1. Let $n \in \{1, 2, 3\}$ and let $\delta_{\mathbf{R}^n}$ be the Dirac function in \mathbf{R}^n . Let A be an $n \times n$ matrix with $\det(A) \neq 0$. Show that

$$\delta_{\mathbf{R}^n}(Ax) = \frac{1}{|\det(A)|} \delta_{\mathbf{R}^n}(x) \,. \tag{1}$$

Solution: Let $\varphi :: \mathbf{R}^n \to \mathbf{R}$ be a smooth function. Consider $\int_{\mathbf{R}^n} \delta(Ax)\varphi(x) \, dx$ and set Ax = y. Then $x = A^{-1}y$ and $dx = |\det A^{-1}| dy = \frac{1}{|\det A|} dy$ and the integral becomes $\int_{\mathbf{R}^n} \delta(y)\varphi(A^{-1}y) \frac{1}{|\det A|} \, dy = \varphi(0) \frac{1}{|\det A|} = \int_{\mathbf{R}^n} \varphi(y)\delta(y) \frac{1}{|\det A|} \, dy = \varphi(0) \frac{1}{|\det A|}$. **2.** Let a_1, a_2, a_3 be non-zero real numbers. Find the solution of the equation

$$a_1^2 \frac{\partial^2 u}{\partial x_1^2} + a_2^2 \frac{\partial^2 u}{\partial x_2^2} + a_3^2 \frac{\partial^2 u}{\partial x_3^2} = \delta_{\mathbf{R}^3}(x) \tag{2}$$

which satisfies $u(x) \to 0$ as $x \to \infty$.

Solution: Set $\frac{x_j}{a_j} = y_j$, j = 1, 2, 3. Then $a_j^2 \frac{\partial^2}{\partial x_j^2} = \frac{\partial^2}{\partial y_j^2}$ and $\delta_{\mathbf{R}^3}(x) = \delta(a_1y_1)\delta(a_2y_2)\delta(a_3y_3) = \frac{1}{a_1a_2a_3}\delta_{\mathbf{R}^3}(y)$. The equation becomes $\Delta_y u = \frac{1}{a_1a_2a_3}\delta_{\mathbf{R}^3}(y)$. The solution is $u = -\frac{1}{4\pi a_1a_2a_3|y|} = -\frac{1}{4\pi a_1a_2a_3}\sqrt{\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} + \frac{x_3^2}{a_3^2}} = -\frac{1}{4\pi\sqrt{a_2^2a_3^2x_1^2 + a_1^2a_3^2x_2^2 + a_1^2a_2^2x_3^2}}$

3. Find a solution of

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x_1^2} - \frac{\partial^2 u}{\partial x_2^2} - \frac{\partial^2 u}{\partial x_3^2} = \delta(x_1, x_2, x_3, t)$$
(3)

in $\mathbf{R}^3 \times \mathbf{R}$ which vanishes for t > 0.

Let G(x,t) be the usual fundamental solution, defined by $G(x,t) = \frac{\delta(t-r)}{4\pi r}$ for t > 0 and vanishing for t < 0, where r = |x|. Then $\tilde{G}(x,t) = G(x,-t)$ will have the desired properties.

4. Calculate the solution of the problem

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = \delta(x) \qquad x \in \mathbf{R}, \qquad t \ge 0$$

$$u(x,0) = 0, \qquad x \in \mathbf{R}$$

$$\frac{\partial u(x,0)}{\partial t} = 0, \qquad x \in \mathbf{R}.$$
(4)

Solution: Let G(x,t) be the fundamental solution of the wave equation in 1 spatial dimension, given by $G(x,t) = \frac{1}{2}$ for t > |x| and 0 otherwise. Then $u(x,t) = \int_0^t \int_{\mathbf{R}} G(x-y,t-s)\delta(y) \, dy \, ds = \int_0^t G(x,t-s) \, ds = \int_0^t G(x,s) \, ds = \frac{1}{2}(t-|x|)_+$, where ξ_+ is the positive part of ξ , i. e. $\xi_+ = \xi$ for $\xi \ge 0$ and $\xi_+ = 0$ otherwise.

