
CHEN-KHOVANOV SPECTRA FOR TANGLES

TYLER LAWSON, ROBERT LIPSHITZ, AND SUCHARIT SARKAR

Abstract. We note that our stable homotopy refinements of Khovanov’s arc algebras and tan-
gle invariants induce refinements of Chen-Khovanov and Stroppel’s platform algebras and tangle
invariants, and discuss the topological Hochschild homology of these refinements.
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1. Introduction

In this paper, we continue our homotopical journey through Khovanov homology by giving
spectral refinements of Chen-Khovanov and Stroppel’s platform algebras.

Khovanov homology [Kho00] associates a bigraded abelian group Khi,j(L) to an oriented link
L ⊂ R3, so that the graded Euler characteristic of Khi,j(L) is the Jones polynomial. Kho-
vanov [Kho02] extended his invariant to (2m, 2n)-tangles by associating a graded algebra Hn to
each non-negative integer n and a chain complex of graded (Hm,Hn)-bimodules CT to an oriented
(2m, 2n)-tangle diagram T , such that:
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(K-1) the chain homotopy type of CT is an isotopy invariant of the tangle represented by T ,
(K-2) composition of tangles corresponds to the tensor product of bimodules, i.e., CT1T2 ' CT1 ⊗Hn

CT2 , and
(K-3) H0 ∼= Z and for a (0, 0)-tangle L, H∗(CL) = Kh(L).

(See Table 2.1 for a dictionary of notation between this paper and the references. Note that our
tangles are drawn left-to-right, not top-to-bottom as is more usual.)

Let V be the fundamental (2-dimensional) representation of Uq(sl(2)). Khovanov further showed
that the Grothendieck group of the category of finitely-generated, graded Hn-modules (and of the
category of finitely-generated complexes of Hn-modules) is canonically isomorphic to Inv(V ⊗2n),
the subspace of Uq(sl(2))-invariants in V ⊗2n.

From a representation-theoretic standpoint, it is more interesting to categorify V ⊗n itself. This
was accomplished by Chen-Khovanov and Stroppel [CK14, Str09], who defined an algebra An =⊕n

k=0An−k,k for each n ∈ N and associated to each (m,n)-tangle an (Am,An)-bimodule satisfying
Properties (K-1)–(K-3) and so that the Grothendieck group of graded, projective An-modules is
canonically isomorphic to V ⊗n. These platform algebras were further studied and generalized by
Brundan-Stroppel [BS11]. A related, though more geometric, tangle invariant was also introduced
by Bar-Natan [Bar05] and, recently, another extension of Khovanov homology to tangles has been
given by Roberts [Rob16b, Rob16a].

In a previous paper [LLSb], we gave stable homotopy refinements of Khovanov’s algebras and
modules. That is, for each integer n we constructed a ring spectrum A ring

2n and for each (2m, 2n)-
tangle diagram T an (A ring

2m ,A ring

2n )-bimodule spectrum Xmod
T such that:

(K-1) the weak equivalence class of Xmod
T is an isotopy invariant of the tangle represented by

T [LLSb, Theorem 4],
(K-2) composition of tangles corresponds to the tensor product of bimodule spectra, i.e., Xmod

T1T2
'

Xmod
T1
⊗L

A ring
2n

Xmod
T2

[LLSb, Theorem 5],

(K-3) A ring

0 ' S, the sphere spectrum, and for a (0, 0)-tangle L, Xmod
T is weakly equivalent to the

previously-constructed [LS14, HKK16, LLSa] Khovanov spectrum, and
(K-4) the singular chains on A ring

2n (respectively Xmod
T ) is quasi-isomorphic to Khovanov’s algebra

Hn (respectively complex of bimodules CT ) [LLSb, Proposition 4.2].

In this paper, we modify A ring

2n and Xmod
T to give stable homotopy refinements of the platform

algebras and modules.
This paper is organized as follows. Section 2 reviews the platform algebras and bimodules

and the spectral refinements of the arc algebras and bimodules. Section 3 constructs spectral
refinements of the platform algebras and bimodules and proves their basic properties. In Section 4
we show that the topological Hochschild homology of the spectral platform bimodules is homotopy
equivalent to the naive spectral refinement of annular Khovanov homology.

Acknowledgments. We thank Aaron Lauda, Tony Licata, Andy Manion, and Matthew Stoffregen
for helpful conversations.
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2. The platform algebras and modules

The platform algebras are subquotients of Khovanov’s arc algebras. In this section, we review
both collections of algebras. For the platform algebras, we will expand on some details in Chen-
Khovanov’s proofs, so that it is easier to see how they adapt to the spectral case.

2.1. Some notation. In order to keep track of the quantum gradings throughout, it is convenient
to work in “graded” versions of various well-known categories. We list them below.

• Let ZSets denote the category of finite, graded sets, whose objects are finite sets X together with
set maps gr : X → Z, and morphisms f : (X, grX) → (Y, grY ) are set maps f : X → Y so that
grX = grY ◦ f .
• Let Kom be the category of freely generated chain complexes over Z. (The Khovanov complex

is usually presented as a cochain complex; we will view it as a chain complex by negating the
homological grading, see [LLSb, §2.1].) Let ZKom denote the full subcategory of

∏
Z Kom where

all but finitely many of the chain complexes are zero. So, ZKom is isomorphic to the category
of bigraded chain complexes—the first grading being the homological grading and the second
grading being an additional grading—that are bounded in the second grading.
• Let ZAb denote the category of freely and finitely generated graded abelian groups. We can (and

will) identify ZAb with the full subcategory of ZKom with objects the finitely generated chain
complexes supported in homological grading 0.
• Let S be the category of symmetric spectra [HSS00]. Let ZS denote the full subcategory of∏

Z S where all but finitely many of the spectra are trivial (that is, just the basepoint). Taking

reduced singular chain complexes gives a functor C∗ : ZS → ZKom, cf. [LLSb, §2.7].

Our notation for the arc and platform algebras and modules differs slightly from Khovanov’s
and Chen-Khovanov’s; see Table 2.1 for a summary.

