1. Let $G_{B_{R}}(x, y)=-\frac{1}{4 \pi|x-y|}+\frac{R}{4 \pi|y|\left|x-y^{*}\right|}\left(\right.$ where $\left.y^{*}=y \frac{R^{2}}{|y|^{2}}\right)$ be the Green's function for B_{R}. Let us denote $y^{\prime}=\left(y_{1}, y_{2},-y_{3}\right)$. For $y \in B_{R}^{+}$we set $G(x, y)=G_{B_{R}}(x, y)-G_{B_{R}}\left(x, y^{\prime}\right)$. Then clearly $G(x, y)$ vanishes when $|x|=R$. When $x_{3}=0$, then $G_{B_{R}}(x, y)=G_{B_{R}}\left(x, y^{\prime}\right)$, because in that case we have $|x-y|=\left|x-y^{\prime}\right|$ and $\left|x-y^{*}\right|=\left|x-y^{\prime *}\right|$, due to the reflection symmetry about the $x_{1} x_{2}$ plane. Hence $G(x, y)$ vanishes when $x_{3}=0$ and we see that the function $x \rightarrow G(x, y)$ vanishes at the boundary of B_{R}^{+}. Clearly $\Delta_{x} G(x, y)=\delta(x-y)$ in B_{R}^{+}(as y is the only point of the set $y, y^{*}, y^{\prime}, y^{\prime *}$ which lies in B_{R}^{+}), and therefore $G(x, y)$ is the desired Green's function of B_{R}^{+}.
2. Extend f first to the square $[0,1] \times[0,1]$ by $f\left(x_{1}, x_{2}\right)=-f\left(x_{2}, x_{1}\right)$. Then to the square $[0,2] \times[0,2]$ by $f\left(x_{1}, x_{2}\right)=$ $-f\left(2-x_{1}, x_{2}\right) ;\left(x_{1}, x_{2}\right) \in[1,2] \times[0,1], f\left(x_{1}, x_{2}\right)=-f\left(x_{1}, 2-x_{2}\right),\left(x_{1}, x_{2}\right) \in[0,1] \times[1,2] ; f(x, y)=-f(2-x, y)=$ $-f(x, 2-y), f\left(x_{1}, x_{2}\right)=f\left(2-x_{1}, 2-x_{2}\right),\left(x_{1}, x_{2}\right) \in[1,2] \times[1,2]$. And finally to a function on \mathbf{R}^{2} (still denoted by f) which is 2 -periodic in x_{1} and 2 -periodic in x_{2}. Set $F(x)=f(2 x)$. The function F is 1 -periodic in x_{1} and x_{2}, and we use the machine to calculate its Fourier coefficients $\hat{F}(k)$. We set $\hat{U}(k)=-\frac{\hat{f}(k)}{\pi^{2}|k|^{2}}$ (note that there is no 4 in front of π^{2}) when $k \neq 0$ and $\hat{U}(0,0)=0$, and use the machine to obtain $U(x)=\sum_{k} \hat{U}(k) e^{2 \pi i\left(k_{1} x_{1}+k_{2} x_{2}\right)}$. The function U solves $\frac{1}{4} \Delta U=F$, with the factor $\frac{1}{4}$ coming from skipping the 4 in front of π^{2} as noted above. We set $u(x)=U\left(\frac{x}{2}\right)$ and note that $\Delta u(x)=\frac{1}{4}(\Delta U)\left(\frac{x}{2}\right)=F\left(\frac{x}{2}\right)=f(x)$. The function u has the same symmetries as f, and hence vanishes at the boundary of our triangle, and is the (unique) solution to our problem.
3. Searching $u(x)=\frac{v(r)}{r}$ (with $r=|x|$), we obtain the equation $v^{\prime \prime}=-\lambda v$ for v. We are looking for solutions which vanish at $r=1$. In addition, the solutions also have to vanish at $r=0$, so that $u(x)=\frac{v(r)}{r}$ is not singular at $r=0$. We have seen this problem before. The solutions are of the form $v(r)=\sin (\pi k r), \lambda=(\pi k)^{2}, k=1,2, \ldots$ Hence the radial eigenfunctions are $\frac{\sin \pi k r}{r}$ with the corresponding eigenvalues $\pi^{2} k^{2}$.
