
Math 5588 Midterm 2 Spring 2018
1. Assume that u0 = u0(x1, x2) is a smooth function on R2 which is 1−periodic in each direction, i. e. u(x1 + 1, x2) =
u(x1, x2) = u(x1, x2 + 1). Let us consider the problem

ut =
∂2u

∂x2
1

+ 3
∂2u

∂x2
2

+
∂u

∂x1
, x ∈ R2 , t ≥ 0 (1)

u|t=0 = u0 . (2)

If we express the solution u as

u(x, t) =
∑
k∈Z2

c(k, t)e2πi(k1x1+k2x2) , (3)

what are the formulae for c(k, t) (assuming we know the Fourier coefficients of u0)?

Solution: Differentiating (3), we see that the Fourier coefficients of the right-hand side of(1) is given by A(k)c(k, t) with A(k) = −(2π)2k21 −3(2π)2k22 +

2πik1. Hence c(k, t) = etA(k)c(k, 0), where c(k, 0) = c0(k), the Fourier coefficients of u0.

2. If you have a computer program which can calculate the Fourier coefficient of a functions and also sum a given Fourier series
on the square [0, 1]× [0, 1], how would you use it to solve the problem

−∆u = f in Ω (4)

u|∂Ω = 0 in Ω (5)

when Ω is the rectangle {(x1, x2) , 0 < x1 < 2 , 0 < x2 < 3}?
Solution: We first need to adapt the problem to the setting of periodic functions. For that we extend f to a function fper : R2 → R, which is odd and
periodic with period 4 in x1, and odd and periodic with period 6 in x2, in a similar way as in Problem 2 of Homework 2. In particular, when 2 < x2 < 4
and 0 < x2 < 3, we set fper(x1, x2) = −f(4−x1, x2); when 0 < x1 < 2 and 3 < x2 < 6, we set fper(x1, x2) = −f(x1, 6−x2); and when 2 < x1 < 4 and
3 < x2 < 6 we set fper(x1, x2) = f(4−x1, 6−x2). It is now enough to find a function uper which is odd and periodic with period 4 in x1, and odd and
periodic with period 6 in x2 such that −∆uper = fper. Such a function will solve (4), and the boundary condition u|∂Ω = 0 will be satisfied due to the
symmetries. As our program can only work with periodic functions of period 1 in each direction, we need to change variables to tranfer the equation to

[0, 1]× [0, 1]. For this we set F (y1, y2) = fper(4y1, 6y2) and U(y1, y2) = uper(4y1, 6y2). In the y variables, the equation becomes ∂2U
16∂y2

1
+ ∂2U

36∂y2
2
= F .

We use the program to calculate the Fourier coefficients F̂ (k) of F . The Fourier coefficients of U will be given by Û(k) =
F̂ (k)

4π2k2
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. We then use

the program to sum the Fourier series for U to obtain the function U(y1, y2). The solution u is then given by u(x1, x2) = U(x1
4
, x2

6
).

3. Let Ω ⊂ R3 be a bounded smooth domain. Assume that ϕ1, ϕ2, ϕ3 . . . are the eigenfunctions of the Laplacian −∆ in Ω with
the zero boundary condition and eigenvalues λ1 < λ2 ≤ λ3 ≤ . . . . (In other words, −∆ϕj = λjϕj and ϕj |∂Ω = 0.) Find the
solution of the initial-value problem for the Schödinger equation

iut +∆u− u = 0 in Ω× (0,∞) , (6)

u|∂Ω = 0 , (7)

u(x, 0) = u0(x) in Ω , (8)

where i =
√
−1 and u0(x) =

∑n
k=1 ckϕk(x) .

Solution: We seek the solution in the form u(x, t) =
∑

k c(k, t)ϕk(x). Substituting this expression into the PDE, we obtain iċ(k, t)− (λk +1)c(k, t) = 0

for each k. Solving the ode for each k, we obtain u(x, t) =
∑n

k=1 e
−i(λk+1)tckϕk(x).

4. Let Ω ⊂ R3 be a smooth bounded domain and let g be a smooth function on ∂Ω. What will be the PDE and the boundary
conditions corresponding to the minimization of the functional

J(u) =

∫
Ω

1

2

(
|∇u|2 + u2

)
dx−

∫
∂Ω

gu dx (9)

over all smooth functions on Ω?
Solution: If the minimum is attained at u, then the derivative of the function ε → J(u + εφ) at ε = 0 must vanish for each smooth function φ on Ω.
The derivative is given by

∫
Ω(∇u∇φ+uφ) dx−

∫
∂Ω gφ dx. Integrating by parts in the first integral, we see that the last expression can also be written

as
∫
Ω(−∆u+ u)φdx+

∫
∂Ω

(
∂u
∂n

− g
)
φdx . This can only vanish for all smooth φ if −∆u+ u = 0 in Ω and ∂u

∂n
= g at ∂Ω.

5. Find the solution u(x, t) of the equation

ut +
∂u

∂x1
− 2

∂u

∂x2
+ 5u = 0 in R3 × (−∞,∞) (10)

with u(x, 0) = u0(x).
Solution: The solution of the equation ut +

∂u
∂x1

− 2 ∂u
∂x2

= 0 corresponds to the transport of the original function with speed (1,−2, 0), and hence is

given by u0(x1 − t, x2 + 2t, x3). The solution of ut + 5u = 0 corresponds is given by u0(x)e−5t. The two “processes” are going on at the same time,
but they commute. Hence the solution of (10) is given by u(x, t) = u0(x1 − t, x2 + 2t, x3)e−5t.

6. Let Ω ⊂ R3 be the complement of the ball of radius 3, i. e. Ω = {x ∈ R3 , |x| > 3}. Find the Green’s function of the domain
Ω for the equation ∆u = f with the boundary conditions u|∂Ω = 0 and u(x) → 0 as x → ∞.
Solution: The Green’s function of the ball of radius R is given by G(x, y) = − 1

4π|x−y| +
R

4π|y||x−y∗| , with y∗ = R2

|y|2 y, and we can think of it as the

field of the unit charge at y minus the field of a “fictitious” charge R/|y| at y∗. For the ball we think of y being inside the ball, i. e. |y| < R. When the

domain is the outside of the ball, we can just exchange the role of y and y∗ and normalize the charge outside of the ball to 1. The resulting formula is

again G(x, y) = − 1
4π|x−y| +

R
4π|y||x−y∗| , with y∗ = R2

|y|2 y, except that this time y is outside of the ball.
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