1. Let (a, b) be a non-empty bounded open interval of the real line, let α, β be two positive real numbers at least one of which is not zero, and let $f(x)$ be a function which is smooth on the closed interval $[a, b]$. Find the differential equation and the boundary conditions which correspond to the following minimization problem:
Among sufficiently regular functions $u:(a, b) \rightarrow \mathbf{R}$ minimize the functional

$$
\begin{equation*}
J(u)=\int_{a}^{b}\left[\frac{1}{2}\left(u^{\prime}(x)\right)^{2}-u(x) f(x)\right] d x+\frac{\alpha}{2} u(a)^{2}+\frac{\beta}{2} u(b)^{2} . \tag{1}
\end{equation*}
$$

Solution: Assume u is a function at which J attends its minimum. Let us fix a smooth function $\varphi:[a, b] \rightarrow \mathbf{R}$. The function $t \rightarrow J(u+t \varphi)$ obviously attends its minimum at $t=0$, therefore $\left.\frac{d}{d t}\right|_{t=0} J(u+t \varphi)=0$. This gives $0=\int_{a}^{b}\left[u^{\prime}(x) \varphi^{\prime}(x)-f(x) \varphi(x)\right] d x+\alpha u(a) \varphi(a)+\beta u(b) \varphi(b)$. Integrating by parts, we see that $\int_{a}^{b} u^{\prime} \varphi^{\prime} d x=\int_{a}^{b}-u^{\prime \prime} \varphi d x+u^{\prime}(b) \varphi(b)-u^{\prime}(a) \varphi(a)$. Using this in the previous identity, we obtain $0=\int_{a}^{b}\left(-u^{\prime \prime}-f\right) \varphi d x+\left(-u^{\prime}(a)+\alpha u(a)\right) \varphi(a)+\left(u^{\prime}(b)+\beta u(b)\right) \varphi(b)$. This has to be true for any function φ as above. By taking all possible (smooth) functions φ satisfying $\varphi(a)=0$ and $\varphi(b)=0$, we see that $u^{\prime \prime}+f=0$. Once we know that $u^{\prime \prime}+f=0$, we take φ with $\varphi(a)=1, \varphi(b)=0$ to get $-u^{\prime}(a)+\alpha u(a)=0$ and another φ with $\varphi(a)=0, \varphi(b)=1$ to get $u^{\prime}(b)+\beta u(b)=0$. Therefore u satisfies the equation $-u^{\prime \prime}=f$ in the interval (a, b) and the boundary conditions $-u^{\prime}(a)+\alpha u(a)=0$ and $u^{\prime}(b)+\beta u(b)$ and the points a and b, respectively.
2. Consider the following variant of Problem 1. Let $a=-1, b=1, \alpha=1, \beta=0, f(x)=x^{2}$ and let X be the space of all quadratic functions of the form $u(x)=p x^{2}+q x+r$. Find the minimizer of J over the space X in this particular case.

Solution: When $u=p x^{2}+q x+r$ and $f(x)=x^{2}$ we have $\int_{-1}^{1}\left[\frac{1}{2}\left(u^{\prime}(x)\right)^{2}-u(x) f(x)\right] d x=\int_{-1}^{1}\left[\frac{1}{2}(2 p x+q)^{2}-\left(p x^{2}+q x+r\right) x^{2}\right] d x$. The last integral is evaluated by routine calculation as $\frac{4}{3} p^{2}+q^{2}-\frac{2}{5} p-\frac{2}{3} r$. Hence the value of J at $u=p x^{2}+q x+r$, which we will denote by $f(p, q, r)$, is given by $f(p, q, r)=\frac{4}{3} p^{2}+q^{2}+\frac{1}{2}(p-q+r)^{2}-\frac{2}{5} p-\frac{2}{3} r$. It is worth noting that the quadratic part of f, the expression $\frac{4}{3} p^{2}+q^{2}+\frac{1}{2}(p-q+r)^{2}$ is always positive and vanishes only when $(p, q, r)=(0,0,0)$. This means that the function f approaches $+\infty$ when (p, q, r) approaches ∞ in \mathbf{R}^{3}, and hence it attains a minimum. At the minimum the three partial derivatives of f have to vanish. This gives the system of equations

$$
\left(\begin{array}{rrr}
\frac{11}{3} & -1 & 1 \tag{2}\\
-1 & 3 & -1 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{l}
\frac{2}{5} \\
0 \\
\frac{2}{3}
\end{array}\right) .
$$