4. It is enough to prove the statement for $P(z)=z^{m}$. We have $\frac{\partial}{\partial x}(x+i y)^{m}=m(x+i y)^{m-1}, \frac{\partial^{2}}{\partial x^{2}}(x+i y)^{m}=m(m-1)(x+$ $i y)^{m-2}$. This can also be written as $\frac{\partial^{2}}{\partial x^{2}} z^{m}=m(m-1) z^{m-2}$. Similarly, $\frac{\partial}{\partial y}(x+i y)^{m}=i m(x+i y)^{m-1}$, $\frac{\partial^{2}}{\partial y^{2}}(x+i y)^{m}=$ $-m(m-1)(x+i y)^{m-2}$. This amounts to $\frac{\partial^{2}}{\partial y^{2}} z^{m}=-m(m-1) z^{m-2}$. Hence $\Delta z^{m}=0$. There are many other ways to arrive at the same conclusion. For example, one can use the polar coordinates to write $z^{m}=r^{m} e^{i m \theta}$ and use the expression $\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial}{r \partial r}+\frac{\partial^{2}}{r^{2} \partial r^{2}}$ to check that $r^{m} e^{i m \theta}$ is harmonic.
Remark: The above problem asks to verify "by hand" a statement which is arises from some basic considerations of complex analysis. There one works with $\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)$ and $\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)$, with $i=\sqrt{-1}$. One can check by an easier version of the above calculations that $\frac{\partial}{\partial \bar{z}} P(z)=0$. In addition, $\frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}=\frac{1}{4} \Delta$.
5. Option 1: The direction perpendicular to H is given by the vector $a=(1,1,1)$. Hence for $x \in \mathbf{R}^{3}$, its projection $x^{\prime}=P x$ will be given by the conditions $x^{\prime}=x-t a$ and $x_{1}^{\prime}+x_{2}^{\prime}+x_{3}^{\prime}=0$. The last condition is the same as $x_{1}+x_{2}+x_{3}-3 t=0$, which gives $t=\frac{x_{1}+x_{2}+x_{3}}{3}$. Substituting this into the expression $x^{\prime}=x-t a$, we obtain $P=\left(\begin{array}{rrr}\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}\end{array}\right)$.
Option 2: We need to find two mutually perpendicular vectors $a, b \in H$. For our particular H it is not hard to find such vectors without much calculation. For example, $a=(1,1,-1,-1)$ and $b=(1,-1,-1,1)$ have the desired properties.The

6. For $u(x)=\left(R^{2}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\right)\left(b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{0}\right)$, we obtain $\Delta u=-10 b_{1} x_{1}-10 b_{2} x_{2}-10 b_{3} x_{3}-6 b_{0}$. Hence the solution is obtained by taking $b_{j}=-\frac{1}{10}, j=1,2,3$ and $b_{0}=-\frac{1}{6}$.
In general, if P is a polynomial of degree at most m in x_{1}, x_{2}, x_{3}, then $L u=\Delta\left[\left(R^{2}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\right) P\left(x_{1}, x_{2}, x_{3}\right)\right]$ is again a polynomial of degree ot most m. Denoting by \mathcal{P}_{m} the linear space of all polynomials of degree $\leq m$ in \mathbf{R}^{3}, we see that L maps \mathcal{P}_{m} to \mathcal{P}_{m}. Clearly L is a linear mapping (and hence it can be represented by a matrix, if we choose a bases in \mathcal{P}_{m}. We claim that the equation $L P=0$ for $P \in \mathcal{P}_{m}$ only has the trivial solution $P=0$. To see that, we note that $L P=0$ implies that $u=\left(R^{2}-|x|^{2}\right) P$ is harmonic. At the same time, u vanishes at the boundary of B_{R}. These tow facts imply that $u=0$ and hence also $P=0$. (One can use the maximum principle, for example, or other methods used to prove uniqueness of solutions for $\Delta u=0$ in B_{R} and $\left.u\right|_{\partial B_{R}}=0$.) We see that the equation $L P=0$ for $P \in \mathcal{P}_{m}$ has only the trivial solution $P=0$. Hence the equation $L P=Q$ has a unique solution $P \in \mathcal{P}_{m}$ for every $Q \in \mathcal{P}_{m}$.
