
Math 5587 Midterm 2 Fall 2017

Do at least four of the following six problems.1

1. sl Assume that γ ≥ −1 is a real number. Find a formula for the solution u(x, t) of the following problem:

∂2u

∂t2
=

∂2u

∂x2
− γu , x ∈ (0, π)

u(0, t) = 0 ,

u(π, t) = 0 ,

u(x, 0) = sinx+ 0.1 sin 2x ,

∂u(x, 0)

∂t
= 0 .

Solution: We seek the solution as u(x, t) =
∑

k Bk(t) sin(kx). Substituting this expression into the equation, we obtain

B̈k = −(k2 + γ)Bk. We need to solve this with the initial conditions for B1, B2, . . . for each k given by the Fourier series of

u(x, 0) and
∂u(x,0)

∂t
. We have B1(0) = 1, Ḃ1(0) = 0 , B2(0) = 0.1 , Ḃ2(0) = 0 and Bk(0) = 0 , Ḃk(0) = 0 for k ≥ 3. We obtain

B1(t) = sin(
√
1 + γ t) , B2(t) = 0.1 sin(

√
4 + γ t) , and the rest of the coefficients vanish. Hence u(x, t) = sinx sin(

√
1 + γ t) +

0.1 sin 2x sin(
√
4 + γ t) .

2. Consider the heat equation for an inhomogeneous rod

c(x)ρ(x)
∂u

∂t
=

∂

∂x

(
K0(x)

∂u

∂x

)
, x ∈ (0, L) , (1)

with the boundary conditions at the endpoints given by

u(0, t) = u(L, t) = 0 . (2)

We assume that c(x), ρ(x) and K0(x) are smooth and strictly positive functions on the closed interval

[0, L]. Let ϕ1(x), ϕ2(x), . . . be the eigenfunctions of the Sturm-Liouville problem − d
dx

(
K0(x)

dϕ(x)
dx

)
=

λc(x)ρ(x)ϕ(x) , ϕ(0) = ϕ(L) = 0 , with the corresponding eigenvalues 0 < λ1 < λ2 < . . . . Find a formula for
the solution of (1) with the boundary conditions (2) satisfying the initial condition

u(x, 0) = a1ϕ1(x) + a2ϕ2(x) + · · ·+ amϕm(x) ,

where m > 0 is an integer and a1, a2, . . . , am are given real numbers.

Solution: We seek the solution as u(x, t) = c1(t)ϕ1(x) + . . . cm(t)ϕm(x). Substituting this into the equation and using that ϕk

are eigenfunctions of our Sturm-Liouville problem, we see that the equation for ck is ċk = −λkck. The general solution for a

given k is Cke
−λkt and from the expression for u(x, 0) we see that Ck = ak for k ≤ m and Ck = 0 for k > m. This gives

u(x, t) = a1ϕ1(x)e−λ1t + a2ϕ2(x)e−λ2t + · · ·+ amϕm(x)e−λmt.

3. Let us consider two inhomogeneous strings, both fixed at the ends and under tension. Both strings have
length L, and their density is given by the same function ρ(x).2 The tension in first string is T1 and we
know from a measurement that the lowest possible frequency of its oscillations (under tension T1) is ω1. We
do not know the tension T2 in the second string, but we know from a measurement that the lowest possible
frequency of oscillations of the string is ω2. Express the unknown tension T2 in terms of the quantities T1, ω1

and ω2.

Solution: The equation of motion for the strings is ρ(x)
∂2uj(x,t)

∂t2
= Tj

∂2uj(x,t)

∂x2 for x ∈ (0, L) and t ∈ R, with uj(0, t) = 0

and uj(L, t) = 0. We note that the transformation u2(x, t) = u1(x, κt) maps the solutions of string with tention T1 onto the

1For grading purposes, any 4 problems correspond to 100%. You can get extra credit if you do more. You can use the
textbook, any notes, and a calculator, as long as it does not have wireless capabilities. Devices with wireless communication
capabilities are not allowed. Hints for solutions such as the ones above might not be included on the real exam.