2.2. Arc algebras and modules. Let V = H∗(S2) = Z[X]/(X2) denote Khovanov’s Frobenius
algebra. Explicitly, the comultiplication is given by 1 7→ 1⊗X +X ⊗ 1 and X 7→ X ⊗X, and the
counit map is given by 1 7→ 0 and X 7→ 1. We view V as a graded abelian group with 1 in grading
(−1) and X in grading 1; this grading is called the quantum grading. (See [LLSb, Remark 2.55] for
a brief discussion of gradings.) Given a compact 1-manifold Z, let V (Z) =

⊗
π0(Z) V , the tensor

product over the connected components of Z. Via the equivalence between Frobenius algebras and
2-dimensional topological field theories, we can view V as a topological field theory which assigns
V to the circle.

We prefer to view the arc and platform algebras as linear categories, rather than algebras.
Given a category C , we will write C (a, b) for HomC (a, b). Then Khovanov’s arc algebra Hn is the
category with objects the crossingless matchings of 2n points, B2n, and

Hn(a, b) := V (ab̂){n},

where b̂ denotes the horizontal reflection of b and {n} denotes an upward quantum grading shift

by n. Composition is induced by the canonical cobordisms b̂ q b → Id, which gives cobordisms

ab̂q bĉ→ aĉ, and the topological field theory associated to V .
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Our notation [Kho02, CK14] notation Meaning

V A Frobenius algebra H∗(S2).
B2n Bn Isotopy classes of crossingless matchings of 2n

points.

b̂ W (b) Reflection of b.
A2n = Hn Hn Algebra associated to n points.

CT VD =
⊕
v∈2N

F(D(v)){−v} Khovanov tangle invariant, a complex of
(A2m,A2n)-bimodules.

Bk1,k2n = Bk
n Bn−k,k Crossingless matchings of n+ k1 + k2 points with

no matching among first k1 or last k2 points.
Chen-Khovanov require k1 + k2 = n.

Ak1,k2n = Ak
n Ãn−k,k Subring of A2n induced by Bk1,k2n .

Ik1,k2n = Ikn In−k,k A particular ideal in Ak1,k2n .

Ak1,k2n = Ak
n An−k,k Platform algebra, Ak1,k2n /Ik1,k2n .

AP
n An Total platform algebra,

⊕n
k=0A

n−k,k
n .

J h1,h2;k1,k2
T = J h;k

T I(T ) A particular submodule of CT .

Ch1,h2;k1,k2
T = Ch;k

T F(T ) Platform tangle invariant, CT /J
h1,h2;k1,k2
T .

CP
T F(T ) Total platform bimodule,

⊕
h,k

m−n=2(h−k)

Cm−h,h;n−k,k
T .

Table 2.1. Comparison of notation with Khovanov and Chen-Khovanov.

To keep notation consistent later in this paper, let

A2n = Hn.

Given a flat (2m, 2n)-tangle T there is an induced (A2m,A2n)-bimodule, i.e., functor of linear
categories

CT : (A2m)op ×A2n → ZAb,

which on objects is given by CT (a, b) = V (aT b̂){n} and on morphisms is induced by the canonical
cobordisms. More generally, given a non-flat oriented tangle diagram T , there is a functor

2N × (A2m)op ×A2n → ZAb

given on objects by

(v, a, b) 7→ CTv(a, b){−|v| −N+ + 2N−} = V (aTv b̂){n− |v| −N+ + 2N−}.

Here, 2N = {0→ 1}N , and N+, N−, N are the number of positive, negative, and total crossings in
T , respectively. This induces a functor

CT : (A2m)op ×A2n → ZKom,
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by taking iterated mapping cones along 2N , and then shifting the homological grading down by
N+.

2.3. Platform algebras. Let Bk1,k2n ⊂ Bn+k1+k2 be the set of crossingless matchings with no

matchings among the first k1 points and no matchings among the last k2 points. So, B2n = B0,0
2n .

The cases used for the platform algebras and modules are Bn−k,kn (for 0 ≤ k ≤ n), but the definitions

generalize to Bk1,k2n for any k1 + k2 ≡ n (mod 2), and it is convenient to work in the more general
setting.

Given a, b ∈ Bn+k1+k2 , for each 1 ≤ i ≤ n + k1 + k2 there is a corresponding circle Zi of ab̂
containing the point i. This induces an equivalence relation ∼a,b on 1, . . . , n + k1 + k2 by i ∼a,b j
if and only if Zi = Zj . (Equivalently, this equivalence relation is generated by i ∼ j if i is matched

to j in either a or b.) So, a ∈ Bk1,k2n if and only if i 6∼a,a j whenever i < j ≤ k1 or i > j > n+ k1.

For a, b ∈ Bk1,k2n define Ik1,k2n (a, b) ⊂ An+k1+k2(a, b) by

(I-1) Ik1,k2n (a, b) = An+k1+k2(a, b) if there is some pair i < j ≤ k1 or i > j > n+k1 so that i ∼a,b j.
(I-2) the span of the set of generators in An+k1+k2(a, b) which label some circle Zi with i ≤ k1 or

i > n+ k1 by X.

Then Ak1,k2n is the category with objects Bk1,k2n and

Ak1,k2n (a, b) = An+k1+k2(a, b)/Ik1,k2n (a, b).

In other words, if we let Ak1,k2n be the full subcategory of An+k1+k2 spanned by objects in Bk1,k2n

then
Ak1,k2n = Ak1,k2n /Ik1,k2n .

Chen-Khovanov encode the points 1, . . . , k1 and n + k1 + 1, . . . , n + k1 + k2 by drawing two

vertical line segments, platforms, in ab̂ where a and b̂ meet, one containing the first k1 points and
the other containing the last k2 points. Then, the points in Case (I-1) lie on a circle that meets one
of the platforms more than once; following Chen-Khovanov, we will sometimes call such a circle
a type III circle. The points in Case (I-2) lie on a circle that meets at least one platform, which
we will sometimes follow Chen-Khovanov in calling a type II circle (if it is not already a type III
circle).

There is an inclusion
ı : Bn+k1+k2 ↪→ Bn+k1+k2+2

where ı(a) is obtained by matching the first and last points, and then matching the remaining
points by a (shifted up by 1). (That is, if we think of a as an involution of {1, . . . , n + k1 + k2}
then ı(a)(1) = n + k1 + k2 + 2 and ı(a)(i) = a(i − 1) + 1 if 2 ≤ i ≤ n + k1 + k2 + 1.) The map ı

sends Bk1,k2n to Bk1+1,k2+1
n . If k1 + k2 ≥ n then ı : Bk1,k2n → Bk1+1,k2+1

n is a bijection.
There is an induced map

ı : An+k1+k2 → An+k1+k2+2

which labels the new circle in ı(a)ı̂(b) (containing the points 1 and n+ k1 + k2 + 2) by 1.

