1. Assume that $u_{0}=u_{0}\left(x_{1}, x_{2}\right)$ is a smooth function on \mathbf{R}^{2} which is 1 -periodic in each direction, i. e. $u\left(x_{1}+1, x_{2}\right)=$ $u\left(x_{1}, x_{2}\right)=u\left(x_{1}, x_{2}+1\right)$. Let us consider the problem

$$
\begin{align*}
u_{t} & =\frac{\partial^{2} u}{\partial x_{1}^{2}}+3 \frac{\partial^{2} u}{\partial x_{2}^{2}}+\frac{\partial u}{\partial x_{1}}, \quad x \in \mathbf{R}^{2}, t \geq 0 \tag{1}\\
\left.u\right|_{t=0} & =u_{0} \tag{2}
\end{align*}
$$

If we express the solution u as

$$
\begin{equation*}
u(x, t)=\sum_{k \in \mathbf{Z}^{2}} c(k, t) e^{2 \pi i\left(k_{1} x_{1}+k_{2} x_{2}\right)} \tag{3}
\end{equation*}
$$

what are the formulae for $c(k, t)$ (assuming we know the Fourier coefficients of u_{0})?
Solution: Differentiating (3), we see that the Fourier coefficients of the right-hand side of (1) is given by $A(k) c(k, t)$ with $A(k)=-(2 \pi)^{2} k_{1}^{2}-3(2 \pi)^{2} k_{2}^{2}+$ $2 \pi i k_{1}$. Hence $c(k, t)=e^{t A(k)} c(k, 0)$, where $c(k, 0)=c_{0}(k)$, the Fourier coefficients of u_{0}.
2. If you have a computer program which can calculate the Fourier coefficient of a functions and also sum a given Fourier series on the square $[0,1] \times[0,1]$, how would you use it to solve the problem

$$
\begin{align*}
-\Delta u & =f \quad \text { in } \Omega \tag{4}\\
\left.u\right|_{\partial \Omega} & =0 \quad \text { in } \Omega \tag{5}
\end{align*}
$$

when Ω is the rectangle $\left\{\left(x_{1}, x_{2}\right), 0<x_{1}<2,0<x_{2}<3\right\}$?
Solution: We first need to adapt the problem to the setting of periodic functions. For that we extend f to a function $f_{\text {per }}: \mathbf{R}^{2} \rightarrow \mathbf{R}$, which is odd and periodic with period 4 in x_{1}, and odd and periodic with period 6 in x_{2}, in a similar way as in Problem 2 of Homework 2. In particular, when $2<x_{2}<4$ and $0<x_{2}<3$, we set $f_{\text {per }}\left(x_{1}, x_{2}\right)=-f\left(4-x_{1}, x_{2}\right)$; when $0<x_{1}<2$ and $3<x_{2}<6$, we set $f_{\text {per }}\left(x_{1}, x_{2}\right)=-f\left(x_{1}, 6-x_{2}\right)$; and when $2<x_{1}<4$ and $3<x_{2}<6$ we set $f_{\mathrm{per}}\left(x_{1}, x_{2}\right)=f\left(4-x_{1}, 6-x_{2}\right)$. It is now enough to find a function $u_{\text {per }}$ which is odd and periodic with period 4 in x_{1}, and odd and periodic with period 6 in x_{2} such that $-\Delta u_{\mathrm{per}}=f_{\mathrm{per}}$. Such a function will solve (4), and the boundary condition $\left.u\right|_{\partial \Omega}=0$ will be satisfied due to the symmetries. As our program can only work with periodic functions of period 1 in each direction, we need to change variables to tranfer the equation to $[0,1] \times[0,1]$. For this we set $F\left(y_{1}, y_{2}\right)=f_{\text {per }}\left(4 y_{1}, 6 y_{2}\right)$ and $U\left(y_{1}, y_{2}\right)=u_{\text {per }}\left(4 y_{1}, 6 y_{2}\right)$. In the y variables, the equation becomes $\frac{\partial^{2} U}{16 \partial y_{1}^{2}}+\frac{\partial^{2} U}{36 \partial y_{2}^{2}}=F$. We use the program to calculate the Fourier coefficients $\hat{F}(k)$ of F. The Fourier coefficients of U will be given by $\hat{U}(k)=\frac{\hat{F}(k)}{\frac{4 \pi^{2} k_{1}^{2}}{16}+\frac{4 \pi^{2} k_{2}^{2}}{36}}$. We then use the program to sum the Fourier series for U to obtain the function $U\left(y_{1}, y_{2}\right)$. The solution u is then given by $\left.u\left(x_{1}, x_{2}\right)=\frac{\frac{4 \pi}{161}}{U\left(\frac{x_{1}}{4}\right.}+\frac{x_{2}}{6}\right)$.
3. Let $\Omega \subset \mathbf{R}^{3}$ be a bounded smooth domain. Assume that $\phi_{1}, \phi_{2}, \phi_{3} \ldots$ are the eigenfunctions of the Laplacian $-\Delta$ in Ω with the zero boundary condition and eigenvalues $\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots$ (In other words, $-\Delta \phi_{j}=\lambda_{j} \phi_{j}$ and $\left.\phi_{j}\right|_{\partial \Omega}=0$.) Find the solution of the initial-value problem for the Schödinger equation

