1. Let $U=U(x)$ be a steady-state solution of the heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+Q \tag{1}
\end{equation*}
$$

in interval $(0, L)$ where we assume that $k>0$ and Q are constant, and the boundary conditions are

$$
\begin{equation*}
u(0, t)=0, \quad \frac{\partial u}{\partial x}(L, t)=0 \tag{2}
\end{equation*}
$$

Let us denote

$$
\begin{equation*}
\alpha=\frac{\partial U}{\partial x}(0) . \tag{3}
\end{equation*}
$$

Assuming the values of L and α are known, what is the value of $U(L)$?
Solution: The general solution of $k u^{\prime \prime}(x)+Q=0$ is $u(x)=-\frac{Q}{2 k} x^{2}+c_{1} x+c_{2}$. Determining c_{1}, c_{2} from the boundary conditions gives $U(x)=\frac{Q}{2 k} x(2 L-x)$. Using $U^{\prime}(0)=\alpha$ we see that $\frac{Q L}{k}=\alpha$, or $\frac{Q}{k}=\frac{\alpha}{L}$. Using this in the formula for U, we get $U(L)=\frac{1}{2} \alpha L$.
There are many variations of the calculation. Based on dimensional considerations, the only way to express U in terms of α and L which has the right dimension is $U(L)=c \alpha L$, where c is some constant. The value $c=\frac{1}{2}$ can be seen for example from the fact that the profile of the solution is a parabola with its vertex at $x=L$.
2. Let L, l, K, k be strictly positive numbers. Assume $U=U(x, t)$ satisfies the heat equation

$$
\begin{equation*}
\frac{\partial U}{\partial t}=K \frac{\partial^{2} U}{\partial x^{2}} \tag{4}
\end{equation*}
$$

in $(-L, L)($ for $t>0)$ with the boundary conditions

$$
\begin{equation*}
\frac{\partial U}{\partial x}(-L, t)=0, \quad \frac{\partial U}{\partial x}(L, t)=0 \tag{5}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
U(x, 0)=100 \operatorname{sign}(x) \tag{6}
\end{equation*}
$$

Let T_{1} be the minimal time $t>0$ for which $U(L, t) \leq 1$.
Similarly, assume $u=u(x, t)$ satisfies the the heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \tag{7}
\end{equation*}
$$

in $(-l, l)$ (for $t>0)$ with the boundary conditions

$$
\begin{equation*}
\frac{\partial u}{\partial x}(-l, t)=0, \quad \frac{\partial u}{\partial x}(l, t)=0 \tag{8}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
u(x, 0)=\operatorname{sign}(x) \tag{9}
\end{equation*}
$$

Let t_{1} be the minimal time $t>0$ for which $u(l, t) \leq 0.01$. Assuming the values of T_{1}, t_{1}, L, l, and K are known from measurements, what is the value of k ?

Solution: The solutions u, U are "similar", in the sense that they are related by a transformation $U(x, t)=A u(\alpha x, \beta t)$ for some positive constants A, α, β. Using the information about the solutions we have, we conclude $U(x, t)=100 u\left(\frac{l}{L} x, \frac{t_{1}}{T_{1}} t\right)$. Substituting this into the equation for U and using the equation for u, we obtain $k=K \frac{l^{2}}{L^{2}} \frac{T_{1}}{t_{1}}$.
One can also solve the problem by dimensional considerations. The dimension of k is length ${ }^{2} /$ time, so the quantities $k t_{1} / l^{2}$ and $K T_{1} / L^{2}$ are dimension-less. Given that the two solutions can be thought of as describing the same situation, except in different units, the two dimension-less quantities must coincide, i. e., $k t_{1} / l^{2}=K T_{1} / L^{2}$, which again gives the formula for k above.
3. Find a formula for the solution of the following problem (where we assume $k>0$):

$$
\begin{align*}
\frac{\partial u}{\partial t} & =k \frac{\partial^{2} u}{\partial x^{2}}, & & x \in(0, \pi), t>0 \tag{10}\\
u(x, 0) & =-0.2 \sin 50 x, & & x \in(0, \pi) \tag{11}\\
u(0, t)=u(\pi, t) & =0, & & t>0 . \tag{12}
\end{align*}
$$