Solving this system (either by hand or with the help of Matlab) gives $p=-\frac{1}{10}, q=\frac{1}{3}, r=\frac{11}{10}$. Hence the minimum of J on the space X is attained at the function $u(x)=-\frac{1}{10} x^{2}+\frac{1}{3} x+\frac{11}{10}$.
3. Consider still another variant of Problem 1. This time choose a positive integer n (think of $n=100$, for example), set $h=(b-a) / n$ and $x_{0}=a, x_{1}=a+h, x_{2}=a+2 h, \ldots, x_{n}=b$. Let X_{n} be the space of continuous functions on the closed interval $[a, b]$ which are of the form $p_{i} x+q_{i}$ on the intervals $\left(x_{i}, x_{i+1}\right), i=0,1, \ldots, n-1$.
(a) Explain why each function u in X_{n} is uniquely determined by the vector $u_{0}=u\left(x_{0}\right), u_{1}=u\left(x_{1}\right), \ldots, u_{n}=u\left(x_{n}\right)$.
(b) For the case $f(x) \equiv 1$ calculate the equation for the vector $u_{0}, u_{1}, u_{2}, \ldots, u_{n}$ one gets from the problem of minimizing $J(u)$ over X_{n}.

Hint: Take the derivatives of J is the direction of functions φ in X which are non-zero only at one point of the grid.
Solution: (a) A function of the form $p_{i} x+q_{i}$ on an interval (x_{i}, x_{i+1}) is uniquely determined by its values at x_{i} and x_{i+1}.
(b) Proceeding in the same way as in Lecture 14 (see page 31 of the Lecture Log), we obtain $-\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}=1$ for $i=1,2, \ldots, n-1$. This represents $n-1$ equations. We have $n+1$ unknowns $u_{1}, u_{1}, \ldots, u_{n}$. It remains to determine the two remaining equations. By the same reasoning as in Problem 1, we know that $0=\int_{a}^{b}\left[u^{\prime}(x) \varphi^{\prime}(x)-f(x) \varphi(x)\right] d x+\alpha u(a) \varphi(a)+\beta u(b) \varphi(b)$ for each $\varphi \in X_{n}$. Let us choose this identity with a $\varphi \in X_{n}$ satisfying $\varphi\left(x_{0}\right)=1$ and $\varphi\left(x_{i}\right)=0$ for $i=1,2, \ldots, n$. Recalling that $f(x) \equiv 1$, we obtain $-\frac{u_{1}-u_{0}}{h}-\frac{h}{2}+\alpha u_{0}=0$. Similarly, using a $\varphi \in X_{n}$ given by $\varphi\left(x_{i}\right)=0$ for $i \leq n-1$ and $\varphi\left(x_{n}\right)=1$, we obtain $\frac{u_{n}-u_{n-1}}{h}-\frac{h}{2}+\beta u_{n}=0$. The resulting system of equations can be written in matrix form as

$$
\frac{1}{h^{2}}\left(\begin{array}{rrrrrr}
1+\alpha h & -1 & 0 & \ldots & 0 & 0 \tag{3}\\
-1 & 2 & -1 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & \ldots & 0 \\
\cdots & \cdots & \ldots & \ldots & \cdots & \ldots \\
0 & 0 & \ldots & -1 & 2 & -1 \\
0 & 0 & 0 & \ldots & -1 & 1+\beta h
\end{array}\right)\left(\begin{array}{l}
u_{0} \\
u_{1} \\
\cdots \\
\cdots \\
u_{n-1} \\
u_{n}
\end{array}\right)=\left(\begin{array}{l}
\frac{1}{2} \\
1 \\
\cdots \\
\cdots \\
1 \\
\frac{1}{2}
\end{array}\right)
$$

4. Consider the $n \times n$ matrix

$$
S=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \ldots & 0 \tag{4}\\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & 0 & \ldots & 0
\end{array}\right)
$$

