due November 28
Please submit via Moodle by midnight, Nov 28
Do at least four of the following six problems. ${ }^{1}$

1. Let (a, b) be a non-empty bounded open interval of the real line, let α, β be two positive real numbers at least one of which is not zero, and let $f(x)$ be a function which is smooth on the closed interval $[a, b]$. Find the differential equation and the boundary conditions which correspond to the following minimization problem:
Among sufficiently regular functions $u:(a, b) \rightarrow \mathbf{R}$ minimize the functional

$$
\begin{equation*}
J(u)=\int_{a}^{b}\left[\frac{1}{2}\left(u^{\prime}(x)\right)^{2}-u(x) f(x)\right] d x+\frac{\alpha}{2} u(a)^{2}+\frac{\beta}{2} u(b)^{2} \tag{1}
\end{equation*}
$$

2. Consider the following variant of Problem 1. Let $a=-1, b=1, \alpha=1, \beta=0, f(x)=x^{2}$ and let X be the space of all quadratic functions of the form $u(x)=p x^{2}+q x+r$. Find the minimizer of J over the space X in this particular case.
3. Consider still another variant of Problem 1. This time choose a positive integer n (think of $n=100$, for example), set $h=(b-a) / n$ and $x_{0}=a, x_{1}=a+h, x_{2}=a+2 h, \ldots, x_{n}=b$. Let X_{n} be the space of continuous functions on the closed interval $[a, b]$ which are of the form $p_{i} x+q_{i}$ on the intervals $\left(x_{i}, x_{i+1}\right), i=0,1, \ldots, n-1$.
(a) Explain why each function u in X_{n} is uniquely determined by the vector $u_{0}=u\left(x_{0}\right), u_{1}=u\left(x_{1}\right), \ldots, u_{n}=u\left(x_{n}\right)$.
(b) For the case $f(x) \equiv 1$ calculate the equation for the vector $u_{0}, u_{1}, u_{2}, \ldots, u_{n}$ one gets from the problem of minimizing $J(u)$ over X_{n}.
Hint: Take the derivatives of J is the direction of functions φ in X which are non-zero only at one point of the grid.
4. Consider the $n \times n$ matrix

$$
S=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \ldots & 0 \tag{2}\\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & 0 & \ldots & 0
\end{array}\right) .
$$

(a) Show that this matrix is unitary, in the sense that for any two vectors $z, z^{\prime} \in \mathbf{C}^{n}$ with (complex) coordinates z_{1}, \ldots, z_{n} and $z_{1}^{\prime}, \ldots, z_{n}^{\prime}$ we have $\left\langle z, z^{\prime}\right\rangle=\left\langle S z, S z^{\prime}\right\rangle$, where $\left\langle z, z^{\prime}\right\rangle=\sum_{j=1}^{n} z_{j} \bar{z}_{j}^{\prime}$ is the standard Hermitian product in \mathbf{C}^{n}.
(b) Find the adjoint matrix S^{*} (defined by $\left\langle S z, z^{\prime}\right\rangle=\left\langle z, S^{*} z^{\prime}\right\rangle$ for each $z, z^{\prime} \in \mathbf{C}^{n}$).
(c) Verify that $S S^{*}=S^{*} S=I$, where I is the identity matrix. In particular, S is normal. (This of course follows from (a) and general principles, but here the task is to verify this directly.)
(d) As S is normal, the general theory implies that it can be diagonalized (together with S^{*}) in a basis which is orthogonal with respect to the Hermitian product \mathbf{C}^{n}. Show that the columns of the Fourier matrix which appeared in Problem 6 of hw2 provide exactly such a basis, and calculate the eigenvalue corresponding the each eigenvector for both S and S^{*}.
(e) Check that the matrix $A=S-2 I+S^{*}$ corresponds to a matrix we used for a finite-dimensional approximation of the operator $\frac{\partial^{2}}{\partial x^{2}}$. Calculate the eigenvalues of A.

[^0]5. Solve the following problem for the heat equation
\[

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial^{2} u}{\partial x^{2}}+\sin x, \quad x \in(0, \pi), t \in(0, \infty) \\
u(0, t) & =0 \\
u(\pi, t) & =0 \\
u(x, 0) & =\sin 2 x
\end{aligned}
$$
\]

and determine $u_{\infty}(x)=\lim _{t \rightarrow \infty} u(x, t)$.
Hint: Seek the solution in the form of the sine-Fourier series, and recall how to solve the ODE $\dot{y}=-y+1$.
6. Show that for a $2 L$-periodic solution of the (generalized) wave equation

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}=T \frac{\partial^{2} u}{\partial x^{2}}-\gamma u \tag{3}
\end{equation*}
$$

where ρ, T, γ are positive constants, with ρ and T being strictly positive, the following quantities are constant in time:
(a) The energy: $E(t)=\int_{-L}^{L}\left[\frac{\rho}{2}\left(\frac{\partial u(x, t)}{\partial t}\right)^{2}+\frac{T}{2}\left(\frac{\partial u(x, t)}{\partial x}\right)^{2}+\frac{\gamma}{2} u(x, t)^{2}\right] d x$.
(b) The momentum: $P(t)=\int_{-L}^{L}\left[\frac{\partial u(x, t)}{\partial t} \frac{\partial u(x, t)}{\partial x}\right] d x$.

Hint: Show that the time derivatives of $E(t)$ and $P(t)$ vanish, using integration by parts and the equation.

[^0]: ${ }^{1}$ For grading purposes, any 4 problems correspond to 100%. You can get extra credit if you do more.

