Math 5587

Homework Assignment 3 Solutions

1. Let (a, b) be a non-empty bounded open interval of the real line, let α, β be two positive real numbers at least one of which is not zero, and let f(x) be a function which is smooth on the closed interval [a, b]. Find the differential equation and the boundary conditions which correspond to the following minimization problem:

Among sufficiently regular functions $u: (a, b) \to \mathbf{R}$ minimize the functional

$$J(u) = \int_{a}^{b} \left[\frac{1}{2} (u'(x))^{2} - u(x)f(x) \right] dx + \frac{\alpha}{2} u(a)^{2} + \frac{\beta}{2} u(b)^{2} \,. \tag{1}$$

Solution: Assume u is a function at which J attends its minimum. Let us fix a smooth function $\varphi : [a, b] \to \mathbf{R}$. The function $t \to J(u + t\varphi)$ obviously attends its minimum at t = 0, therefore $\frac{d}{dt}|_{t=0}J(u+t\varphi) = 0$. This gives $0 = \int_a^b [u'(x)\varphi'(x) - f(x)\varphi(x)] dx + \alpha u(a)\varphi(a) + \beta u(b)\varphi(b)$. Integrating by parts, we see that $\int_a^b u'\varphi' dx = \int_a^b -u''\varphi dx + u'(b)\varphi(b) - u'(a)\varphi(a)$. Using this in the previous identity, we obtain $0 = \int_a^b (-u'' - f)\varphi dx + (-u'(a) + \alpha u(a))\varphi(a) + (u'(b) + \beta u(b))\varphi(b)$. This has to be true for any function φ as above. By taking all possible (smooth) functions φ satisfying $\varphi(a) = 0$ and $\varphi(b) = 0$, we see that u'' + f = 0. Once we know that u'' + f = 0, we take φ with $\varphi(a) = 1$, $\varphi(b) = 0$ to get $-u'(a) + \alpha u(a) = 0$ and another φ with $\varphi(a) = 0$, $\varphi(b) = 1$ to get $u'(b) + \beta u(b) = 0$. Therefore u satisfies the equation -u'' = f in the interval (a, b) and the boundary conditions $-u'(a) + \alpha u(a) = 0$ and $u'(b) + \beta u(b)$ and the points a and b, respectively.

2. Consider the following variant of Problem 1. Let $a = -1, b = 1, \alpha = 1, \beta = 0, f(x) = x^2$ and let X be the space of all quadratic functions of the form $u(x) = px^2 + qx + r$. Find the minimizer of J over the space X in this particular case.

Solution: When $u = px^2 + qx + r$ and $f(x) = x^2$ we have $\int_{-1}^{1} \left[\frac{1}{2}(u'(x))^2 - u(x)f(x)\right] dx = \int_{-1}^{1} \left[\frac{1}{2}(2px+q)^2 - (px^2+qx+r)x^2\right] dx$. The last integral is evaluated by routine calculation as $\frac{4}{3}p^2 + q^2 - \frac{2}{5}p - \frac{2}{3}r$. Hence the value of J at $u = px^2 + qx + r$, which we will denote by f(p,q,r), is given by $f(p,q,r) = \frac{4}{3}p^2 + q^2 + \frac{1}{2}(p-q+r)^2 - \frac{2}{5}p - \frac{2}{3}r$. It is worth noting that the quadratic part of f, the expression $\frac{4}{3}p^2 + q^2 + \frac{1}{2}(p-q+r)^2$ is always positive and vanishes only when (p,q,r) = (0,0,0). This means that the function f approaches $+\infty$ when (p,q,r) approaches ∞ in \mathbb{R}^3 , and hence it attains a minimum. At the minimum the three partial derivatives of f have to vanish. This gives the system of equations

$$\begin{pmatrix} \frac{11}{3} & -1 & 1\\ -1 & 3 & -1\\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} p\\ q\\ r \end{pmatrix} = \begin{pmatrix} \frac{2}{5}\\ 0\\ \frac{2}{3} \end{pmatrix}.$$
(2)

Solving this system (either by hand or with the help of Matlab) gives $p = -\frac{1}{10}$, $q = \frac{1}{3}$, $r = \frac{11}{10}$. Hence the minimum of J on the space X is attained at the function $u(x) = -\frac{1}{10}x^2 + \frac{1}{3}x + \frac{11}{10}$.