Lemma 2.1. Given n, k1, k2 with k1 +k2 ≡ n (mod 2), Ik1,k2n ⊂ Ak1,k2n is a 2-sided ideal, so Ak1,k2n

is a linear category.
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Proof. The proof is spelled out by Chen-Khovanov [CK14, Proof of Lemma 1], but we repeat it

here for completeness. Suppose x is a labeling of ab̂ so that some circle passing through a platform,
at a point P , is labeled X. Let y be any labeling of bĉ. In the sequence of merges and splits relating

ab̂ q bĉ to aĉ, the circle containing P is always labeled X, so, in particular, in the product xy a

circle passing through a platform is labeled X. If there is a circle in ab̂ which passes through two

points, P and Q, on the same platform then in the cobordism from ab̂ q bĉ to aĉ, either P and Q
stay on the same circle throughout, in which case aĉ has a type III circle, or some split occurs to
the circle containing P and Q, in which case either P or Q is labeled X after the split. In the latter
case, the circle containing that point continues to be labeled X throughout the cobordism, giving
a type II or III circle labeled X. �

Lemma 2.2. Given n, k1, k2 with k1 + k2 ≡ n (mod 2) and a, b ∈ Bk1,k2n = Ob(Ak1,k2n ),

ı−1(Ik1+1,k2+1
n (ı(a), ı(b))) = Ik1,k2n (a, b).

So, ı induces a homomorphism (functor of linear categories)

ı : Ak1,k2n → Ak1+1,k2+1
n

which is always full and faithful and injective on objects, and is an isomorphism if k1 + k2 ≥ n.

Proof. This is immediate from the definitions. �

2.4. Platform modules. Given an (m,n)-flat tangle T , Chen-Khovanov define an (Am−h,hm ,An−k,kn )-
bimodule for all (h, k) with 0 ≤ h ≤ m, 0 ≤ k ≤ n, and m − n = 2(h − k). Their construction

extends immediately to give (Ah1,h2m ,Ak1,k2n )-bimodules for any h1, h2, k1, k2, with h1−h2 = k1−k2,
and some details are easier in the more general setting, so we sketch their construction there.

Fix a ∈ Bh1,h2m and b ∈ Bk1,k2n with h1− h2 = k1− k2, and an (m,n)-flat tangle T . Assume that

k1 − h1 ≥ 0; the other case is symmetric. Form a closed 1-manifold 〈aT b̂〉 by:

(1) Adding k1 horizontal strands below T and k2 horizontal strands above T , to obtain T .

(2) Gluing ık1−h1(a) to T to b̂, to obtain

〈aT b̂〉 = ık1−h1(a)T b̂.

See Figure 2.1. There is a subset aT b̂ ⊂ 〈aT b̂〉 which we call the partial closure. The endpoints of

the arcs in aT b̂ are on four platforms.

Define a submodule J h1,h2;k1,k2
T (a, b) ⊂ CT (ık1−h1(a), b) by declaring that

(J-1) If aT b̂ has an arc with both ends on the same platform then J h1,h2;k1,k2
T (a, b) = CT (ık1−h1(a), b).

(J-2) Otherwise, J h1,h2;k1,k2
T (a, b) is spanned by the generators of CT (ık1−h1(a), b) which label at

least one arc component of the partial closure aT b̂ by X.

Define
Ch1,h2;k1,k2
T (a, b) = CT (ık1−h1(a), b)/J h1,h2;k1,k2

T (a, b).

Following Chen-Khovanov, we will call the arcs in Case (J-1) type III arcs and the arcs in

Case (J-2) type II arcs (if they are not already type III arcs). We call a circle in 〈aT b̂〉 containing
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Figure 2.1. Capping off a flat tangle. Each row, left to right: a tangle T ,

crossingless matchings a, b, the closure 〈aT b̂〉, and the partial closure aT b̂. On the
first row, m = 6, n = 2, h1 = 3, h2 = 3, k1 = 1, and k2 = 1. On the second row,
m = 6, n = 2, h1 = 4, h2 = 2, k1 = 2, and k2 = 0. On the first row, there are no
arcs with both endpoints on the same platform (type III arcs); on the second row,
there is one, drawn in bold.

a type III arc a type III circle and a circle in 〈aT b̂〉 containing a type II arc a type II circle (if it is
not already a type III circle). The following reformulation of these conditions will be useful:

Lemma 2.3. A circle Z in 〈aT b̂〉 is a type III circle if and only if Z intersects some platform more

than once. A circle Z in 〈aT b̂〉 is a type II circle if and only if Z intersects each platform at most
once and some platform at least once.

Proof. We start with the statement about type III circles. That a type III circle intersects some
platform more than once is immediate from the definition. For the other direction, observe first
that Z contains a type III arc if and only if there is an embedded bigon in R2 with one edge on Z,
one edge on a platform, and interior disjoint from Z and the platforms. Let P be the union of the
top-left and bottom-left platforms. Since the two top platforms are connected by horizontal lines
in T , as are the two bottom platforms, existence of a bigon as above is equivalent to existence of a
bigon with one edge on Z, one edge on P , and interior disjoint from Z ∪ P .

Let D be the disk inside Z, i.e., the bounded region of R2 \ Z. The platforms P cut D into a
collection of polygons, two of which might contain the tips of P—the segments of P \Z adjacent to
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Figure 2.2. Type III circles and arcs. Left: a bigon (shaded) and the corre-
sponding type III arc (bold). The platforms not in P are dotted. Right: a case
where both bigons in D (shaded) contain tips.

the endpoints of P . (See Figure 2.2.) Let P ′ be the complement of the tips in P . Since D intersects
some platform more than once, D \ P ′ has at least two connected components. Every polygon in
D \P ′ has an even number of edges. Consequently, the only polygons in D \P ′ with positive Euler
measure are bigons. Since the Euler measure of P ′ is 1 and Euler measure is additive, at least two
of the components of D \ P ′ must be bigons, and if D \ P ′ has exactly two bigons then all other
components of D \ P ′ are rectangles.

If some component of D \ P ′ is a bigon not containing a tip of P then we are done. In the
remaining case, D \ P ′ consists of two bigons, both of which contain tips of P , and some number
of rectangles.

