Do at least four of the following six problems. ${ }^{1}$

1. Let $\Omega \subset \mathbf{R}^{2}$ be the domain consisting of the first three quadrants. In other words, $\Omega=\mathbf{R}^{2} \backslash Q_{I V}$, where $Q_{I V}=\{x=$ $\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}, x_{1} \geq 0$ and $\left.x_{2} \leq 0\right\}$. Find a function $u: \Omega \rightarrow \mathbf{R}$ which is strictly positive inside Ω, vanishes at the boundary of Ω, and satisfies the equation $\Delta u=0$ inside Ω.

Solution: We seek the function u in the form $u=r^{\alpha} f(\theta)$, where r, θ are the polar coordinates. Using the (two-dimensional) formula $\Delta u=$ $\frac{\partial^{2} u}{\partial r^{2}}+\frac{\partial u}{r \partial r}+\frac{\partial^{2} u}{r^{2} \partial^{2} \theta}$ we obtain the equation $f^{\prime \prime}+\alpha^{2} f=0$, the general solution of which is $f(\theta)=A \sin \left(\alpha\left(\theta-\theta_{0}\right)\right)$, where A and θ_{0} are parameters. (Alternatively, one can write the general solution as $A \sin \alpha \theta+B \cos \alpha \theta$, or as $C_{1} e^{i \alpha \theta}+C_{2} e^{-i \alpha \theta}$.) From the conditions that u is positive in Ω and vanishes at the boundary, we see that we should take $\alpha=\frac{2}{3}$ and $\theta_{0}=0$. We obtain $u=A r^{\frac{2}{3}} \sin \frac{2}{3} \theta$, with $A>0$.
2. In the three dimensional space \mathbf{R}^{3} consider the equation

$$
\begin{equation*}
-\Delta u+\beta u=0 \tag{1}
\end{equation*}
$$

where β is a parameter. If we assume that a solution u of (1) in the domain $\mathbf{R}^{3} \backslash\{0\}$ is of the form $u(x)=\frac{v(r)}{r}$, where $r=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$, what equation do we get for v ?
Solution: In the three dimensional space \mathbf{R}^{3}, when is r as above and $w=w(r)$, we have $\Delta w=w^{\prime \prime}+\frac{2 w^{\prime}}{r}$, see for example formula 1.5 .22 on page 27 of the textbook, or formula (12) on page 2 of the Lecture Log. Also, it is not hard to obtain this by direct calculation: $\sum_{j=1}^{3} \frac{\partial^{2}}{\partial x_{j}^{2}} w(r)=$ $\sum_{j=1}^{3} \frac{\partial}{\partial x_{j}}\left[w^{\prime}(r) \frac{\partial r}{\partial x_{j}}\right]=\sum_{j=1}^{3} w^{\prime \prime}(r)\left(\frac{\partial r}{\partial x_{j}}\right)^{2}+w^{\prime}(r) \Delta r=w^{\prime \prime}+\frac{2 w^{\prime}}{r}$. If we now set $w(r)=\frac{v(r)}{r}$ we obtain, after some calculation, $-v^{\prime \prime}+\beta v=0$.
3. For $a>0$ we define

$$
\chi_{a}(x)= \begin{cases}\frac{1}{2 a} & x \in(-a, a) \tag{2}\\ 0 & \text { elsewhere }\end{cases}
$$

Let $f(x)=e^{x}$.
(i) Show that the function $g=\chi_{a} * f$ satisfies the equation $g^{\prime}=g$. (We use the standard notation for convolution: $\left(\chi_{a} * f\right)(x)=\int_{\mathbf{R}} \chi_{a}(x-y) f(y) d y=\int_{\mathbf{R}} f(x-y) \chi_{a}(y) d y$.)
(ii) Calculate the function g.