5. Let a, b, c, d be real numbers, with a, c > 0. Find the solution of the problem

$$a\frac{\partial u}{\partial t} + b\frac{\partial u}{\partial x} - c\frac{\partial^2 u}{\partial^2 x} + du = 0 \qquad x \in \mathbf{R}, t > 0,$$

$$u(x,0) = \delta(x).$$
(5)

Solution: We can interpret the solution as a result of three processes: (i) $au_t + bu_x = 0$, with the solution $u_0(x - \frac{b}{a}t)$ (where u_0 is the value of the solution at t = 0 for this process); (ii) $au_t - cu_{xx} = 0$, with the solution $\int_{-\infty}^{\infty} u_0(x-y)\Gamma(y, \frac{c}{a}t)$, where $\Gamma(x, t) = \frac{1}{4\pi t}e^{-\frac{x^2}{t}}$ is the fundamental solution of the heat equation and u_0 is again the initial condition for this process (not necessarily the same the the previous u_0), and (iii) $au_t + du = 0$, with the solution $u_0(x)e^{-\frac{d}{a}t}$, where u_0 is again the initial condition for this process (not necessarily the same as the previous u_0). The three processes commute, so the solution can be obtain by composing them in an arbitrary order. Applying (ii) first with $u_0 = \delta$ gives $\Gamma(x, \frac{c}{a}t)$. Starting from $\Gamma(x, \frac{c}{a}t)$ and applying (i) gives $\Gamma(x - \frac{b}{a}t, \frac{c}{a}t)$. Finally, starting from $\Gamma(x - \frac{b}{a}t, \frac{c}{a}t)$ and applying (ii) gives $\Gamma(x - \frac{b}{a}t, \frac{c}{a}t)e^{-\frac{d}{a}t}$, which is the solution of our problem.

6. For smooth functions $u: \mathbb{R}^3 \times (t_1, t_2) \to \mathbb{R}$ consider the functional

$$J(u) = \int_{t_1}^{t_2} \int_{\mathbf{R}^3} \left(\frac{1}{2} (u_t)^2 - \frac{1}{2} |\nabla u|^2 - \frac{c}{2} u^2 - fu \right) \, dx \, dt \,, \tag{6}$$

where c is a real number, f = f(x,t) is a given function, and ∇u denotes the spatial gradient of u, i. e. the 3-vector with coordinates $\frac{\partial u}{\partial x_j}$, j = 1, 2, 3. To make sure that the integral is well-defined, we can assume that u and f vanish outside a bounded region. Let X be the class of smooth functions on $\mathbb{R}^3 \times [t_1, t_2]$ which vanish outside a bounded set and also vanish for all x whenever $t = t_1$ or $t = t_2$. Calculate the equation which we obtain from the requirement that for each $\varphi \in X$ the derivative of the function $\varepsilon \to J(u + \varepsilon \varphi)$ vanishes at $\varepsilon = 0$.

Solution: Calculating the derivative $\frac{d}{d\varepsilon}|_{\varepsilon=0}J(u+\varepsilon\varphi)$, which we will denote by $J'(u)\varphi$, we obtain $J'(u)\varphi = \int_{t_1}^{t_2} \int_{\mathbf{R}^3} (u_t\varphi_t - \nabla u\nabla\varphi - cu\varphi - f\varphi) \, dx \, dt$. Integration by parts gives $J'(u)\varphi = \int_{t_1}^{t_2} \int_{\mathbf{R}^3} (-u_{tt} + \Delta u - cu - f) \varphi \, dx \, dt$. This can vanish for each φ with the specified properties on if $-u_{tt} + \Delta u - cu - f$ vanishes identically. Hence the equation is $u_{tt} - \Delta u + cu + f = 0$.