(a) Show that this matrix is unitary, in the sense that for any two vectors $z, z^{\prime} \in \mathbf{C}^{n}$ with (complex) coordinates z_{1}, \ldots, z_{n} and $z_{1}^{\prime}, \ldots, z_{n}^{\prime}$ we have $\left\langle z, z^{\prime}\right\rangle=\left\langle S z, S z^{\prime}\right\rangle$, where $\left\langle z, z^{\prime}\right\rangle=\sum_{j=1}^{n} z_{j} \bar{z}_{j}^{\prime}$ is the standard Hermitian product in \mathbf{C}^{n}.
(b) Find the adjoint matrix S^{*} (defined by $\left\langle S z, z^{\prime}\right\rangle=\left\langle z, S^{*} z^{\prime}\right\rangle$ for each $z, z^{\prime} \in \mathbf{C}^{n}$).
(c) Verify that $S S^{*}=S^{*} S=I$, where I is the identity matrix. In particular, S is normal. (This of course follows from (a) and general principles, but here the task is to verify this directly.)
(d) As S is normal, the general theory implies that it can be diagonalized (together with S^{*}) in a basis which is orthogonal with respect to the Hermitian product \mathbf{C}^{n}. Show that the columns of the Fourier matrix which appeared in Problem 6 of hw2 provide exactly such a basis, and calculate the eigenvalue corresponding the each eigenvector for both S and S^{*}.
(e) Check that the matrix $A=S-2 I+S^{*}$ corresponds to a matrix we used for a finite-dimensional approximation of the operator $\frac{\partial^{2}}{\partial x^{2}}$. Calculate the eigenvalues of A.

Solution: (a) If a vector z has coordinates $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$, then $S z$ has coordinates $\left(z_{2}, z_{3}, \ldots, z_{n}, z_{1}\right)$. From this it is clear that $\left\langle z, z^{\prime}\right\rangle=$ $\left\langle S z, S z^{\prime}\right\rangle$.
(b)We have $\left\langle S z, z^{\prime}\right\rangle=z_{2} \bar{z}_{1}^{\prime}+z_{3} \bar{z}_{2}^{\prime}+\ldots z_{n} \bar{z}_{n-1}^{\prime}+z_{1} \bar{z}_{n}^{\prime}$, so the vector $S^{*} z^{\prime}$ has coordinates $\left(z_{n}^{\prime}, z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{n-1}^{\prime}\right)$. This means that

$$
S^{*}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\cdots & \ldots & \ldots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

(c) This can be done in many ways, one of them being a direct computation with the above explicit form of the matrices. A more general reasoning one can possibly use: $\left\langle S^{*} S z, z^{\prime}\right\rangle=\left\langle S z, S z^{\prime}\right\rangle=\left\langle z, z^{\prime}\right\rangle$ for each z, z^{\prime}, which means $S^{*} S z=z$ for each z.
(d) The equation $S z=\lambda z$ means that $z_{2}=\lambda z_{1}, z_{3}=\lambda z_{2}, z_{n}=\lambda z_{n-1}, z_{1}=\lambda z_{n}$. Hence $z_{j+1}=\lambda^{j} z_{1}, j=1,2, \ldots, n-1$ and $\lambda^{n}=1$. Hence $z_{1} \neq 0$, which means that we can choose $z_{1}=1$. So any eigenvector can be taken as a vector with coordinates $1, \lambda, \lambda^{2}, \ldots, \lambda^{n-1}$, with $\lambda^{n}=1$. These condition exactly characterize the columns of the Fourier matrix. From the calculation it is also clear that the eigenvalue of S associated with $\left(1, \lambda, \ldots, \lambda^{n-1}\right)$ is λ. The eigenvalue of S^{*} corresponding to the same vector is easily seen to be $\lambda^{-1}=\bar{\lambda}$.
(d) The matrix $S-2 I+S^{*}$ is

$$
\left(\begin{array}{cccccc}
-2 & 1 & 0 & \ldots & 0 & 1 \\
1 & -2 & 1 & \ldots & 0 & 0 \\
0 & 1 & -2 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & -2 & 1 \\
1 & 0 & 0 & \cdots & 1 & -2
\end{array}\right)
$$

which is indeed the matrix coming up in the discretization of $\frac{\partial^{2}}{\partial x^{2}}$ with periodic boundary conditions. Its eigenvalues are of the form $\lambda-2+\bar{\lambda}=-2(1-\operatorname{Re} \lambda)$, where lambda can be any $n-$ th root of unity. The this the same as $-2(1-\cos (2 \pi k / n)), k=0,1, \ldots, n-1$. Note that $\cos (2 \pi k / n)=\cos (2 \pi(n-k) / n)$, so the eigenvalues other than 1 and possibly -1 (for even n), have multiplicity two.
5. Solve the following problem for the heat equation

