1. Let $G_{B_R}(x,y) = -\frac{1}{4\pi|x-y|} + \frac{R}{4\pi|y||x-y^*|}$ (where $y^* = y\frac{R^2}{|y|^2}$) be the Green's function for B_R . Let us denote $y' = (y_1, y_2, -y_3)$. For $y \in B_R^+$ we set $G(x,y) = G_{B_R}(x,y) - G_{B_R}(x,y')$. Then clearly G(x,y) vanishes when |x| = R. When $x_3 = 0$, then $G_{B_R}(x,y) = G_{B_R}(x,y')$, because in that case we have |x-y| = |x-y'| and $|x-y^*| = |x-y'^*|$, due to the reflection symmetry about the x_1x_2 plane. Hence G(x,y) vanishes when $x_3 = 0$ and we see that the function $x \to G(x,y)$ vanishes at the boundary of B_R^+ . Clearly $\Delta_x G(x,y) = \delta(x-y)$ in B_R^+ (as y is the only point of the set y, y^*, y', y'^* which lies in B_R^+), and therefore G(x,y) is the desired Green's function of B_R^+ .

2. Extend f first to the square $[0,1] \times [0,1]$ by $f(x_1,x_2) = -f(x_2,x_1)$. Then to the square $[0,2] \times [0,2]$ by $f(x_1,x_2) = -f(2-x_1,x_2)$; $(x_1,x_2) \in [1,2] \times [0,1]$, $f(x_1,x_2) = -f(x_1,2-x_2)$, $(x_1,x_2) \in [0,1] \times [1,2]$; f(x,y) = -f(2-x,y) = -f(x,2-y), $f(x_1,x_2) = f(2-x_1,2-x_2)$, $(x_1,x_2) \in [1,2] \times [1,2]$. And finally to a function on \mathbb{R}^2 (still denoted by f) which is 2-periodic in x_1 and 2-periodic in x_2 . Set F(x) = f(2x). The function F is 1-periodic in x_1 and x_2 , and we use the machine to calculate its Fourier coefficients $\hat{F}(k)$. We set $\hat{U}(k) = -\frac{\hat{f}(k)}{\pi^2|k|^2}$ (note that there is no 4 in front of π^2) when $k \neq 0$ and $\hat{U}(0,0) = 0$, and use the machine to obtain $U(x) = \sum_k \hat{U}(k)e^{2\pi i(k_1x_1+k_2x_2)}$. The function U solves $\frac{1}{4}\Delta U = F$, with the factor $\frac{1}{4}$ coming from skipping the 4 in front of π^2 as noted above. We set $u(x) = U(\frac{x}{2})$ and note that $\Delta u(x) = \frac{1}{4}(\Delta U)(\frac{x}{2}) = F(\frac{x}{2}) = f(x)$. The function u has the same symmetries as f, and hence vanishes at the boundary of our triangle, and is the (unique) solution to our problem.

3. Searching $u(x) = \frac{v(r)}{r}$ (with r = |x|), we obtain the equation $v'' = -\lambda v$ for v. We are looking for solutions which vanish at r = 1. In addition, the solutions also have to vanish at r = 0, so that $u(x) = \frac{v(r)}{r}$ is not singular at r = 0. We have seen this problem before. The solutions are of the form $v(r) = \sin(\pi k r)$, $\lambda = (\pi k)^2$, k = 1, 2, ... Hence the radial eigenfunctions are $\frac{\sin \pi k r}{r}$ with the corresponding eigenvalues $\pi^2 k^2$.