In this last case, consider the complement D′ = R2 \ D. View the platforms as extending to
infinity in R2. Since D contains both tips, the platforms P cut the punctured disk D′ into two
non-compact regions and some polygons. At least one of the non-compact regions has more than
2 corners, for otherwise, Z will be a circle passing through each platform in P once, contradicting
the hypothesis. It follows by considering the Euler measure that at least one of the regions in D′

is a bigon, which implies that there is a type III arc.
The statement about type II circles is immediate from the statement about type III circles. �

Remark 2.4. In the special case that h1 = h2 = k1 = k2 = 0, J 0,0;0,0
T (a, b) = {0}, so C0,0;0,0

T = CT ,
the arc algebra bimodule. The case considered by Chen-Khovanov is h2 = m−h1 and k2 = n− k1.

Convention 2.5. To shorten notation, we will often write h = (h1, h2) and k = (k1, k2), so

Ah
m = Ah1,h2m J h;k

T = J h1,h2;k1,k2
T Ch;k

T = Ch1,h2;k1,k2
T .
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Composing the ring map ık1−h1 : Ah
m ↪→ Ak

m with the inclusion  : Ak
m ↪→ Am+k1+k2 gives a map

 ◦ ık1−h1 . Given an (Am+k1+k2 ,An+k1+k2)-bimodule M , we can restrict scalars by  ◦ ık1−h1 ⊗  to

obtain an (Ah
m,A

k
n)-bimodule ( ◦ ık1−h1 ⊗ )∗M .

Proposition 2.6. [CK14] The subsets

J h;k
T (a, b) ⊂ CT (ık1−h1(a), b)

form a submodule of the (Ah
m,A

k
n)-bimodule ( ◦ ık1−h1 ⊗ )∗CT , and

Ihm ·
(
( ◦ ık1−h1 ⊗ )∗CT

)
⊂ J h;k

T(
( ◦ ık1−h1 ⊗ )∗CT

)
· Ikn ⊂ J

h;k
T ,

so Ch;k
T inherits the structure of an (Ah

m,Ak
n)-bimodule.

Proof. The same argument as in the proof of Lemma 2.1 shows that the subsets

J k;k
T (a, b) ⊂ CT (a, b),

for a ∈ Bk
m and b ∈ Bk

n, form a submodule of CT and that

Ikm ·
(
(⊗ )∗CT

)
⊂ J k;k

T(
(⊗ )∗CT

)
· Ikn ⊂ J

k;k
T .

By Lemma 2.2, (ık1−h1)−1(Ikm) = Ihm. The result follows. �

Proposition 2.7. [CK14] Given a non-flat tangle T , the maps in the cube of resolutions

CTv(ı
k1−h1(a), b)→ CTw(ık1−h1(a), b)

send J h;k
Tv

(a, b) to J h;k
Tw

(a, b) and hence descend to homomorphisms (natural transformations)

Ch;k
Tv
{−|v|} → Ch;k

Tw
{−|w|}.

Proof. Suppose y is a labeling of ık1−h1(a)Tw b̂ and x is a labeling of ık1−h1(a)Tv b̂ so that (w, y)

occurs as a term in ∂(v, x). If there is a circle in ık1−h1(a)Tv b̂ passing through a point P on

a platform which is labeled X by x (a type II circle labeled X) then the circle in ık1−h1(a)Tw b̂
containing P is also labeled X.

The more interesting case is that there is an arc in the partial closure aTv b̂ with both endpoints

on the same platform (a type III arc). Let Z ⊂ 〈aTv b̂〉 be the corresponding circle. By Lemma 2.3,

if 〈aTw b̂〉 does not have a type III circle then the circle Z must split into two circles, each of which
intersects a platform. Since the split map sends X to X ⊗X and 1 to 1⊗X +X ⊗ 1, one of these
circles must be labeled X by y, as desired. �

Definition 2.8. By Propositions 2.6 and 2.7, associated to a non-flat tangle T is a cube of (Ah
m,Ak

n)-

bimodules: v 7→ Ch;k
Tv
{−|v|−N++2N−}. Let Ch;k

T be the total complex of this cube, with homological
grading shifted down by N+.
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(a) (b)

1

(c)

X

(d)

X

(e)

Figure 2.3. Invariance under Reidemeister II moves. (a) CT (a, b), the square

of resolutions at a Reidemeister II move. (b) The acyclic subcomplex C1(a, b). (c)
The quotient complex C2(a, b). (d) The acyclic quotient complex C3(a, b) of C2(a, b).
(e) The corresponding subcomplex C4(a, b) ∼= CT ′(a, b).

Lemma 2.9. There are isomorphisms

Ch1,h2;k1,k2
T

∼= (ı⊗ Id)∗Ch1+1,h2+1;k1,k2
T

∼= (Id⊗ı)∗Ch1,h2;k1+1,k2+1
T .

Proof. This is immediate from the definitions. �

Theorem 1. [CK14] Up to homotopy equivalence of chain complexes of bimodules, Ch;k
T is invariant

under Reidemeister moves.

Proof. By Lemma 2.9, it suffices to prove the result when h = k. We will spell out the proof for
a Reidemeister II move; the cases of Reidemeister I moves and braid-like Reidemeister III moves
(see, e.g., [Bal11, §7.3] or [LS14, §6]) are similar, and we comment on them briefly at the end of
the proof.

Suppose T and T ′ are related by a Reidemeister II move, and T has two more crossings than T ′.
Given a ∈ Bk

m, b ∈ Bk
n, Figure 2.3 (a) shows the complex CT (a, b), where the two crossings involved

in the Reidemeister II move are resolved in the four possible ways. Figure 2.3 (b) shows an acyclic
subcomplex C1(a, b) consisting of two of the resolutions, and where one closed circle is labeled
1. The quotient complex C2(a, b) = CT (a, b)/C1(a, b) (shown in Figure 2.3 (c)) has a subcomplex

C4(a, b) (shown in Figure 2.3 (e)), so that C3(a, b) = C2(a, b)/C4(a, b) (shown in Figure 2.3 (d)) is
acyclic, and C4(a, b) ∼= CT ′(a, b).

Since each Ci(a, b) is defined by restricting to certain vertices of the cube and certain labels

of the closed circles in the resolutions of T (not aT b̂), each Ci restricts to an (Ak
m,A

k
n)-bimodule.