2Here we interpret density as mass per unit length.
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solutions of the string with tension κ2T1. The condition κ2T1 = T2 then can be used to conclude that in our case we should

take κ =
√

T2
T1

. With the change of variables above, the lowest frequency ω1 of the first string corresponds to the frequency κω1

of the second string, but this quantity is known to be ω2 from a measurement. Hence κ = ω2
ω1

. Comparing the two expressions

for κ, we obtain T2 = T1
ω2
2

ω2
1
.

Alteratively, one could use dimensional analysis, arguing for example in the following way. The dimensionally correct expression

for ω2 must be of the form T2 = T1 f
(

ω2
ω1

)
for some function f , because one needs to keep the units of mass and length in

T1, T2 intact to keep the right dimensionality. When ρ is constant, we have an explicit formula ω = 1
L

√
T
ρ

and in this special

case we conclude f(ξ) = ξ2. Therefore there is no other choice in the general case than T2 = T1
ω2
2

ω2
1
.

4. Let γ, ω be strictly positive numbers satisfying γ < 2ω. Let us write the second order differential
equation (describing damped oscillations) ẍ = −γẋ− ω2x for a scalar function x = x(t) (where ẋ = dx

dt and

ẍ = d2x
dt2 ) as a first-order system

ẋ = y ,
ẏ = −γy − ω2x ,

(3)

and consider the following numerical scheme (forward Euler method) for system (3):

x(t+τ)−x(t)
τ = y(t) ,

y(t+τ)−y(t)
τ = −γy(t)− ω2x(t) .

(4)

Here τ > 0 is the time-step (and we think of it as a small number), and the scheme is used to start from
t = 0 and successively evaluate the solution at the times t = τ, 2τ, 3τ, . . . .
(a) Show that under our assumptions any solution x(t) of the original equation satisfies limt→∞ x(t) = 0.
(Hint: The general solution of the equation is A1eλ1t + A2eλ2t where λ1, λ2 are the roots of the characteristic equation

λ2 = −γλ− ω2.)

(b) What condition on τ has to be satisfied so that for any initial vector with coordinates x(0), y(0) the
sequence of vectors with coordinates x(kτ) , y(kτ) , k = 1, 2, 3, . . . obtained from the numerical approxima-
tion (4) converges to zero as k → ∞?
Solution: (a) Under our assumptions there are two distinct roots of the characteristic polynomial λ2 + γλ + ω2 with the real

part − γ
2
< 0, and hence the general solution must approach zero as t → ∞.

(b) Denoting the vector with the coordinates x(t), y(t) by X(t), the iteration scheme can be written we X(t+τ) = BX(t), where

B =

(
1 τ

−τω2 1− τγ

)
. We need to calculate the eigenvalues of B. The characteristic polynomial of B is det(B−λI) = λ2+

(−2+τγ)λ+1−τγ+τ2ω2. Its roots are λ1,2 =
2−τγ±

√
τ2γ2−4τ2ω2

2
and with our assumptions we have |λ1,2|2 = 1−τγ+τ2ω2 .

To have X(kτ) → 0 as k → ∞ for any initial data, we need |λ1,2| < 1, which gives the condition τ < γ
ω2 .

5. Let us consider the equation
∂u

∂t
+ a

∂u

∂x
= 0 (5)

for functions u(x, t) which are 2π−periodic, i. e. u(x+2π, t) = u(x, t). Consider the following approximation
of equation (5)

u(x, t+ τ)− u(x, t)

τ
+ a

u(x+ h, t)− u(x, t)

h
= 0 , (6)

where τ > 0. Assume we implement (6) as a numerical method for calculating (approximate) solutions for
functions which are 2π−peridic in x: for a positive integer n we set h = 2π

n and consider a grid x0 = 0, x1 =
h, x2 = 2h, . . . , xn−1 = (n− 1)h .