Solution: Here we can follow the textbook, see section 2.3.5 and just insert our particular values into formula 2.3 .26 (for example), to obtain $u(x, t)=-0.2 e^{-k 50^{2} t} \sin 50 x=-0.2 e^{-2500 k t} \sin 50 x$.
4. Let u be the solution of the following problem (where we assume $k>0$):

$$
\begin{align*}
\frac{\partial u}{\partial t} & =k \frac{\partial^{2} u}{\partial x^{2}}, & & x \in(0, \pi), t>0, \tag{13}\\
u(x, 0) & =\cos ^{2} x, & & x \in(0, \pi), \tag{14}\\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(\pi, t) & =0, & & t>0 . \tag{15}
\end{align*}
$$

Determine

$$
\begin{equation*}
u_{\infty}(x)=\lim _{t \rightarrow \infty} u(x, t), \quad x \in(0, \pi) . \tag{16}
\end{equation*}
$$

Solution: We can calculate the solution explicitly, following the textbook, section 2.4.1, and using $\cos ^{2} x=(1+2 \cos x) / 2$ (which gives the cosine Fourier series for $\cos ^{2} x$, so we do not need to calculate the coefficients by integration). We get $u(x, t)=\frac{1}{2}+\frac{1}{2} e^{-4 k t} \cos 2 x$, which converges to $\frac{1}{2}$ for each x as $t \rightarrow \infty$, hence $u_{\infty}(x)=\frac{1}{2}$.
Alternatively, from the representation of the general solution by formula (2.4.19) in the textbook we see that $u_{\infty}(x)=A_{0}$, with A_{0} given by formula (2.4.23).
5. Find a formula for the solution of the Laplace equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{17}
\end{equation*}
$$

in the unit disc $B_{1}=\left\{(x, y) ; x^{2}+y^{2}<1\right\}$, with the boundary condition

$$
\begin{equation*}
u(x, y)=y^{2} \text { at the boundary of the disc. } \tag{18}
\end{equation*}
$$

Solution: We can use formula (2.5.25) in the textbook, only have to determine the coefficients A_{n}, B_{n}. In the notation of the textbook, we have $f(\theta)=\sin ^{2} \theta=(1-\cos 2 \theta) / 2$, so we see that $A_{0}=\frac{1}{2}, A_{2}=-\frac{1}{2}$ and all the other coefficients vanish. Hence $u(r, \theta)=\frac{1}{2}-\frac{1}{2} r^{2} \cos 2 \theta$. Going back to the (x, y) coordinates, we have $u(x, y)=\frac{1}{2}-\frac{1}{2} x^{2}+\frac{1}{2} y^{2}$.
Alternatively, one does not have to use the method in the textbook and try instead to seek the solution as a quadratic polynomial, and a short calculation gives again $u(x, y)=\frac{1}{2}-\frac{1}{2} x^{2}+\frac{1}{2} y^{2}$. (This may not look like a systematic method, but rather like an ad hoc idea, but it is more general than it seems at first. It is mentioned here only for completeness.)
6. Consider the planar domain $\Omega=\left\{(x, y) \in \mathbf{R}^{2}, 0<x<1, y>0\right\}$ and a function f on the boundary of Ω defined by

$$
\begin{equation*}
f(0, y)=0, f(1, y)=0, \quad y>0, \quad f(x, 0)=(\sin \pi x)(\cos 2 \pi x), \quad x \in(0,1) \tag{19}
\end{equation*}
$$

Find a harmonic function in Ω which is bounded and coincides with f at the boundary of Ω. (Recall we call a function harmonic if it satisfies the Laplace equation (17).)
Solution: By separation of variables we see that functions of the form $\sin (\pi n x)\left(A_{n} e^{\pi n y}+B_{n} e^{-\pi n y}\right)$ solve the equation and satisfy the boundary condition in the finite region. The required behavior for $y \rightarrow \infty$ implies that we should only consider the solutions with $A=0$. We can then write our solution as a superposition of these solutions, the only remaining issue is find the (sine) Fourier series for $f(x, 0)$. Using $\sin \theta=\left(e^{i \theta}-e^{-i \theta}\right) / 2 i$ and $\cos \theta=\left(e^{i \theta}+e^{-i \theta}\right) / 2$, we obtain $\sin \theta \cos 2 \theta=\frac{1}{2} \sin 3 \theta-\frac{1}{2} \sin \theta$. Our solution then is $u(x, y)=-\frac{1}{2}(\sin \pi x) e^{-\pi y}+\frac{1}{2}(\sin 3 \pi x) e^{-3 \pi y}$.