3. Consider still another variant of Problem 1. This time choose a positive integer n (think of n = 100, for example), set h = (b-a)/n and $x_0 = a, x_1 = a + h, x_2 = a + 2h, \ldots, x_n = b$. Let X_n be the space of continuous functions on the closed interval [a, b] which are of the form $p_i x + q_i$ on the intervals $(x_i, x_{i+1}), i = 0, 1, \ldots, n-1$.

(a) Explain why each function u in X_n is uniquely determined by the vector $u_0 = u(x_0), u_1 = u(x_1), \ldots, u_n = u(x_n)$. (b) For the case $f(x) \equiv 1$ calculate the equation for the vector $u_0, u_1, u_2, \ldots, u_n$ one gets from the problem of minimizing J(u) over X_n .

Hint: Take the derivatives of J is the direction of functions φ in X which are non-zero only at one point of the grid.

Solution: (a) A function of the form $p_i x + q_i$ on an interval (x_i, x_{i+1}) is uniquely determined by its values at x_i and x_{i+1} .

(b) Proceeding in the same way as in Lecture 14 (see page 31 of the Lecture Log), we obtain $-\frac{u_{i+1}-2u_i+u_{i-1}}{h^2} = 1$ for i = 1, 2, ..., n-1. This represents n-1 equations. We have n+1 unknowns $u_1, u_1, ..., u_n$. It remains to determine the two remaining equations. By the same reasoning as in Problem 1, we know that $0 = \int_a^b [u'(x)\varphi'(x) - f(x)\varphi(x)] dx + \alpha u(a)\varphi(a) + \beta u(b)\varphi(b)$ for each $\varphi \in X_n$. Let us choose this identity with a $\varphi \in X_n$ satisfying $\varphi(x_0) = 1$ and $\varphi(x_i) = 0$ for i = 1, 2, ..., n. Recalling that $f(x) \equiv 1$, we obtain $-\frac{u_1-u_0}{h} - \frac{h}{2} + \alpha u_0 = 0$. Similarly, using a $\varphi \in X_n$ given by $\varphi(x_i) = 0$ for $i \leq n-1$ and $\varphi(x_n) = 1$, we obtain $\frac{u_n-u_{n-1}}{h} - \frac{h}{2} + \beta u_n = 0$. The resulting system of equations can be written in matrix form as

$$\frac{1}{h^2} \begin{pmatrix} 1+\alpha h & -1 & 0 & \dots & 0 & 0\\ -1 & 2 & -1 & 0 & \dots & 0\\ 0 & -1 & 2 & -1 & \dots & 0\\ \dots & \dots & \dots & \dots & \dots & \dots\\ 0 & 0 & \dots & -1 & 2 & -1\\ 0 & 0 & 0 & \dots & -1 & 1+\beta h \end{pmatrix} \begin{pmatrix} u_0 \\ u_1 \\ \dots \\ u_n \\ u_n \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 1 \\ \dots \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$
(3)

4. Consider the $n \times n$ matrix

$$S = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}.$$
 (4)

(a) Show that this matrix is unitary, in the sense that for any two vectors $z, z' \in \mathbb{C}^n$ with (complex) coordinates z_1, \ldots, z_n and z'_1, \ldots, z'_n we have $\langle z, z' \rangle = \langle Sz, Sz' \rangle$, where $\langle z, z' \rangle = \sum_{j=1}^n z_j \overline{z}'_j$ is the standard Hermitian product in \mathbb{C}^n .

(b) Find the adjoint matrix S^* (defined by $\langle Sz, z' \rangle = \langle z, S^*z' \rangle$ for each $z, z' \in \mathbb{C}^n$).

(c) Verify that $SS^* = S^*S = I$, where I is the identity matrix. In particular, S is normal. (This of course follows from (a) and general principles, but here the task is to verify this directly.)

(d) As S is normal, the general theory implies that it can be diagonalized (together with S^*) in a basis which is orthogonal with respect to the Hermitian product \mathbb{C}^n . Show that the columns of the Fourier matrix which appeared in Problem 6 of hw2 provide exactly such a basis, and calculate the eigenvalue corresponding the each eigenvector for both S and S^* .