The inclusion maps C1(a, b) ↪→ CT (a, b) and C4(a, b) ↪→ C2(a, b), and the identification C4(a, b) ∼=
CT ′(a, b) respect the labels of type II and III circles. Hence, if we let C ′i(a, b) = Ci(a, b)/J k;k

T then

there are induced maps C ′1 ↪→ C
k;k
T , C ′4 ↪→ C ′2, and C ′4

∼= Ck;k
T ′ .

It remains to verify that C ′1 and C ′3 are acyclic. Let Tv and Tw be resolutions of T which agree
at all of the crossings not involved in the Reidemeister II move and have the two forms allowed in

C1 near the Reidemeister II move. Notice that aTv b̂ has a type III arc if and only if aTw b̂ does, and
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the type II arcs of aTv b̂ and aTw b̂ correspond. It follows that C ′1 is acyclic. Similarly, if Tv and Tw
are resolutions as in C3 which agree away from the Reidemeister II move, the type II (respectively
III) arcs of Tv correspond to the type II (respectively III) arcs of Tw, so it follows that C ′3 is acyclic.
This completes the proof for Reidemeister II moves.

As Chen-Khovanov note, there are two key points to this argument. First, the sub-complexes
involved are defined locally near the Reidemeister move by placing restrictions on the labels of closed
circles only, hence descend to the Chen-Khovanov quotient. Second, the acyclic subcomplexes stay
acyclic after one quotients by the Chen-Khovanov submodule, essentially because type II and III
arcs at the different relevant vertices correspond. Inspecting the proofs of Reidemeister I and III
invariance (see, e.g., [LS14, §6]), both properties hold for them as well. Indeed, in all cases there
are two kinds of cancellations that occur: merging on a circle labeled 1 or splitting off a circle
labeled X. Neither operation changes the labels of the other components nor which points in the
boundary of the tangle lie on the same strand, so each of the sub- and quotient complexes remains
acyclic after quotienting by the Chen-Khovanov submodule. This completes the proof. �

The gluing theorem for the tangle invariants only holds in Chen-Khovanov’s generality:

Theorem 2. [CK14] Let T1 be an (m,n)-tangle and T2 an (n, p)-tangle. Fix integers h1, h2, k1, k2, `1, `2
satisfying:

h1 − h2 = k1 − k2 = `1 − `2
and

h1 + h2 ≥ m, k1 + k2 ≥ n, `1 + `2 ≥ p.
Then,

Ch;l
T1T2
' Ch;k

T1
⊗L
Ak
n
Ck;l
T2
.

As Chen-Khovanov note, the proof of Theorem 2 is essentially the same as the arc algebra
case [Kho02, Proposition 13]. For the spectral refinements, we need an explicit description of the
homotopy equivalence in Theorem 2, so as usual we give a few more details.

Let T1 be an (m,n)-tangle and T2 an (n, p)-tangle. By Lemma 2.2, Theorem 2 is equivalent to
the same statement with (h1, h2) replaced by (h1 + 1, h2 + 1) (or k, l increased similarly). Thus,
for the rest of the section, we will assume that

h1 = k1 = `1

so also

h2 = k2 = `2.

Given a ∈ Bk
m, b ∈ Bk

n, and c ∈ Bk
p , the canonical cobordism from b̂ q b to the identity braid

induces a map

(2.1) Ψ̃(a, b, c) : CT1(a, b)⊗Z CT2(b, c)→ CT1T2(a, c)

Lemma 2.10. The gluing map Ψ̃ is a chain map of bimodules. Further, for a ∈ Bk
m, b ∈ Bk

n, and
c ∈ Bk

p , Φ takes the submodule

J k;k
T1

(a, b)⊗ CT2(b, c) + CT1(a, b)⊗ J k;k
T2

(b, c) ⊂ CT1(a, b)⊗ CT2(b, c)
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to the submodule
J k;k
T1T2

(a, c) ⊂ CT1T2(a, c)

and hence induces a homomorphism

(2.2) Ψ: Ck;k
T1
⊗Z Ck;k

T2
→ Ck;k

T1T2
.

Proof. It is immediate from far-commutativity that the gluing map is a chain map of bimodules
(see also [Kho02]). It remains to check that its restriction preserves the submodules. This is clear
for elements coming from type III arcs on the left of T1 or the right of T2. Next, suppose we
are considering a generator of CT1(a, b) in which some type II circle is labeled X. Let P be any

intersection of that circle with a platform for a. Then the cobordism map takes this generator to
one where the circle containing P is labeled X, so there is a type II circle labeled X as desired.

Next, suppose there is a type III arc in aT1b̂ to the right of T1, and let P,Q be its endpoints. If
P and Q are on the same circle of aT1T2ĉ then by Lemma 2.3, aT1T2ĉ has a type III arc and we are
done. Otherwise, at some point in the canonical cobordism, the circle containing P and Q splits.
After the split, one of the components is a circle labeled X passing through a platform, implying
that the corresponding generator for aT1T2ĉ has a type II (or perhaps III) circle labeled X. �

Lemma 2.11. The map Ψ̃ descends to the tensor product

CT1 ⊗Ak
n
CT2 → CT1T2

and hence Ψ descends to a map

Ψ: Ck;k
T1
⊗Ak

n
Ck;k
T2
→ Ck;k

T1T2
.

Proof. This follows from far-commutativity of the cobordism maps and the fact that the action of

Ak
n is itself induced by the canonical cobordism b̂q b→ Id [Kho02, Proof of Theorem 1]. �

Lemma 2.12. Suppose T1 is a flat tangle and a ∈ Bk
m is a crossingless matching so that aT1 has

no type III arcs. Then aT1 is (isotopic rel endpoints to) the union of an element a′ ∈ Bk
n and a

collection of unknots.

Proof. Since any flat (0, n+k1 +k2)-tangle is the disjoint union of a crossingless matching and some
unknots, all that remains is to verify that none of the points on the same platform are connected
by the matching; but if two points on the same platform were connected then the corresponding
arc of aT1 would be a type III arc. �

Lemma 2.13. For T1 an (m,n)-tangle, Ck;k
T1

is a projective left module over Ak
m and is a projective

right module over Ak
n.

That is, in Khovanov’s language [Kho02], Ck;k
T1

is a sweet bimodule. This is weaker than Ck;k
T1

being bi-projective (projective as a bimodule).