4. It is enough to prove the statement for $P(z) = z^m$. We have $\frac{\partial}{\partial x}(x+iy)^m = m(x+iy)^{m-1}$, $\frac{\partial^2}{\partial x^2}(x+iy)^m = m(m-1)(x+iy)^{m-2}$. This can also be written as $\frac{\partial^2}{\partial x^2}z^m = m(m-1)z^{m-2}$. Similarly, $\frac{\partial}{\partial y}(x+iy)^m = im(x+iy)^{m-1}$, $\frac{\partial^2}{\partial y^2}(x+iy)^m = -m(m-1)(x+iy)^{m-2}$. This amounts to $\frac{\partial^2}{\partial y^2}z^m = -m(m-1)z^{m-2}$. Hence $\Delta z^m = 0$. There are many other ways to arrive at the same conclusion. For example, one can use the polar coordinates to write $z^m = r^m e^{im\theta}$ and use the expression $\Delta = \frac{\partial^2}{\partial r^2} + \frac{\partial}{r\partial r} + \frac{\partial^2}{r^2\partial r^2}$ to check that $r^m e^{im\theta}$ is harmonic. Remark: The above problem asks to verify "by hand" a statement which is arises from some basic considerations of complex

Remark: The above problem asks to verify "by hand" a statement which is arises from some basic considerations of complex analysis. There one works with $\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$ and $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$, with $i = \sqrt{-1}$. One can check by an easier version of the above calculations that $\frac{\partial}{\partial \overline{z}} P(z) = 0$. In addition, $\frac{\partial}{\partial z} \frac{\partial}{\partial \overline{z}} = \frac{1}{4} \Delta$.

5. Option 1: The direction perpendicular to H is given by the vector a = (1, 1, 1). Hence for $x \in \mathbb{R}^3$, its projection x' = Px will be given by the conditions x' = x - ta and $x'_1 + x'_2 + x'_3 = 0$. The last condition is the same as $x_1 + x_2 + x_3 - 3t = 0$, which gives $t = \frac{x_1 + x_2 + x_3}{3}$. Substituting this into the expression x' = x - ta, we obtain $P = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} \\$

Option 2: We need to find two mutually perpendicular vectors $a, b \in H$. For our particular H it is not hard to find such vectors without much calculation. For example, a = (1, 1, -1, -1) and b = (1, -1, -1, 1) have the desired properties. The

length of both *a* and *b* is
$$\sqrt{1+1+1+1} = 2$$
, so the desired projection is $P = \frac{1}{4}a \otimes a + \frac{1}{4}b \otimes b = \begin{pmatrix} 2 & 0 & 2 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$.

6. For $u(x) = (R^2 - x_1^2 - x_2^2 - x_3^2)(b_1x_1 + b_2x_2 + b_3x_3 + b_0)$, we obtain $\Delta u = -10b_1x_1 - 10b_2x_2 - 10b_3x_3 - 6b_0$. Hence the solution is obtained by taking $b_j = -\frac{1}{10}$, j = 1, 2, 3 and $b_0 = -\frac{1}{6}$.

In general, if P is a polynomial of degree at most m in x_1, x_2, x_3 , then $Lu = \Delta[(R^2 - x_1^2 - x_2^2 - x_3^2) P(x_1, x_2, x_3)]$ is again a polynomial of degree ot most m. Denoting by \mathcal{P}_m the linear space of all polynomials of degree $\leq m$ in \mathbb{R}^3 , we see that L maps \mathcal{P}_m to \mathcal{P}_m . Clearly L is a linear mapping (and hence it can be represented by a matrix, if we choose a bases in \mathcal{P}_m . We claim that the equation LP = 0 for $P \in \mathcal{P}_m$ only has the trivial solution P = 0. To see that, we note that LP = 0implies that $u = (R^2 - |x|^2)P$ is harmonic. At the same time, u vanishes at the boundary of B_R . These tow facts imply that u = 0 and hence also P = 0. (One can use the maximum principle, for example, or other methods used to prove uniqueness of solutions for $\Delta u = 0$ in B_R and $u|_{\partial B_R} = 0$.) We see that the equation LP = 0 for $P \in \mathcal{P}_m$ has only the trivial solution P = 0. Hence the equation LP = Q has a unique solution $P \in \mathcal{P}_m$ for every $Q \in \mathcal{P}_m$.