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial^{2} u}{\partial x^{2}}+\sin x, \quad x \in(0, \pi), t \in(0, \infty) \\
u(0, t) & =0 \\
u(\pi, t) & =0 \\
u(x, 0) & =\sin 2 x
\end{aligned}
$$

and determine $u_{\infty}(x)=\lim _{t \rightarrow \infty} u(x, t)$.
Hint: Seek the solution in the form of the sine-Fourier series, and recall how to solve the ODE $\dot{y}=-y+1$.
Solution: We write the solution as a sine-Fourier series $u(x, t)=\sum_{n=1}^{\infty} B_{n}(t) \sin n x$. Let $f_{1}=1$ and $f_{n}=0$ for $n \geq 2$, so that $\sin x=\sum_{n} f_{n} \sin n x$ is the sine-Fourier series of the forcing term $\sin x$. The equations for $B_{n}(t)$ are $\dot{B}_{n}(t)+n^{2} B_{n}(t)=f_{n}, \quad n=1,2, \ldots$ The initial conditions $B_{n}(0)$ are given by $B_{2}(0)=1$ and $B_{n}(0)=0$ when $n \neq 2$. Based on the simple equations for $B_{n}(t)$ and their initial conditions, we see that $B_{1}(t)=1-e^{-t}, B_{2}(t)=e^{-4 t}$, and $B_{n}=0$ for $n \geq 3$. Hence $u(x, t)=\left(1-e^{-t}\right) \sin x+e^{-4 t} \sin 2 x$. The limit $\lim _{t \rightarrow \infty} u(x, t)$ is $u_{\infty}(x)=\sin x$.
6. Show that for a $2 L$-periodic solution of the (generalized) wave equation

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}=T \frac{\partial^{2} u}{\partial x^{2}}-\gamma u \tag{5}
\end{equation*}
$$

where ρ, T, γ are positive constants, with ρ and T being strictly positive, the following quantities are constant in time:
(a) The energy: $E(t)=\int_{-L}^{L}\left[\frac{\rho}{2}\left(\frac{\partial u(x, t)}{\partial t}\right)^{2}+\frac{T}{2}\left(\frac{\partial u(x, t)}{\partial x}\right)^{2}+\frac{\gamma}{2} u(x, t)^{2}\right] d x$.
(b) The momentum: $P(t)=\int_{-L}^{L}\left[\frac{\partial u(x, t)}{\partial t} \frac{\partial u(x, t)}{\partial x}\right] d x$.

Hint: Show that the time derivatives of $E(t)$ and $P(t)$ vanish, using integration by parts and the equation.
Solution: We will denote derivatives by sub-indices, so u_{t} means $\frac{\partial u}{\partial t}$, and similarly $u_{t t}=\frac{\partial^{2} u}{\partial t^{2}}$, or $u_{x t}=\frac{\partial^{2} u}{\partial x \partial t}$, etc. We also recall the following simples observation: if f is a smooth $2 L$-periodic function, then $\int_{-L}^{L} f_{x} d x=0$. This follows the identity $\int_{L}^{L} f_{x} d x=f(L)-f(-L)=0$, where the last equality follows from the periodicity of the function.
(a) We calculate $\frac{d}{d t} E(t)=\int_{-L}^{L}\left[\rho u_{t} u_{t t}+T u_{x} u_{x t}+\gamma u u_{t}\right] d x=\int_{-L}^{L}\left[u_{t}\left(T u_{x x}-\gamma u\right)+T u_{x} u_{x t}+\gamma u u_{t}\right] d x=\int_{-L}^{L}\left[T u_{t} u_{x x}+T u_{x} u_{x t}\right] d x=$ (using integration by parts on the first term) $\int_{-L}^{L}\left[-T u_{x t} u_{x}+T u_{x} u_{x t}\right] d x=0$.
(b) $\frac{d}{d t} P(t)=\int_{-L}^{L}\left[u_{t t} u_{x}+u_{t} u_{t x}\right] d x=\int_{-L}^{L}\left[\frac{T}{\rho} u_{x x} u_{x}-\frac{\gamma}{\rho} u u_{x}+u_{t} u_{x t}\right] d x$. Now note that all three terms in the last integral can be written as derivatives: $u_{x} u_{x x}=\left(u_{x}^{2} / 2\right)_{x}, u u_{x}=\left(u^{2} / 2\right)_{x}$, and $u_{t} u_{t x}=\left(u_{t}^{2} / 2\right)_{x}$. By the remark above about the integral of a derivative of a periodic function, we see that $\int_{-L}^{L}\left[\frac{T}{\rho} u_{x x} u_{x}-\frac{\gamma}{\rho} u u_{x}+u_{t} u_{x t}\right] d x=0$.