Proof of Lemma 2.13. It suffices to prove the result when T1 is a flat tangle. We prove Ck;k
T1

is right
projective. As a right module,

Ck;k
T1

=
⊕
a∈Bk

m

Ck;k
T1

(a, ·),
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so it suffices to prove each summand is right projective. Let a′ be the crossingless matching from
Lemma 2.12, and suppose that aT1 has q circle components. Then, it is immediate from the
definitions that

Ck;k
T1

(a, ·) = V ⊗q ⊗ (a′ · Ak
n).

This implies the result. �

Proof of Theorem 2. As noted above, by Lemma 2.2, we may assume h = k = l. So, by Lemma 2.13,
we can replace the derived tensor product with the ordinary tensor product. So, it suffices to prove
that the gluing map Ψ is a chain isomorphism. By Lemma 2.10, we know Ψ is a well-defined chain
map, so it suffices to prove that for single vertices v, w for the cube of resolutions of T1, T2, and
crossingless matchings a, c, the gluing map

(2.3) Ψ: Ck;k
T1,v

(a, ·)⊗Ak
n
Ck;k
T2,w

(·, c)→ Ck;k
T1,vT2,w

(a, c)

is an isomorphism of free abelian groups.
If aT1,v or T2,w ĉ has a type III arc then both sides vanish, so there is nothing to prove.

In the remaining case, by Lemma 2.13 and its proof, we have

Ck;k
T1,v

(a, ·)⊗Ak
n
Ck;k
T2,w

(·, c) ∼= V ⊗q+q
′ ⊗ (a′ · Ak

n)⊗Ak
n

(Ak
n · c′),

where a′ is as in Lemma 2.12 and c′ is defined similarly. This is isomorphic to

V ⊗q+q
′ ⊗ (a′ · Ak

n · c′) = V ⊗q+q
′ ⊗Ak

n(a′, c′).

This already proves that the two sides of Equation (2.3) are isomorphic.
So, to see that Ψ is an isomorphism, it suffices to verify that the map Ψ from Equation (2.2)

is surjective. Fix a generator y ∈ Ck;k
T1,vT2,w

(a, c). Consider generators y1 ∈ Ck;k
T1,v

(a, c′) and y2 ∈
Ck;k
T2,w

(c′, c), so that:

• y1 and y2 label the closed components of aT1,v and T2,w ĉ the same way as y.

• y1 labels each arc of ĉ′ the same way as y labels the corresponding arc of ĉ.
• y2 labels each arc of c′ by 1.

Since the merge map from ĉ′ q c′ to Id induces multiplication in the algebra, and 1 is a unit, it
follows that Ψ(y1 ⊗ y2) = y. �

In light of Theorem 2, Lemma 2.2, and Lemma 2.9, it is natural to restrict to the case that
h2 = m− h1 and k2 = n− k1, exactly as Chen-Khovanov do. So, let

AP
n =

n⊕
k=0

An−k,kn CP
T =

⊕
h,k

m−n=2(h−k)

Cm−h,h;n−k,k
T .
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3. Review of the spectral arc algebras and modules

Hu-Kriz-Kriz used functors to the Burnside category and Elmendorf-Mandell’s K-theory mul-
tifunctor to give a new construction of a Khovanov homotopy type [HKK16]. One can show [LLSa]
that their construction is equivalent to our original Khovanov stable homotopy type (from [LS14]).
The canonical nature of the Elmendorf-Mandell construction makes Hu-Kriz-Kriz’s approach well-
suited to functorial aspects of Khovanov homotopy, like tangle invariants. Therefore, our spectral
refinement of the tangle invariants [LLSb] was carried out using the Hu-Kriz-Kriz viewpoint, and
we continue to use that approach here.

This section provides concise background on some of the relevant topics. (For more detailed
background, see [LLSb, §2].) Section 3.1 recalls the notion of a multicategory, the basic framework
for the construction. Section 3.2 introduces a particular target multicategory, the graded Burnside
category (of the trivial group). Section 3.3 discusses how one can reinterpret the tangle invariants
(both combinatorial and spectral) in terms of multifunctors. Section 3.4 reviews key properties of
the spectral refinements of the arc algebras and modules (from [LLSb]). Section 3.5 introduces two
analogues of ideals, submodules, and quotient rings and modules in the setting of multifunctors,
one of which is used to define the spectral platform algebras and bimodules and the other of which
is used to prove the spectral bimodules are invariants. Section 3.6 recalls a notion of equivalence for
multifunctors which guarantees that the corresponding spectral bimodules are weakly equivalent.

To avoid excessive repetition, the material presented in this section omits many details from
our previous paper [LLSb], with which the reader is assumed to be familiar or be willing to accept
as a black box.

3.1. Multicategories. A multicategory (or colored operad) is an operad with many objects or,
equivalently, a category with n-input morphism sets and the obvious kinds of compositions; so

monoid category

operad multicategory.

(See [EM06, Definition 2.1].) Any monoidal category can be viewed as a multicategory (cf. ?-
categories from [HKK16]). For instance, the category of abelian groups forms a multicategory, with
Hom(G1, . . . , Gn;H) the group homomorphisms G1 ⊗ · · · ⊗Gn → H. Similarly, topological spaces
(or simplicial sets) forms a multicategory, with Hom(X1, . . . , Xn;Y ) the maps X1 × · · · × Xn →
Y . Similarly, symmetric spectra S [HSS00] forms a multicategory and is naturally a simplicial
multicategory (multicategory enriched in simplicial sets). As in categories, given a multicategory
C we will typically write C (x1, . . . , xn; y) for HomC (x1, . . . , xn; y).

A multifunctor from C to D consists of a map F : Ob(C )→ Ob(D) and, for each x1, . . . , xn, y ∈
Ob(C ), a map C (x1, . . . , xn; y) → D(F (x1), . . . , F (xn), F (y)), respecting the identity maps and
composition. Note that while we sometimes consider multicategories enriched in groupoids or
simplicial sets, composition is always strictly associative and has strict units for multicategories
and multifunctors always strictly respect the identity maps and compositions; we never consider a
multicategorical analogue of lax 2-categories.
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3.2. The Burnside multicategory. The graded Burnside multicategory B is the multicategory
enriched in categories with:

• Objects finite graded sets X.
• B(X;Y ) = HomB(X;Y ) the category with objects finite correspondences (A, s : A→ X, t : A→
Y ) of graded sets and morphisms diagrams of graded set maps

X Y

A B
s

s t
t

f

∼=

with f being a bijection.
• More generally, B(X1, . . . , Xn;Y ) = B(X1 × · · · ×Xn;Y ), where X1 × · · · ×Xn is a graded set

with

grX1×···×Xn(x1, . . . , xn) = grX1
(x1) + · · ·+ grXn(xn)

(like the grading on a tensor product).
• Composition is induced by the fiber product.

