1. Let $n \in\{1,2,3\}$ and let $\delta_{\mathbf{R}^{n}}$ be the Dirac function in \mathbf{R}^{n}. Let A be an $n \times n$ matrix with $\operatorname{det}(A) \neq 0$. Show that

$$
\begin{equation*}
\delta_{\mathbf{R}^{n}}(A x)=\frac{1}{|\operatorname{det}(A)|} \delta_{\mathbf{R}^{n}}(x) \tag{1}
\end{equation*}
$$

Solution: Let $\varphi:: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a smooth function. Consider $\int_{\mathbf{R}^{n}} \delta(A x) \varphi(x) d x$ and set $A x=y$. Then $x=A^{-1} y$ and $d x=\left|\operatorname{det} A^{-1}\right| d y=\frac{1}{|\operatorname{det} A|} d y$ and the integral becomes $\int_{\mathbf{R}^{n}} \delta(y) \varphi\left(A^{-1} y\right) \frac{1}{|\operatorname{det} A|} d y=\varphi(0) \frac{1}{|\operatorname{det} A|}=\int_{\mathbf{R}^{n}} \varphi(y) \delta(y) \frac{1}{|\operatorname{det} A|} d y=\varphi(0) \frac{1}{|\operatorname{det} A|}$.
2. Let a_{1}, a_{2}, a_{3} be non-zero real numbers. Find the solution of the equation

$$
\begin{equation*}
a_{1}^{2} \frac{\partial^{2} u}{\partial x_{1}^{2}}+a_{2}^{2} \frac{\partial^{2} u}{\partial x_{2}^{2}}+a_{3}^{2} \frac{\partial^{2} u}{\partial x_{3}^{2}}=\delta_{\mathbf{R}^{3}}(x) \tag{2}
\end{equation*}
$$

which satisfies $u(x) \rightarrow 0$ as $x \rightarrow \infty$.
Solution: Set $\frac{x_{j}}{a_{j}}=y_{j}, j=1,2,3$. Then $a_{j}^{2} \frac{\partial^{2}}{\partial x_{j}^{2}}=\frac{\partial^{2}}{\partial y_{j}^{2}}$ and $\delta_{\mathbf{R}^{3}}(x)=\delta\left(a_{1} y_{1}\right) \delta\left(a_{2} y_{2}\right) \delta\left(a 3 y_{3}\right)=\frac{1}{a_{1} a_{2} a_{3}} \delta_{\mathbf{R}^{3}}(y)$. The equation becomes $\Delta_{y} u=$ $\frac{1}{a_{1} a_{2} a_{3}} \delta_{\mathbf{R}^{3}}(y)$. The solution is $u=-\frac{1}{4 \pi a_{1} a_{2} a_{3}|y|}=-\frac{1}{4 \pi a_{1} a_{2} a_{3} \sqrt{\frac{x_{1}^{2}}{a_{1}^{2}}+\frac{x_{2}^{2}}{a_{2}^{2}}+\frac{x_{3}^{2}}{a_{3}^{2}}}}=-\frac{1}{4 \pi \sqrt{a_{2}^{2} a_{3}^{2} x_{1}^{2}+a_{1}^{2} a_{3}^{2} x_{2}^{2}+a_{1}^{2} a_{2}^{2} x_{3}^{2}}}$
3. Find a solution of

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x_{1}^{2}}-\frac{\partial^{2} u}{\partial x_{2}^{2}}-\frac{\partial^{2} u}{\partial x_{3}^{2}}=\delta\left(x_{1}, x_{2}, x_{3}, t\right) \tag{3}
\end{equation*}
$$

in $\mathbf{R}^{3} \times \mathbf{R}$ which vanishes for $t>0$.
Let $G(x, t)$ be the usual fundamental solution, defined by $G(x, t)=\frac{\delta(t-r)}{4 \pi r}$ for $t>0$ and vanishing for $t<0$, where $r=|x|$. Then $\tilde{G}(x, t)=G(x,-t)$ will have the desired properties.
4. Calculate the solution of the problem

$$
\begin{align*}
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}} & =\delta(x) & & x \in \mathbf{R}, \quad t \geq 0 \\
u(x, 0) & =0, & & x \in \mathbf{R} \tag{4}\\
\frac{\partial u(x, 0)}{\partial t} & =0, & & x \in \mathbf{R} .
\end{align*}
$$

