Math 5588

Midterm 1

Do at least four of the following six problems.¹

1. Let $\Omega \subset \mathbf{R}^2$ be the domain consisting of the first three quadrants. In other words, $\Omega = \mathbf{R}^2 \setminus Q_{IV}$, where $Q_{IV} = \{x = (x_1, x_2) \in \mathbf{R}^2, x_1 \ge 0 \text{ and } x_2 \le 0\}$. Find a function $u: \Omega \to \mathbf{R}$ which is strictly positive inside Ω , vanishes at the boundary of Ω , and satisfies the equation $\Delta u = 0$ inside Ω .

Solution: We seek the function u in the form $u = r^{\alpha} f(\theta)$, where r, θ are the polar coordinates. Using the (two-dimensional) formula $\Delta u =$ $\frac{\partial^2 u}{\partial r^2} + \frac{\partial u}{r\partial r} + \frac{\partial^2 u}{r^2 \partial^2 \theta} \text{ we obtain the equation } f'' + \alpha^2 f = 0, \text{ the general solution of which is } f(\theta) = A \sin(\alpha(\theta - \theta_0)), \text{ where } A \text{ and } \theta_0 \text{ are parameters.}$ (Alternatively, one can write the general solution as $A \sin \alpha \theta + B \cos \alpha \theta$, or as $C_1 e^{i\alpha\theta} + C_2 e^{-i\alpha\theta}$.) From the conditions that u is positive in Ω and vanishes at the boundary, we see that we should take $\alpha = \frac{2}{2}$ and $\theta_0 = 0$. We obtain $u = Ar^{\frac{2}{3}} \sin \frac{2}{2}\theta$, with A > 0.

2. In the three dimensional space \mathbf{R}^3 consider the equation

$$-\Delta u + \beta u = 0, \tag{1}$$

where β is a parameter. If we assume that a solution u of (1) in the domain $\mathbb{R}^3 \setminus \{0\}$ is of the form $u(x) = \frac{v(r)}{r}$, where $r = \sqrt{x_1^2 + x_2^2 + x_3^2}$, what equation do we get for v?

Solution: In the three dimensional space \mathbf{R}^3 , when is r as above and w = w(r), we have $\Delta w = w'' + \frac{2w'}{r}$, see for example formula 1.5.22 on page 27 of the textbook, or formula (12) on page 2 of the Lecture Log. Also, it is not hard to obtain this by direct calculation: $\sum_{j=1}^{3} \frac{\partial^2}{\partial x^2} w(r) =$

 $\sum_{j=1}^{3} \frac{\partial}{\partial x_{j}} \left[w'(r) \frac{\partial r}{\partial x_{j}} \right] = \sum_{j=1}^{3} w''(r) \left(\frac{\partial r}{\partial x_{j}} \right)^{2} + w'(r) \Delta r = w'' + \frac{2w'}{r}.$ If we now set $w(r) = \frac{v(r)}{r}$ we obtain, after some calculation, $-v'' + \beta v = 0.$ **3.** For a > 0 we define

$$\chi_a(x) = \begin{cases} \frac{1}{2a} & x \in (-a, a), \\ 0 & \text{elsewhere.} \end{cases}$$
(2)

Let $f(x) = e^x$.

(i) Show that the function $g = \chi_a * f$ satisfies the equation g' = g. (We use the standard notation for convolution: $(\chi_a * f)(x) = \int_{\mathbf{R}} \chi_a(x-y) f(y) \, dy = \int_{\mathbf{R}} f(x-y) \chi_a(y) \, dy.$ (ii) Calculate the function g.

Solution: (i) $g' = (\chi_a * f)' = \chi_a * f' = \chi_a * f = g$. (ii) $g(x) = \frac{1}{2a} \int_{-a}^{a} e^{x-y} dy = e^x \frac{1}{2a} \int_{-a}^{a} e^{-y} dy = e^x \frac{1}{2a} \left(e^a - e^{-a}\right) = \frac{\sinh a}{a} e^x$.

4. Assume that $u: \mathbf{R}^3 \times \mathbf{R} \to \mathbf{R}$ satisfies the equation $\frac{\partial^2 u}{\partial t^2} = \Delta u$. Let $\phi: \mathbf{R}^3 \to \mathbf{R}$ be a smooth function which vanishes outside the unit ball $B_1 = \{x \in \mathbf{R}^3, |x| < 1\}.$

Show that the function $v(x,t) = \int_{\mathbf{R}^3} u(x-y,t)\phi(y) \, dy$ satisfies $\frac{\partial^2 v}{\partial t^2} = \Delta v$. Solution: $\frac{\partial v}{\partial t}(x,t) = \frac{\partial}{\partial t} \int_{\mathbf{R}^3} u(x-y,t)\phi(y) \, dy = \int_{\mathbf{R}^3} \frac{\partial u}{\partial t}(x-y,t)\phi(y) \, dy = \int_{\mathbf{R}^3} \Delta u(x-y,t)\phi(y) \, dy = \Delta x \int_{\mathbf{R}^3} u(x-y)\phi(y) \, dy = \Delta v(x,t)$

5. Let us use the standard coordinates $x = (x_1, x_2, x_3)$ in the three-dimensional space \mathbb{R}^3 .

- (i) Calculate $\Delta e^{-\frac{|x|^2}{2}}$.
- (ii) Evaluate the integral $\int_{\mathbf{R}^3} \Delta e^{-\frac{|x|^2}{2}} dx$.