(e) Check that the matrix $A = S - 2I + S^*$ corresponds to a matrix we used for a finite-dimensional approximation of the operator $\frac{\partial^2}{\partial r^2}$. Calculate the eigenvalues of A.

Solution: (a) If a vector z has coordinates (z_1, z_2, \ldots, z_n) , then Sz has coordinates $(z_2, z_3, \ldots, z_n, z_1)$. From this it is clear that $\langle z, z' \rangle = \langle Sz, Sz' \rangle$. (b)We have $\langle Sz, z' \rangle = z_2 \overline{z}'_1 + z_3 \overline{z}'_2 + \ldots z_n \overline{z}'_{n-1} + z_1 \overline{z}'_n$, so the vector S^*z' has coordinates $(z'_n, z'_1, z'_2, \ldots, z'_{n-1})$. This means that

$S^{*} =$	($\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$	0 0 0	 	0 0 0	$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	
		$\begin{array}{c} \dots \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \end{array}$	· · · · · · ·	$\begin{array}{c} \dots \\ 0 \\ 1 \end{array}$	 0 0	

(c) This can be done in many ways, one of them being a direct computation with the above explicit form of the matrices. A more general reasoning one can possibly use: $\langle S^*Sz, z' \rangle = \langle Sz, Sz' \rangle = \langle z, z' \rangle$ for each z, z', which means $S^*Sz = z$ for each z. (d) The equation $Sz = \lambda z$ means that $z_2 = \lambda z_1$, $z_3 = \lambda z_2$, $z_n = \lambda z_{n-1}$, $z_1 = \lambda z_n$. Hence $z_{j+1} = \lambda^j z_1$, j = 1, 2, ..., n-1 and $\lambda^n = 1$. Hence $z_1 \neq 0$, which means that we can choose $z_1 = 1$. So any eigenvector can be taken as a vector with coordinates $1, \lambda, \lambda^2, ..., \lambda^{n-1}$, with $\lambda^n = 1$. These condition exactly characterize the columns of the Fourier matrix. From the calculation it is also clear that the eigenvalue of S associated with $(1, \lambda, ..., \lambda^{n-1})$ is λ . The eigenvalue of S^* corresponding to the same vector is easily seen to be $\lambda^{-1} = \overline{\lambda}$. (d) The matrix $S - 2I + S^*$ is

$$\left(\begin{array}{ccccccccccc} -2 & 1 & 0 & \dots & 0 & 1 \\ 1 & -2 & 1 & \dots & 0 & 0 \\ 0 & 1 & -2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & -2 & 1 \\ 1 & 0 & 0 & \dots & 1 & -2 \end{array}\right),$$

which is indeed the matrix coming up in the discretization of $\frac{\partial^2}{\partial x^2}$ with periodic boundary conditions. Its eigenvalues are of the form $\lambda - 2 + \overline{\lambda} = -2(1 - \operatorname{Re} \lambda)$, where lambda can be any *n*-th root of unity. The this the same as $-2(1 - \cos(2\pi k/n))$, $k = 0, 1, \ldots, n-1$. Note that $\cos(2\pi k/n) = \cos(2\pi (n-k)/n)$, so the eigenvalues other than 1 and possibly -1 (for even *n*), have multiplicity two.

5. Solve the following problem for the heat equation

$$\begin{array}{rcl} \frac{\partial u}{\partial t} &=& \frac{\partial^2 u}{\partial x^2} + \sin x \,, \qquad x \in (0,\pi) \,, \ t \in (0,\infty) \\ u(0,t) &=& 0 \,, \\ u(\pi,t) &=& 0 \,, \\ u(x,0) &=& \sin 2x \,, \end{array}$$

and determine $u_{\infty}(x) = \lim_{t \to \infty} u(x, t)$.

Hint: Seek the solution in the form of the sine-Fourier series, and recall how to solve the ODE $\dot{y} = -y + 1$.