Solution: Let $G(x, t)$ be the fundamental solution of the wave equation in 1 spatial dimension, given by $G(x, t)=\frac{1}{2}$ for $t>|x|$ and 0 otherwise. Then $u(x, t)=\int_{0}^{t} \int_{\mathbf{R}} G(x-y, t-s) \delta(y) d y d s=\int_{0}^{t} G(x, t-s) d s=\int_{0}^{t} G(x, s) d s=\frac{1}{2}(t-|x|)_{+}$, where ξ_{+}is the positive part of ξ, i. e. $\xi_{+}=\xi$ for $\xi \geq 0$ and $\xi_{+}=0$ otherwise.
5. Let a, b, c, d be real numbers, with $a, c>0$. Find the solution of the problem

$$
\begin{align*}
a \frac{\partial u}{\partial t}+b \frac{\partial u}{\partial x}-c \frac{\partial^{2} u}{\partial^{2} x}+d u & =0 \quad x \in \mathbf{R}, t>0 \tag{5}\\
u(x, 0) & =\delta(x)
\end{align*}
$$

Solution: We can interpret the solution as a result of three processes: (i) $a u_{t}+b u_{x}=0$, with the solution $u_{0}\left(x-\frac{b}{a} t\right)$ (where u_{0} is the value of the solution at $t=0$ for this process); (ii) $a u_{t}-c u_{x x}=0$, with the solution $\int_{-\infty}^{\infty} u_{0}(x-y) \Gamma\left(y, \frac{c}{a} t\right)$, where $\Gamma(x, t)=\frac{1}{4 \pi t} e^{-\frac{x^{2}}{t}}$ is the fundamental solution of the heat equation and u_{0} is again the initial contdition for this process (not necessarily the same the the previous u_{0}), and (iii) au $+d u=0$, with the solution $u_{0}(x) e^{-\frac{d}{a} t}$, where u_{0} is again the initial condition for this process (not necessarily the same as the previous $u_{0} \mathrm{~s}$). The three processes commute, so the solution can be obtain by composing them in an arbitrary order. Applying (ii) first with $u_{0}=\delta$ gives $\Gamma\left(x, \frac{c}{a} t\right)$. Starting from $\Gamma\left(x, \frac{c}{a} t\right)$ and applying (i) gives $\Gamma\left(x-\frac{b}{a} t, \frac{c}{a} t\right)$. Finally, starting from $\Gamma\left(x-\frac{b}{a} t, \frac{c}{a} t\right)$ and applying (iii) gives $\Gamma\left(x-\frac{b}{a} t, \frac{c}{a} t\right) e^{-\frac{d}{a} t}$, which is the solution of our problem.
6. For smooth functions $u: \mathbf{R}^{3} \times\left(t_{1}, t_{2}\right) \rightarrow \mathbf{R}$ consider the functional

$$
\begin{equation*}
J(u)=\int_{t_{1}}^{t_{2}} \int_{\mathbf{R}^{3}}\left(\frac{1}{2}\left(u_{t}\right)^{2}-\frac{1}{2}|\nabla u|^{2}-\frac{c}{2} u^{2}-f u\right) d x d t \tag{6}
\end{equation*}
$$

where c is a real number, $f=f(x, t)$ is a given function, and ∇u denotes the spatial gradient of u, i. e. the 3 -vector with coordinates $\frac{\partial u}{\partial x_{j}}, j=1,2,3$. To make sure that the integral is well-defined, we can assume that u and f vanish outside a bounded region. Let X be the class of smooth functions on $\mathbf{R}^{3} \times\left[t_{1}, t_{2}\right]$ which vanish outside a bounded set and also vanish for all x whenever $t=t_{1}$ or $t=t_{2}$. Calculate the equation which we obtain from the requirement that for each $\varphi \in X$ the derivative of the function $\varepsilon \rightarrow J(u+\varepsilon \varphi)$ vanishes at $\varepsilon=0$.
Solution: Calculating the derivative $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} J(u+\varepsilon \varphi)$, which we will denote by $J^{\prime}(u) \varphi$, we obtain $J^{\prime}(u) \varphi=\int_{t_{1}}^{t_{2}} \int_{\mathbf{R}^{3}}\left(u_{t} \varphi_{t}-\nabla u \nabla \varphi-c u \varphi-f \varphi\right) d x d t$. Integration by parts gives $J^{\prime}(u) \varphi=\int_{t_{1}}^{t_{2}} \int_{\mathbf{R}^{3}}\left(-u_{t t}+\Delta u-c u-f\right) \varphi d x d t$. This can vanish for each φ with the specified properties on if $-u_{t t}+$ $\Delta u-c u-f$ vanishes identically. Hence the equation is $u_{t t}-\Delta u+c u+f=0$.