(iii) Use (i) and (ii) to evaluate the integral $\int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} dx$, given that $\int_{\mathbf{R}^3} e^{-\frac{|x|^2}{2}} dx = (2\pi)^{\frac{3}{2}}$.

Solution: (i) By a direct calculation, $\Delta e^{-\frac{|x|^2}{2}} = (|x|^2 - 3)e^{-\frac{|x|^2}{2}}$. (ii) Note that the partial derivatives of $f(x) = e^{-\frac{|x|^2}{2}}$ decay exponentially to zero as $|x| \to \infty$. Letting $B_R = \{x \in \mathbf{R}^3, |x| < R\}$, we can write for any function f with rapidly decaying derivatives $\int_{\mathbf{R}^3} \Delta f(x) = e^{-\frac{|x|^2}{2}}$. $\lim_{R \to \infty} \int_{B_R} \Delta f(x) \, dx = \lim_{R \to \infty} \int_{\partial B_R} \frac{\partial f}{\partial n}(x) \, dx = 0. \text{ Hence } \int_{\mathbf{R}^3} \Delta e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} = \int_{\mathbf{R}^3} \frac{\partial f}{\partial n}(x) \, dx = 0. \text{ Hence } \int_{\mathbf{R}^3} \Delta e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} = \int_{\mathbf{R}^3} \frac{\partial f}{\partial n}(x) \, dx = 0. \text{ Hence } \int_{\mathbf{R}^3} \Delta e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} = \int_{\mathbf{R}^3} \frac{\partial f}{\partial n}(x) \, dx = 0. \text{ Hence } \int_{\mathbf{R}^3} \frac{\partial f}{\partial n}(x) \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (ii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (iii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (iii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (iii), we see that } \int_{\mathbf{R}^3} |x|^2 e^{-\frac{|x|^2}{2}} \, dx = 0. \text{ (iii) Combining (i) and (iii), we see t$ $3\int_{\mathbf{R}^3} e^{-\frac{|x|^2}{2}} = 3(2\pi)^{\frac{3}{2}}.$

6. Let Ω be the unit ball in \mathbb{R}^3 centered at the origin and let G(x, y) be its Green function. For $y \in \Omega$ evaluate the integral

$$\int_{\partial\Omega} \sum_{j=1}^{3} \frac{\partial G(x,y)}{\partial x_j} x_j x_1 x_2 x_3 \, dx. \tag{3}$$

Solution: We note that at the boundary of our particular Ω we have $x_i = n_i(x)$ (the outward unit normal). We recall the identity

 $\int_{\Omega} \left(\Delta u \, v - u \Delta v \right) \, dx = \int_{\partial \Omega} \left(\frac{\partial u}{\partial n} v - u \frac{\partial v}{\partial n} \right) \, dx, \text{ and apply it with } u(x) = G(x, y) \text{ and } v(x) = x_1 x_2 x_3. \text{ Then } u \text{ vanishes at the boundary } \partial \Omega \text{ (by the } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ Then } u \text{ vanishes at the boundary } \partial \Omega \text{ (by the } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ Then } u \text{ vanishes at the boundary } \partial \Omega \text{ (by the } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ Then } u \text{ vanishes at the boundary } \partial \Omega \text{ (by the } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ Then } u \text{ vanishes at the boundary } \partial \Omega \text{ (by the } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ Then } u \text{ vanishes at the boundary } \partial \Omega \text{ (by the } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ Then } u \text{ vanishes at the boundary } \partial \Omega \text{ (by the } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ Then } u \text{ vanishes at the boundary } \partial \Omega \text{ (by the } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ Then } u \text{ vanishes at the boundary } \partial \Omega \text{ (by the } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ Then } u \text{ vanishes at the boundary } \partial \Omega \text{ (by the } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ Then } u \text{ vanishes } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ and } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ and } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ and } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ and } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3. \text{ and } u = x_1 x_2 x_3 \text{ or } u = x_1 x_2 x_3$ definition of the Green's function) and Δv vanishes in Ω (by a simple calculation). Hence the terms with Δv and u drop out, and we are left with $\int_{\Omega} \Delta u v \, dx = \int_{\partial \Omega} \frac{\partial u}{\partial n} v \, dx$. The integral on the right is our integral (3). For the integral on the left we have $\int_{\Omega} \Delta u v \, dx = \delta(x-y)v(x) \, dx = v(y)$. Hence the integral (3) is equal to $v(y) = v_1 y_2 y_3$.

¹For grading purposes, any 4 problems correspond to 100%. You can get extra credit if you do more. You can use the textbook, any notes, and a calculator, as long as it does not have wireless capabilities. Devices with wireless communication capabilities are not allowed.