Solution: (i) $g^{\prime}=\left(\chi_{a} * f\right)^{\prime}=\chi_{a} * f^{\prime}=\chi_{a} * f=g$.
(ii) $g(x)=\frac{1}{2 a} \int_{-a}^{a} e^{x-y} d y=e^{x} \frac{1}{2 a} \int_{-a}^{a} e^{-y} d y=e^{x} \frac{1}{2 a}\left(e^{a}-e^{-a}\right)=\frac{\sinh a}{a} e^{x}$.
4. Assume that $u: \mathbf{R}^{3} \times \mathbf{R} \rightarrow \mathbf{R}$ satisfies the equation $\frac{\partial^{2} u}{\partial t^{2}}=\Delta u$. Let $\phi: \mathbf{R}^{3} \rightarrow \mathbf{R}$ be a smooth function which vanishes outside the unit ball $B_{1}=\left\{x \in \mathbf{R}^{3},|x|<1\right\}$.
Show that the function $v(x, t)=\int_{\mathbf{R}^{3}} u(x-y, t) \phi(y) d y$ satisfies $\frac{\partial^{2} v}{\partial t^{2}}=\Delta v$.
Solution: $\frac{\partial v}{\partial t}(x, t)=\frac{\partial}{\partial t} \int_{\mathbf{R}^{3}} u(x-y, t) \phi(y) d y=\int_{\mathbf{R}^{3}} \frac{\partial u}{\partial t}(x-y, t) \phi(y) d y=\int_{\mathbf{R}^{3}} \Delta u(x-y, t) \phi(y) d y=\Delta_{x} \int_{\mathbf{R}^{3}} u(x-y) \phi(y) d y=\Delta v(x, t)$.
5. Let us use the standard coordinates $x=\left(x_{1}, x_{2}, x_{3}\right)$ in the three-dimensional space \mathbf{R}^{3}.
(i) Calculate $\Delta e^{-\frac{|x|^{2}}{2}}$.
(ii) Evaluate the integral $\int_{\mathbf{R}^{3}} \Delta e^{-\frac{|x|^{2}}{2}} d x$.
(iii) Use (i) and (ii) to evaluate the integral $\int_{\mathbf{R}^{3}}|x|^{2} e^{-\frac{|x|^{2}}{2}} d x$, given that $\int_{\mathbf{R}^{3}} e^{-\frac{|x|^{2}}{2}} d x=(2 \pi)^{\frac{3}{2}}$.

Solution: (i) By a direct calculation, $\Delta e^{-\frac{|x|^{2}}{2}}=\left(|x|^{2}-3\right) e^{-\frac{|x|^{2}}{2}}$. (ii) Note that the partial derivatives of $f(x)=e^{-\frac{|x|^{2}}{2}}$ decay exponentially to zero as $|x| \rightarrow \infty$. Letting $B_{R}=\left\{x \in \mathbf{R}^{3},|x|<R\right\}$, we can write for any function f with rapidly decaying derivatives $\int_{\mathbf{R}^{3}} \Delta f(x)=$ $\lim _{R \rightarrow \infty} \int_{B_{R}} \Delta f(x) d x=\lim _{R \rightarrow \infty} \int_{\partial B_{R}} \frac{\partial f}{\partial n}(x) d x=0$. Hence $\int_{\mathbf{R}^{3}} \Delta e^{-\frac{|x|^{2}}{2}} d x=0$. (iii) Combining (i) and (ii), we see that $\int_{\mathbf{R}^{3}}|x|^{2} e^{-\frac{|x|^{2}}{2}}=$ $3 \int_{\mathbf{R}^{3}} e^{-\frac{|x|^{2}}{2}}=3(2 \pi)^{\frac{3}{2}}$.
6. Let Ω be the unit ball in \mathbf{R}^{3} centered at the origin and let $G(x, y)$ be its Green function. For $y \in \Omega$ evaluate the integral

$$
\begin{equation*}
\int_{\partial \Omega} \sum_{j=1}^{3} \frac{\partial G(x, y)}{\partial x_{j}} x_{j} x_{1} x_{2} x_{3} d x \tag{3}
\end{equation*}
$$

Solution: We note that at the boundary of our particular Ω we have $x_{j}=n_{j}(x)$ (the outward unit normal). We recall the identity
$\int_{\Omega}(\Delta u v-u \Delta v) d x=\int_{\partial \Omega}\left(\frac{\partial u}{\partial n} v-u \frac{\partial v}{\partial n}\right) d x$, and apply it with $u(x)=G(x, y)$ and $v(x)=x_{1} x_{2} x_{3}$. Then u vanishes at the boundary $\partial \Omega$ (by the definition of the Green's function) and Δv vanishes in Ω (by a simple calculation). Hence the terms with Δv and u drop out, and we are left with $\int_{\Omega} \Delta u v d x=\int_{\partial \Omega} \frac{\partial u}{\partial n} v d x$. The integral on the right is our integral (3). For the integral on the left we have $\int_{\Omega} \Delta u v d x=\delta(x-y) v(x) d x=v(y)$. Hence the integral (3) is equal to $v(y)=v_{1} y_{2} y_{3}$.

[^0]
[^0]: ${ }^{1}$ For grading purposes, any 4 problems correspond to 100%. You can get extra credit if you do more. You can use the textbook, any notes, and a calculator, as long as it does not have wireless capabilities. Devices with wireless communication capabilities are not allowed.

