1. Let Gp,(z,y) = —4ﬂi_y| + 4ﬂ|y|ﬁ_y*‘ (where y* = y%) be the Green’s function for Bgr. Let us denote ¥’ = (y1, y2, —y3)-
For y € B}, we set G(z,y) = Gp,(z,y) — Gpy(z,y’). Then clearly G(z,y) vanishes when |z| = R. When x5 = 0, then
Gpg(z,y) = Gpgp(z,y’), because in that case we have |z —y| = |z — ¢/| and |z — y*| = |z — y*|, due to the reflection
symmetry about the zx5 plane. Hence G(z,y) vanishes when 23 = 0 and we see that the function # — G(z,y) vanishes at
the boundary of Bf,. Clearly A,G(xz,y) = 6(x — y) in B} (as y is the only point of the set y,y*,y’,y* which lies in B}),
and therefore G(z,y) is the desired Green’s function of B};.

2. Extend f first to the square [0,1] x [0,1] by f(z1,22) = —f(z2,21). Then to the square [0,2] x [0,2] by f(z1,z2) =
_f(2 - 371,.%'2); (.’L’],.TQ) € [172] X [07 1] ) f($1,$2) = _f($1,2 - x?)? (331,%2) € [07 1} X [132]7 f(xay) = _f(2 - .’L',y) =
—f(x,2 —y), f(x1,22) = f(2 — 21,2 — x2), (x1,72) € [1,2] x [1,2]. And finally to a function on R? (still denoted by
f) which is 2-periodic in z; and 2—periodic in zs. Set F(z) = f(2x). The function F is 1—periodic in z; and xs, and

we use the machine to calculate its Fourier coefficients F'(k). We set U(k) = _sz(lllz\)z (note that there is no 4 in front of

72) when k # 0 and U(0,0) = 0, and use the machine to obtain U(z) = 3, U(k)e?™(k1e1+k222) - The function U solves
1AU = F, with the factor § coming from skipping the 4 in front of 7% as noted above. We set u(z) = U(%) and note that
Au(z) = $(AU)(%) = F(%£) = f(«). The function u has the same symmetries as f, and hence vanishes at the boundary of
our triangle, and is the (unique) solution to our problem.

v(r)

— (with r = |z|), we obtain the equation v” = —Av for v. We are looking for solutions which vanish

3. Searching u(z) =

at r = 1. In addition, the solutions also have to vanish at r = 0, so that u(z) = @ is not singular at » = 0. We have seen
this problem before. The solutions are of the form v(r) = sin(7kr), A = (7k)?, k = 1,2,... Hence the radial eigenfunctions

are % with the corresponding eigenvalues 72k2.

4. It is enough to prove the statement for P(z) = z™. We have -2 Z(x+iy)™ = m(x+iy)™ T, m (x +iy)™ =m(m 1)(
iy)™~2. This can also be written as aa—;zm = m(m — 1)z™~2. Similarly, a—y(x +iy)™ = im(z + iy)™" 1, 5% (x +iy)™
—m(m — 1)(x + iy)™ 2. This amounts to a—ygz = —m(m — 1)2™"2. Hence Az™ = 0. There are many other ways to

arrive at the same conclusion For example, one can use the polar coordinates to write 2™ = r™e"™? and use the expression
_ o2 o m 1m0 :
A=g5+.5+ Zer to check that r is harmonic.

Remark: The above problem asks to verify “by hand” a statement which is arises from some basic considerations of complex

analysis. There one works with % =1 (aax zaay) and % = (a% + ia%), with ¢ = v/—1. One can check by an easier

2
version of the above calculations that %P( ) = 0. In addition, 22 = 1A,

5. Option 1: The direction perpendicular to H is given by the vector a = (1,1,1). Hence for = € R3, its projection 2’ = Pz
will be given by the conditions ' = x — ta and ) + 2z}, + 25 = 0. The last condition is the same as x; + z2 + 23 — 3t = 0,

which gives t = . Substituting this into the expression ' = x — ta, we obtain P = —
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Option 2: We need to find two mutually perpendicular vectors a,b € H. For our partlcular H 1t is not hard to find such

vectors without much calculation. For example, a = (1,1, -1, —1) and b = (1,—1,—1,1) have the desired properties.The
3 0 -3 0
1 0 -1
length of both @ and b is v/1+ 1+ 14 1 = 2, so the desired projection is P = ia ®a+ ib ®Rb= 78 6 1 (2)
2 2
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6. For u(r) = (R? — 2?2 — 23 — xg)(blacl + boxa + bsxs + by), we obtain Au = —10byz1 — 10bgxe — 10bsxs — 6by. Hence the
solution is obtained by taklng bj = — 10 ,j=1,2,3 and by = —é.
In general, if P is a polynomial of degree at most m in xq, s, z3, then Lu = A[(R? — 23 — 23 — 23) P(21, 2, 73)] is again
a polynomial of degree ot most m. Denoting by P,,, the linear space of all polynomials of degree < m in R3, we see that L
maps Py, to P,,. Clearly L is a linear mapping (and hence it can be represented by a matrix, if we choose a bases in P,,.
We claim that the equation LP = 0 for P € P, only has the trivial solution P = 0. To see that, we note that LP = 0
implies that v = (R? — |2|?) P is harmonic. At the same time, u vanishes at the boundary of Bgr. These tow facts imply that
u =0 and hence also P = 0. (One can use the maximum principle, for example, or other methods used to prove uniqueness
of solutions for Au = 0 in Br and ulsp, = 0.) We see that the equation LP = 0 for P € P,,, has only the trivial solution
P = 0. Hence the equation LP = @ has a unique solution P € P, for every Q € P,,.