(a) Let l be any integer. Show that when a > 0 and we use (6) to calculate the function u(x, t) at x =
x0, x1, . . . xn−1 and t = τ, 2τ, 3τ, . . . starting from the (complex-valued) function u(l)(xj , 0) = eilxj , then

lim
k→∞

|u(xj , kτ)| = ∞ , (7)

for each j = 0, 1, 2, . . . , n− 1.
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(b) Use the result in (a) to find at least one real-valued function u(x, 0) on the grid for which the functions
u(x, kτ) obtained by (6) will not be bounded when a > 0. (We say that the function u(x, kτ) is bounded if
there exists a constant C such that |u(x, kτ)| ≤ C for all k = 1, 2, . . . and all points x on the grid.)
Hint: Look at the real part or the imaginary part of the complex-valued solutions or, alternatively, use that the functions of

the form eilx form a basis of the functions on the grid.

(c) Show that when u(x, 0) is a smooth function, then the solution of (5) with the initial value u(x, 0) always
stays bounded.

Solution: (a) We can re-write the scheme as u(x, t+ τ) = u(x, t)− aτ
h
(u(x+ h, t)− u(x, t)) . If u(x, t) = eilx, then u(x, t+ τ) =

(1− aτ
h
(eilh − 1))u(x, t). Letting λl = 1+ aτ

h
(1− eilh), we see that for u(x, 0) = eilx we will have u(x, kτ) = λk

l u(x, 0). When l

is an integer satisfying 0 < l < n, then it is easy to see that Re(1− eilh) > 0, and hence Reλl > 1. Hence u(xj , kτ) = λk
l u(x, 0)

will be unbounded as k → ∞.
(b) Consider the solution u(x, kτ) of our scheme constructed in part (a). As the equation (6) is linear and has real coefficients,
the functions Reu(x, κt) and Imu(x, κτ) will again satisfy (6). Clearly, at least one of them is unbounded. When eilh is not
real, it is not hard to see that in fact neither the real nor the imaginary parts can be bounded. When eilh = −1 our solution
starts real-valued and remains real-valued.
(c) The solution an be written as u(x, t) = u(x− ct, 0), and will clearly be bounded if u(x, 0) is bounded.

6. Assume that the equations for small oscillations of a physical system with n degrees of freedom described
by some coordinates x1, x2, . . . , xn are

miẍi = −
n∑

j=1

aijxj , i = 1, 2, . . . , n , (8)

where {aij}ni,j=1 is a symmetric positive-definite matrix and the numbers mi > 0 , i = 1, 2, . . . , n represent
masses. Assume that in a situation when mi are exactly equal to some specific µ > 0, the lowest frequency of
the oscillations of the system is known, and is equal to some specific number Ω > 0. Given this information,
find the best estimate of the lowest possible frequency of the oscillations of the system (with the same matrix
A) in a situation when we only know about the masses mi that

1
2µ ≤ mi ≤ 2µ , i = 1, 2, . . . , n. A correct

justification of the answer should be a part of the solution.

Solution: Let M be the diagonal matrix diag(m1,m2, . . . ,mn). The lowest frequency will be given by
√
λmin, where λmin =

minx ̸=0
(Ax,x)
(Mx,x)

, which is the same as the lowest (generalized) eigenvalue λ of the problem Ax = λMx. From the properties of

the Rayleigh quotient we have Ω2

2
= minx ̸=0

(Ax,x)
2µ(x,x)

≤ minx̸=0
(Ax,x)
(Mx,x)

≤ minx ̸=0
(Ax,x)
µ
2
(x,x)

= 2Ω2, and λmin = minx̸=0
(Ax,x)
(Mx,x)

.

We see that the lowest frequency Ω′ for the system with the variable masses 1
2
µ ≤ mi ≤ 2µ will satisfy 1√

2
Ω ≤ Ω′ ≤

√
2Ω.

Taking mi =
1
2
µ we see that the upper bound cannot be improved and taking mi = 2µ we see that the lower bound cannot be

improved.
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