(We elide some technicalities about associativity of the Cartesian product of sets; see, e.g., [LLSb,
§3.2.1] for one way of handling these.) Taking the nerve of each multimorphism category turns B
into a simplicial multicategory, which we also denote B and call the Burnside multicategory. We
will typically drop the word “graded” and simply call B the Burnside category.

There is a multifunctor Forget : B → ZAb which sends a set X to
⊕

x∈X Z and a correspondence

A to the Y ×X-matrix [#s−1(x) ∩ t−1(y)]x∈X,y∈Y .
The Elmendorf-Mandell machine can be used to lift this functor to spectra. In more detail,

Elmendorf-Mandell’s K-theory is a multifunctor from the multicategory of all permutative cate-
gories to spectra, and there is a multifunctor from the Burnside category to the multicategory of
permutative categories which sends X ∈ B to Sets/X. Composing these two functors, we get a
(simplicially enriched) functor B → ZS , which we will still denote K. Moreover, the following
diagram commutes up to quasi-isomorphism:

B ZS

ZAb ZKom

Forget

K

C∗

In particular, for any X ∈ B, K(X) is weakly equivalent to
∨
x∈X S.

3.3. Tangle invariants as multifunctors. As a final step before using the Elmendorf-Mandell
machine, we reformulate the tangle invariants in terms of multifunctors. Consider the tangle shape
multicategory T2m;2n with:

• Three kinds of objects: pairs (a1, a2) ∈ B2m × B2m, pairs (b1, b2) ∈ B2n × B2n, and pairs (a, b) ∈
B2m×B2n. For reasons that will become clear, we will denote the third kind of object as (a, T, b),
where T is a placeholder.
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• A unique multimorphism in each of the following cases, and no other multimorphisms:

(a1, a2), (a2, a3), . . . , (aα−1, aα)→ (a1, aα)(3.1)

(b1, b2), (b2, b3), . . . , (bβ−1, bβ)→ (b1, bβ)(3.2)

(a1, a2), . . . , (aα−1, aα), (aα, T, b1), (b1, b2), . . . , (bβ−1, bβ)→ (a1, T, bβ)(3.3)

The special cases α = 1 and β = 1 are allowed, and they correspond to 0-input morphisms:

∅→ (a, a)(3.4)

∅→ (b, b)(3.5)

This category has several full subcategories:

• The category S2m ⊂ T2m;2n spanned by the objects in B2m × B2m. This is isomorphic to the
subcategory of T2n;2m spanned by the objects in B2m × B2m.

• The category Sh1,h2m = Shm ⊂ Sm+h1+h2 spanned by the objects in Bh
m × Bh

m ⊂ Bm+h1+h2 ×
Bm+h1+h2 .

• The category T h1,h2;k1,k2
m;n = T h;k

m;n ⊂ Tm+h1+h2;n+k1+k2 spanned by objects in(
Bh
m × Bh

m

)
q
(
Bk
n × Bk

n

)
q
(
Bh
m × Bk

n

)
.

(with h1 − h2 = k1 − k2).

The arc algebras determine a multifunctor

FA2m : S2m → ZAb

by defining FA2m(a1, a2) = A2m(a1, a2) and

FA2m

(
(a1, a2), (a2, a3), . . . , (aα−1, aα)→ (a1, aα)

)
to be the iterated composition (multiplication) map

f12, f23, . . . , fα−1,α 7→ fα−1,α ◦ · · · ◦ f23 ◦ f12.

Conversely, the functor FA2m determines the arc algebra in an obvious way. Extending further,
Khovanov’s invariant of a tangle T (with ordered crossings) is equivalent to a functor

T2m;2n → ZKom.

(See also [LLSb, §2.3].)
Similarly, the platform algebra and invariant of a tangle T are equivalent to functors

Shm → ZAb, T h;k
m;n → ZKom,

respectively.
For the homotopical refinement we need two variants on these constructions. First, we need a

canonical thickening T̃2m;2n of T2m;2n, which is a simplicial multicategory with the same objects as
T2m;2n but in which each Hom-set is replaced by a (particular) simplicial set [LLSb, §2.4], defined
in terms of labeled trees of basic multimorphisms.

Second, we need to be able to multiply by a cube. Define 2N ×̃T2m;2n to have objects(
B2m × B2m

)
q
(
B2n × B2n

)
q
(
Ob(2N )× B2m × B2n

)
.
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where, again, 2N = {0→ 1}N .
The multimorphisms in 2N ×̃T2m;2n are the same as in T2m;2n except that Formula (3.3) is

replaced with

(3.6) (a1, a2), . . . , (aα−1, aα), (v, aα, T, b1), (b1, b2), . . . , (bβ−1, bβ)→ (w, a1, T, bβ)

whenever v ≤ w ∈ 2N (with the partial order induced by 0 < 1). This category still has S2m and
S2n as subcategories. The Khovanov invariant of an N -crossing tangle T is induced by a functor

FC : 2N ×̃T2m;2n → ZAb.

There is also a canonical thickening 2N ×̃T̃2m;2n [LLSb, §3.2.4].

The category 2N ×̃Tm+h1+h2;n+k1+k2 (respectively 2N ×̃T̃m+h1+h2;n+k1+k2) has a full subcategory

2N ×̃T h;k
m;n (respectively 2N ×̃T̃ h;k

m;n).

3.4. The homotopical refinement of Khovanov’s arc algebras and bimodules. By using
a particular multicategory of divided cobordisms, in our previous paper [LLSb] we defined multi-
functors

Φ2n : S̃2n → B

ΨT : 2N ×̃T̃2m;2n → B.

