = 0$ for each k), and hence the Fourier series for f'(x) gives 0 when evaluated at x = 1. (Note that 0 is the average of the left and right derivative at x = 1.)

2. We have $\cos^2 x = \frac{1}{2} + \frac{1}{2}\cos 2x$ and this is the cosine series of $\cos^2 x$. For $\sin^2 x$ we can similarly write $\sin^2 x = \frac{1}{2} - \frac{1}{2}\cos 2x$, but this clearly *is not* the sine-Fourier series of $\sin^2 x$. If we write $\sin^2 x = \sum_{n=1}^{\infty} B_n \sin nx$, the sum on the right-hand side will be a 2π - periodic odd function, let us call it f_{per} . We have $f_{\text{per}}(x) = -\sin^2 x$ for $x \in (-\pi, 0)$ and $f_{\text{per}}(x) = \sin^2 x$ for $x \in (0, \pi)$. The second derivative $f_{\text{per}}'(x)$ is easily seen to have the limit 2 as $x \to 0$ from the right and -2 as $x \to 0$ from the left. Hence $f_{\text{per}}'(x)$ is continuous at 0 and the function f_{per} cannot be a finite sum of functions of the form $B_k \sin kx$. For the coefficients B_n we have $B_n = \frac{2}{\pi} \int_0^{\pi} \sin^2 \sin nx \, dx = \frac{-8}{\pi n(n-2)(n+2)}$ when n is odd, and $B_n = 0$ when n is even. As we have seen, the second derivative of f_{per} still converges point-wise. On the other hand the Fourier series of $f_{\text{per}}''(x)$ cannot converge (point-wise), as its n-th term does not approach 2 zero: differentiation gives (formally) $f_{\text{per}}''(x) = \sum_{n=1}^{\infty} -n^3 B_n \cos nx$, and $n^3 B_n$ does not approach 0 for $n \to \infty$.

3. Our machine can do the Fourier series only for 2π -periodic functions, so we change of variables as follows: For $x \in (0, L)$ we will write $u(x, t) = v(\frac{\pi x}{L}, t)$, where v = v(y, t) is an odd 2π -periodic function on the real line. The function v is defined in three steps: (i) For $y \in (0, \pi)$ we set $v(y, t) = u(\frac{yL}{\pi}, t)$. (ii) For $y \in (-\pi, 0)$ we let v(y, t) = -v(-y, t). (iii) we extend v from $(-\pi, \pi)$ to $(-\infty, \infty)$ as a 2π -periodic function. Substituting the expression into the equation for u the function $u(x, t) = v(\frac{\pi x}{L}, t)$, we obtain the equation satisfied by v(y, t), namely

$$\frac{\partial^2 v}{\partial t^2} = a^2 \frac{\partial^2 v}{\partial y^2} - \gamma v , \qquad a = c \frac{\pi}{L} . \tag{1}$$

We note that the boundary condition for v is $v(0,t) = v(\pi,t) = 0$, and is satisfied automatically in view of the requirement that v be odd and 2π -periodic. The functions u_0, u_1 ate transformed to v_0, v_1 by $u_i(x,t) = v_i(\frac{\pi x}{L})$, i = 0, 1. We seek v(y,t) as a Fourier series

$$v(y,t) = \sum_{k} c_k(t) e^{ikx} .$$
⁽²⁾

Our task is to determine the coefficients $c_k(t)$. Once we have them, the machine can be used to calculate v(y,t) and then $u(x,t) = v(\frac{\pi x}{L},t)$. The equation for $c_k = c_k(t)$ is $\ddot{c}_k = -a^2k^2c_k - \gamma c_k$ and its general

solution is

$$c_k(t) = A_k \cos \omega_k t + B_k \sin \omega_k t, \qquad \omega_k = \sqrt{a^2 k^2 + \gamma}.$$
(3)

We now determine the values of A_k , B_k for our particular solution from the conditions $c_k(0) = A_k$ and $\dot{c}_k(0) = \omega_k B_k$. The values of $c_k(0)$ and $\dot{c}_k(0)$ are known from the initial conditions: the Fourier coefficients of v_0 are $c_k(0)$ and the Fourier coefficients of v_1 are $\dot{c}_k(0)$. Our algorithm can be summarized as follows:

- 1. Set $v_i(y) = u_i(\frac{Ly}{\pi})$, i = 0, 1, and extend v_i as an odd function of $(-\pi, \pi)$.
- 2. Let $c_k(0)$ be the Fourier coefficients of v_0 and $\dot{c}_k(0)$ the Fourier coefficients of v_1 . (Here we use our machine for the first time, to calculate Fourier coefficients.)
- 3. Determine A_k, B_k by the formulae above.
- 4. Sum the Fourier series $v(y,t) = \sum_{k} (A_k \cos \omega_k t + B_k \sin \omega_k t) e^{iky}$. (Here we use our machine for the second time, this time to sum a Fourier series.)
- 5. $u(x,t) = v(\frac{x\pi}{L},t).$

4. The general solution of the wave equation in our situation is a sum of terms of the form

 $B_k \sin(\frac{k\pi x}{L}) \sin(\omega_k(t-t_k))$, where $\omega_k = k\frac{c\pi}{L}$, with $c = \sqrt{\frac{T}{\rho}}$. See, for example, Chapter 4 in the textbook (formula 4.4.11). Here we are only interested in the "base frequency" of the string, corresponding to k = 1. Hence we can work with the formula $\omega = \frac{\pi}{L}\sqrt{\frac{T}{\rho}}$. The answers can be now easily obtained from the formula. (a) The ratio $\frac{T}{\rho}$ has to remain the same, so we have to change the density to $\frac{\rho}{2}$. (b) The expression $\frac{\pi}{L}\sqrt{\frac{T}{\rho}}$ has to remain the same, so we have to increase T to 4T.