Solution: We write the solution as a sine-Fourier series $u(x,t) = \sum_{n=1}^{\infty} B_n(t) \sin nx$. Let $f_1 = 1$ and $f_n = 0$ for $n \ge 2$, so that $\sin x = \sum_n f_n \sin nx$ is the sine-Fourier series of the forcing term $\sin x$. The equations for $B_n(t)$ are $\dot{B}_n(t) + n^2 B_n(t) = f_n$, n = 1, 2, ...The initial conditions $B_n(0)$ are given by $B_2(0) = 1$ and $B_n(0) = 0$ when $n \neq 2$. Based on the simple equations for $B_n(t)$ and their initial conditions, we see that $B_1(t) = 1 - e^{-t}$, $B_2(t) = e^{-4t}$, and $B_n = 0$ for $n \ge 3$. Hence $u(x,t) = (1 - e^{-t}) \sin x + e^{-4t} \sin 2x$. The limit $\lim_{t \to \infty} u(x, t) \text{ is } u_{\infty}(x) = \sin x.$

6. Show that for a 2L-periodic solution of the (generalized) wave equation

$$\rho \frac{\partial^2 u}{\partial t^2} = T \frac{\partial^2 u}{\partial x^2} - \gamma u \tag{5}$$

where ρ, T, γ are positive constants, with ρ and T being strictly positive, the following quantities are constant in time:

(a) The energy: $E(t) = \int_{-L}^{L} \left[\frac{\rho}{2} \left(\frac{\partial u(x,t)}{\partial t} \right)^2 + \frac{T}{2} \left(\frac{\partial u(x,t)}{\partial x} \right)^2 + \frac{\gamma}{2} u(x,t)^2 \right] dx$.

(b) The momentum: $P(t) = \int_{-L}^{L} \left[\frac{\partial u(x,t)}{\partial t} \frac{\partial u(x,t)}{\partial x} \right] dx$.

Hint: Show that the time derivatives of E(t) and P(t) vanish, using integration by parts and the equation.

Solution: We will denote derivatives by sub-indices, so u_t means $\frac{\partial u}{\partial t}$, and similarly $u_{tt} = \frac{\partial^2 u}{\partial t^2}$, or $u_{xt} = \frac{\partial^2 u}{\partial x \partial t}$, etc. We also recall the following simples observation: if f is a smooth 2L-periodic function, then $\int_{-L}^{L} f_x \, dx = 0$. This follows the identity $\int_{L}^{L} f_x \, dx = f(L) - f(-L) = 0$, where the last equality follows from the periodicity of the function. (a) We calculate $\frac{d}{dt}E(t) = \int_{-L}^{L} [\rho u_t u_{tt} + Tu_x u_{xt} + \gamma u_t] \, dx = \int_{-L}^{L} [u_t(Tu_{xx} - \gamma u) + Tu_x u_{xt} + \gamma u_t] \, dx = \int_{-L}^{L} [Tu_t u_{xx} + Tu_x u_{xt}] \, dx = \int_{-L}^{L} [u_t(Tu_{xx} - \gamma u) + Tu_x u_{xt} + \gamma u_t] \, dx = \int_{-L}^{L} [Tu_t u_{xx} + Tu_x u_{xt}] \, dx = \int_{-L}^{L} [u_t(Tu_{xx} - \gamma u) + Tu_x u_{xt} + \gamma u_t] \, dx = \int_{-L}^{L} [u_t u_{xx} + Tu_x u_{xt}] \, dx$

(using integration by parts on the first term) $\int_{-L}^{L} [-Tu_{xt}u_{xt} + Tu_{x}u_{xt}] dx = J_{-L}[u_{t}(x_{xx} - \gamma u) + Tu_{x}u_{xt} + \gamma uu_{t}] dx = J_{-L}[1 u_{t}u_{xx} + Tu_{x}u_{xt}] dx = 0.$ (b) $\frac{d}{dt}P(t) = \int_{-L}^{L} [u_{tt}u_{x} + u_{t}u_{tx}] dx = \int_{-L}^{L} [\frac{T}{\rho}u_{xx}u_{x} - \frac{\gamma}{\rho}uu_{x} + u_{t}u_{xt}] dx.$ Now note that all three terms in the last integral can be written as derivatives: $u_{x}u_{xx} = (u_{x}^{2}/2)_{x}, uu_{x} = (u_{x}^{2}/2)_{x}, and u_{t}u_{tx} = (u_{t}^{2}/2)_{x}.$ By the remark above about the integral of a derivative of a periodic function, we see that $\int_{-L}^{L} [\frac{T}{\rho}u_{xx}u_{x} - \frac{\gamma}{\rho}uu_{x} + u_{t}u_{xt}] dx = 0.$