$$
\begin{align*}
i u_{t}+\Delta u-u & =0 \quad \text { in } \Omega \times(0, \infty) \tag{6}\\
\left.u\right|_{\partial \Omega} & =0 \tag{7}\\
u(x, 0) & =u_{0}(x) \quad \text { in } \Omega \tag{8}
\end{align*}
$$

where $i=\sqrt{-1}$ and $u_{0}(x)=\sum_{k=1}^{n} c_{k} \phi_{k}(x)$.
Solution: We seek the solution in the form $u(x, t)=\sum_{k} c(k, t) \phi_{k}(x)$. Substituting this expression into the PDE, we obtain $i \dot{c}(k, t)-\left(\lambda_{k}+1\right) c(k, t)=0$ for each k. Solving the ode for each k, we obtain $u(x, t)=\sum_{k=1}^{n} e^{-i\left(\lambda_{k}+1\right) t} c_{k} \phi_{k}(x)$.
4. Let $\Omega \subset \mathbf{R}^{3}$ be a smooth bounded domain and let g be a smooth function on $\partial \Omega$. What will be the PDE and the boundary conditions corresponding to the minimization of the functional

$$
\begin{equation*}
J(u)=\int_{\Omega} \frac{1}{2}\left(|\nabla u|^{2}+u^{2}\right) d x-\int_{\partial \Omega} g u d x \tag{9}
\end{equation*}
$$

over all smooth functions on Ω ?
Solution: If the minimum is attained at u, then the derivative of the function $\varepsilon \rightarrow J(u+\varepsilon \varphi)$ at $\varepsilon=0$ must vanish for each smooth function φ on Ω. The derivative is given by $\int_{\Omega}(\nabla u \nabla \varphi+u \varphi) d x-\int_{\partial \Omega} g \varphi d x$. Integrating by parts in the first integral, we see that the last expression can also be written as $\int_{\Omega}(-\Delta u+u) \varphi d x+\int_{\partial \Omega}\left(\frac{\partial u}{\partial n}-g\right) \varphi d x$. This can only vanish for all smooth φ if $-\Delta u+u=0$ in Ω and $\frac{\partial u}{\partial n}=g$ at $\partial \Omega$.
5. Find the solution $u(x, t)$ of the equation

$$
\begin{equation*}
u_{t}+\frac{\partial u}{\partial x_{1}}-2 \frac{\partial u}{\partial x_{2}}+5 u=0 \quad \text { in } \mathbf{R}^{3} \times(-\infty, \infty) \tag{10}
\end{equation*}
$$

with $u(x, 0)=u_{0}(x)$.
Solution: The solution of the equation $u_{t}+\frac{\partial u}{\partial x_{1}}-2 \frac{\partial u}{\partial x_{2}}=0$ corresponds to the transport of the original function with speed ($1,-2,0$), and hence is given by $u_{0}\left(x_{1}-t, x_{2}+2 t, x_{3}\right)$. The solution of $u_{t}+5 u=0$ corresponds is given by $u_{0}(x) e^{-5 t}$. The two "processes" are going on at the same time, but they commute. Hence the solution of (10) is given by $u(x, t)=u_{0}\left(x_{1}-t, x_{2}+2 t, x_{3}\right) e^{-5 t}$.
6. Let $\Omega \subset \mathbf{R}^{3}$ be the complement of the ball of radius 3 , i. e. $\Omega=\left\{x \in \mathbf{R}^{3},|x|>3\right\}$. Find the Green's function of the domain Ω for the equation $\Delta u=f$ with the boundary conditions $u \mid \partial \Omega=0$ and $u(x) \rightarrow 0$ as $x \rightarrow \infty$.
Solution: The Green's function of the ball of radius R is given by $G(x, y)=-\frac{1}{4 \pi|x-y|}+\frac{R}{4 \pi|y|\left|x-y^{*}\right|}$, with $y^{*}=\frac{R^{2}}{|y|^{2}} y$, and we can think of it as the field of the unit charge at y minus the field of a "fictitious" charge $R /|y|$ at y^{*}. For the ball we think of y being inside the ball, i. e. $|y|<R$. When the domain is the outside of the ball, we can just exchange the role of y and y^{*} and normalize the charge outside of the ball to 1 . The resulting formula is again $G(x, y)=-\frac{1}{4 \pi|x-y|}+\frac{R}{4 \pi|y|\left|x-y^{*}\right|}$, with $y^{*}=\frac{R^{2}}{|y|^{2}} y$, except that this time y is outside of the ball.