5. (a) From the chain rule we have $\frac{\partial u}{\partial t} = \frac{\partial u}{\partial t} \frac{\partial \tilde{t}}{\partial t} + \frac{\partial u}{\partial x} \frac{\partial x}{\partial \tilde{t}} = \frac{\partial u}{\partial t} - v \frac{\partial u}{\partial \tilde{x}}$. A similar (but easier) calculation gives $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \tilde{x}}$. (Here we have a convention which is usual in similar situations: when we take $\frac{\partial}{\partial \tilde{t}}$ we keep \tilde{x} constant and when we take $\frac{\partial}{\partial \tilde{x}}$ we keep \tilde{t} constant, and similarly with the t, x variables. Hence in the new coordinates the equation becomes $(\frac{\partial}{\partial \tilde{t}} - v \frac{\partial}{\partial \tilde{x}})^2 u = c^2 \frac{\partial^2 u}{\partial \tilde{x}^2}$, which is the same as $\frac{\partial^2 u}{\partial \tilde{t}^2} - 2v \frac{\partial^2 u}{\partial \tilde{t}\partial \tilde{x}} = (c^2 - v^2) \frac{\partial^2 u}{\partial \tilde{x}^2}$. If we know c and can measure u (including its derivatives) in the coordinate frame (\tilde{t}, \tilde{x}) , we can determine v.

(b) Consider the motion of the point $\tilde{x} = 0$ watched from the frame (t, x). Setting $\tilde{x} = 0$ in transformation (6) in the hw2 assignment, we obtain $t = \tilde{t} \cosh \theta$ and $x = c\tilde{t} \sinh \theta$, which then gives $\frac{dx}{dt} = c \frac{\sinh \theta}{\cosh \theta} = c \tanh \theta$. This is the velocity v of the origin of the frame (\tilde{t}, \tilde{x}) when observed from the frame (t, x). (c) Using the formulae $\cosh^2 \theta - \sinh^2 \theta = 1$, $\tanh \theta = \frac{\sinh \theta}{\cosh \theta}$ and $\tanh \theta = \frac{v}{c}$, one obtains $\cosh \theta = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ and $\sinh \theta = -\frac{v}{c}$. This gives $t = -\frac{\tilde{t}}{\sqrt{c}} + -\frac{v}{c^2}\tilde{x}}$ and $x = -\frac{v\tilde{t}}{\sqrt{c}} + -\frac{x}{c}$, which one can find in

and
$$\sinh \theta = \frac{\overline{c}}{\sqrt{1 - \frac{v^2}{c^2}}}$$
. This gives $t = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}} + \frac{\overline{c^2}^x}{\sqrt{1 - \frac{v^2}{c^2}}}$ and $x = \frac{vt}{\sqrt{1 - \frac{v^2}{c^2}}} + \frac{\overline{x}}{\sqrt{1 - \frac{v^2}{c^2}}}$, which one can find in any textbook of special relativity.

6. (a) Let us first show that $AA^* = nI$, where I is the identity matrix. We have $(AA^*)_{kl} = \sum_{m=1}^n A_{km}(A^*)_{ml} = \sum_m w^{(k-1)(m-1)} w^{-(m-1)(l-1)} = \sum_m w^{(m-1)(k-l)}$. When k = l, the last sum is clearly equal to n. For $k \neq l$, let us set $\xi = w^{k-l}$. We note that $\xi \neq 1$ but $\xi^n = 1$. The last sum can then be written as $1 + \xi + \dots + \xi^{n-1} = \frac{\xi^n - 1}{\xi^{-1}} = 0$.

(b) One can either say that we have shown in (a) that the matrix $\frac{1}{\sqrt{n}}A$ is unitary and this implies the identity $\frac{1}{n}\sum_{k}|f_{k}|^{2} = \sum_{k}|c_{k}|^{2}$ in the hw2 assignment. Alternatively, one can show this identity directly, more or less repeating the calculation in (a): we have $\sum_{k} f_{k}\overline{f}_{k} = \sum_{klm} A_{kl}c_{l}\overline{A}_{km}\overline{c}_{m}$. In the tripple sum we first sum over k, using $\sum_{k} A_{kl}\overline{A}_{km} = n\delta_{ml}$, where $\delta_{ml} = 1$ for k = l and 0 for $m \neq l$, and obtaining $\sum_{k} f_{k}\overline{f}_{k} = \sum_{ml} n\delta_{ml}c_{m}\overline{c}_{l} = n\sum_{l} c_{l}\overline{c}_{l}$.