Please submit via Moodle by midnight, March 22
Do at least four of the following six problems. ${ }^{1}$

1. Consider the half-ball B_{R}^{+}of radius R in \mathbf{R}^{3} given by

$$
\begin{equation*}
B_{R}^{+}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right), x_{1}^{2}+x_{2}^{2}+x_{3}^{3}<R^{2}, x_{3}>0\right\} \tag{1}
\end{equation*}
$$

Find a formula for the Green's function of B_{R}^{+}using the method of images.
Hint: Use the Green's function of the ball B_{R} (see, for example, formula (121) in the Lecture Log) as a starting point.
2. Let $\Omega \subset \mathbf{R}^{2}$ be the interior of the triangle given by the points $(0,0),(0,1)$ and $(1,1)$. For functions $f: \Omega \rightarrow \mathbf{R}$ we wish to solve the problem

$$
\begin{array}{rll}
\Delta u & =f & \text { in } \Omega \\
u & =0 & \text { at } \partial \Omega \tag{2}
\end{array}
$$

Assume that you have a machine which can do the following two tasks:
(i) For a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ which is 1 -periodic in both x_{1} and x_{2}, i. e. $f\left(x_{1}+1, x_{2}\right)=f\left(x_{1}, x_{2}\right)=f\left(x_{1}, x_{2}+1\right)$ for each $x \in \mathbf{R}^{2}$, the machine can calculate the Fourier coefficients $\hat{f}(k)=\int_{0}^{1} \int_{0}^{1} f\left(x_{1}, x_{2}\right) e^{-2 \pi i\left(k_{1} x_{1}+k_{2} x_{2}\right)} d x_{1} d x_{2}, k=\left(k_{1}, k_{2}\right) \in \mathbf{Z}^{2}$.
(ii) For each set of Fourier coefficients $\hat{f}(k), k \in \mathbf{Z}^{2}$, the machine can sum the corresponding Fourier series and obtain the function $f(x)=\sum_{k \in \mathbf{Z}^{2}} \hat{f}(k) e^{2 \pi i\left(k_{1} x_{1}+k_{2} x_{2}\right)}$.
Given $x \in \Omega$, how can one use the machine to calculate solution of the problem (2)?
Hint: You can extend f from the triangle to a 2-periodic function F in x_{1} and x_{2}, so that the 2 -periodic solution of $-\Delta U=F$ (which can be calculated using Fourier series) will satisfy $U=0$ at $\partial \Omega$. Note that the function $x \rightarrow F(2 x)$ will be 1-periodic.
3. Let $B_{1}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3}, x_{1}^{2}+x_{2}^{2}+x_{3}^{2}<1\right\}$ be the unit ball in \mathbf{R}^{4} centered at the origin. Describe all radial solutions of the eigenvalue problem

$$
\begin{align*}
-\Delta u & =\lambda u \quad \text { in } B_{1} \tag{3}\\
u & =0 \quad \text { at } \partial B_{1},
\end{align*}
$$

and the corresponding eigenvalues λ. Recall that a function u : B_{1} is radial if it only depends on $r=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$.
Hint: Search the solutions in the form $u(x)=\frac{v(r)}{r}$ and note that from the first equation of (3) we get a simple equations for $v(r)$.
4. Let $z=x_{1}+i x_{2}$, and let $P(z)$ be a polynomial in z, i. e. an expression of the form $a_{0} z^{m}+a_{1} z^{m-1}+\cdots+a_{m-1} z+a_{m}$, where $a_{0}, a_{1}, \ldots, a_{m}$ are complex numbers. We can consider P as a complex-valued function of two variables x_{1} and x_{2} and write it as

$$
\begin{equation*}
P(z)=P\left(x_{1}+i x_{2}\right)=u\left(x_{1}, x_{2}\right)+i v\left(x_{1}, x_{2}\right) \tag{4}
\end{equation*}
$$

where u, v are real-valued functions of x_{1} and x_{2}. Show that both u and v are harmonic, in the sense that $\Delta u=0$ and $\Delta v=0$.
Hint: Note that it is enough to show the statement for the special cases $P(z)=z^{m}$, with $m=0,1,2, \ldots$.
5. This problem has two options. If your background in linear algebra is not very strong, choose Option 1. If you have a good background in linear algebra, choose Option 2.
Option 1: Let $H \subset \mathbf{R}^{3}$ be the linear subspace given by $H=\left\{x \in \mathbf{R}^{3}, x_{1}+x_{2}+x_{3}=0\right\}$ and let $P: \mathbf{R}^{3} \rightarrow H$ be the orthogonal projection. Recall that P is a linear map from \mathbf{R}^{3} into $H \subset \mathbf{R}^{3}$, and as such is given by a 3×3 matrix. Find this matrix.
Option 2: Let $H \subset \mathbf{R}^{4}$ be the linear subspace given by $H=\left\{x \in \mathbf{R}^{4}, x_{1}+x_{2}+x_{3}+x_{4}=0, x_{1}-x_{2}+x_{3}-x_{4}=0\right\}$. Let $P: \mathbf{R}^{4} \rightarrow H$ be the orthogonal projection. Find the 4×4 matrix representing P.
Hint: One way which works for both options is the following. Find two unit vectors $e, f \in H$ which are perpendicular to each other. Then $P=e \otimes e+f \otimes f$. The notation is the same as the one we used in class: for $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbf{R}^{n}$ we define $b \otimes b$ as the matrix with entries $b_{i} b_{j}$. For Option 1 there is a simpler way: take $x \in \mathbf{R}^{3}$ and find $t \in \mathbf{R}$ such that $x-t(1,1,1) \in H$. Then $P x=x-t(1,1,1)$.
Remark: The relevance of this problem for PDE is the following: if we have some set of functions $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ and denote H the linear space of functions of the form $c_{1} \phi_{1}+c_{2} \phi_{2}+\cdots+c_{n} \phi_{n}$, it is often useful to have an "orthogonal projection" P of a suitable class of function on the space H. For example, in the theory of Fourier series, the projection P is associated with the Dirichlet kernel.
6. Let $B_{R}=\left\{x \in \mathbf{R}^{3},|x|^{2}<R^{2}\right\}$ be the ball of radius R in \mathbf{R}^{3} centered at the origin. Let $a_{0}, a_{1}, a_{2}, a_{3}$ be real numbers. Show that the solutions of the problem

$$
\begin{align*}
\Delta u & =a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{0} & & \text { in } B_{R} \\
u & =0 & & \text { at } \partial B_{R} \tag{5}
\end{align*}
$$

is a cubic polynomial in the variables x_{1}, x_{2}, x_{3}.
Hint: Search the solution as $u(x)=\left(R^{2}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\right)\left(b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{0}\right)$. You can also try to show a more general fact: if f is a polynomial of degree at most m in x_{1}, x_{2}, x_{3}, then the solution of $\Delta u=f$ in B_{R} and $\left.u\right|_{\partial B_{R}}=0$ is of the form $\left(R^{2}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\right) P\left(x_{1}, x_{2}, x_{3}\right)$, where $P\left(x_{1}, x_{2}, x_{3}\right)$ is a polynomial of degree at most m.

[^0]
[^0]: ${ }^{1}$ For grading purposes, any 4 problems correspond to 100%. You can get extra credit if you do more.