(These multifunctors were denoted MBn and MBT .) We will not need the details of these construc-
tions, just the following properties:

(Ψ-1) The compositions Forget ◦Φ2n and Forget ◦ΨT agree with the Khovanov arc algebra and module
FA2n and FC , respectively. Further, Φ2m and Φ2n are the restrictions of ΨT . More precisely,
the following diagrams commute:

S̃2n

S2n

B

ZAb

Φ2n

FA2n

Forget

2N ×̃T̃2m;2n

2N ×̃T2m;2n

B

ZAb

ΨT

FCT

Forget

2N ×̃T̃2m;2nS̃2m S̃2n

B

ΨT
Φ2m Φ2n

(Ψ-2) On objects, Φ2n(a, b) is the set of labelings of the components of ab̂ by elements of {1, X},
i.e., the set of Khovanov generators for ab̂. Similarly, ΨT (v, a, T, b) (respectively ΨT (a1, a2),

ΨT (b1, b2)) is the set of Khovanov generators for aTv b̂ (respectively a1â2, b1b̂2), where Tv is
the v-resolution of T .

(Ψ-3) Given a multi-morphism f ∈ T̃2m;2n(x1, . . . , x`; y) with associated canonical cobordism Σ, as
well as Khovanov generators ci ∈ ΨT (xi) and d ∈ ΨT (y), the correspondence ΨT (f) satisfies

s−1(c1, . . . , c`) ∩ t−1(d) = ∅ ⊂ ΨT (f)

unless all of the following are satisfied:
(a) Every component of Σ has genus 0 or 1.
(b) For each genus 0 component of Σ, either:
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(i) all circles in the incoming boundary are labeled 1 by (c1, . . . , c`) and exactly one
circle in the outgoing boundary is labeled 1 by d or

(ii) exactly one circle in the incoming boundary is labeled X by (c1, . . . , c`) and all
circles in the outgoing boundary are labeled X by d.

(c) For each genus 1 component of Σ, all incoming circles are labeled 1 by (c1, . . . , c`) and
all outgoing circles are labeled X by d.

(Since Φ2n is a restriction of ΨT , this also applies to Φ2n.)

Now, the spectral arc algebra is defined as follows. Composing the functor Φ2n with the map

K : B → ZS coming from Elmendorf-Mandell’s K-theory gives a functor S̃2n → ZS . Their
rectification results [EM06, Theorems 1.3 and 1.4] then give a multifunctor S2n → ZS . Finally,
reinterpreting this as in Section 3.3 gives a spectral category A2n with one object per crossingless
matching; if one prefers, one can take the wedge sum of all morphisms spaces in this category to
obtain a ring spectrum A ring

2n .
Similarly, given an oriented tangle diagram T with N crossings, of which N+ are positive, we

can consider the composition

2N ×̃T̃2m;2n
ΨT−→ B

K−→ ZS .

Rectifying this composition gives a multifunctor G : 2N ×̃T2m;2n → ZS . We turn this into a functor

H : T2m;2n → ZS by letting H(a1, a2) = G(a1, a2), H(b1, b2) = G(b1, b2), and H(a, T, b) be the
iterated mapping cone, over the cube 2N , of G(v, a, T, b), formally desuspended N+ times. We can
then reinterpret H as a spectral bimodule XT over A2m and A2n, as in Section 3.3. This can also
be viewed as a spectral bimodule Xmod

T over A ring

2m and A ring

2n .

Abstracting somewhat, let C be either T2m;2n or T h;k
m;n , and let D ⊂ C be one of S2m or S2n (if

C is T2m;2n), or Shm or Skn (if C is T h;k
m;n). A stable functor is a pair (F, S) where F : 2N ×̃C̃ → B

and S ∈ Z. For instance, given a tangle T , (ΨT , N+) is a stable functor. The procedure in
the previous paragraph (rectifying, taking mapping cone along 2N , then desuspending S times)
produces a functor |F | : C → ZS . If A = F |D then let ‖A‖ be the spectral category obtained by
restricting |F | to D and reinterpreting as in Section 3.3. Also as in Section 3.3, the functor |F |
may be viewed as a spectral bimodule ‖F‖ over the two spectral categories ‖A‖. For F = ΨT ,
the spectral category ‖A‖ is the category A2m or A2n and the spectral bimodule ‖F‖ is XT , as
defined earlier. So, to spectrify the Chen-Khovanov tangle invariants, all that remains is to choose

the right stable functor (F : 2N ×̃T̃ h;k
m;n → B, S).

3.5. Subfunctors and quotient functors. The following will serve as an analogue of an ideal I
in a ring R:

Definition 3.1. Given a multicategory C and a multifunctor F : C → B, an absorbing subfunctor
of C is a collection of subsets G(a) ⊂ F (a), a ∈ C , so that for any p1, . . . , p`, q ∈ C , f ∈
C (p1, . . . , p`; q), xi ∈ F (pi), and y ∈ F (q), if some xi ∈ G(pi) and y 6∈ G(q) then

(3.7) s−1(x1, . . . , x`) ∩ t−1(y) = ∅ ⊂ F (f).

Extend G to a multifunctor G : C → B by defining, for f ∈ C (p1, . . . , p`; q),

G(f) = s−1(G(p1)× · · · ×G(p`)) ∩ t−1(G(q)) ⊂ F (f)
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with the obvious source and target maps, and 2-morphisms induced by F in the obvious way. The
fact that G respects multi-composition, i.e., that for an `-input morphism f ,

G(f ◦ (g1, . . . , g`)) = G(f) ◦ (G(g1), . . . , G(g`)),

follows from Equation (3.7).
Given an absorbing subfunctor G of F , there is a corresponding quotient functor F/G defined

by

• On objects a ∈ C , (F/G)(a) = F (a) \G(a).
• On morphisms f ∈ C (p1, . . . , p`; q), (F/G)(f) = s−1((F/G)(p1)×· · ·×(F/G)(p`))∩t−1((F/G)(q)).
• On 2-morphisms, F/G is induced from F .

Lemma 3.2. If G is an absorbing subfunctor then F/G is a multifunctor.

Proof. This is straightforward from the definition and Equation (3.7). �

For us, the quotient by an absorbing subfunctor will correspond to quotienting both a ring
and a module by an ideal. There is another kind of quotient that corresponds to leaving the
ring unchanged but taking the quotient of a module, which is useful in proving invariance under
Reidemeister moves:

Definition 3.3. [LLSb, Definition 3.25] Let C be a multicategory and let X ⊂ Ob(C ) be a subset
of the objects so that there are no multi-morphisms out of X, in the sense that if p1, . . . , p`, q ∈ C
and some pi ∈ X and q 6∈ X then C (p1, . . . , p`; q) = ∅. (In the application, X will be the collection

of objects of the form (v, a, T, b) in 2N ×̃T̃2m;2n or 2N ×̃T̃ h;k
m;n .)

Given a functor F : C → B, an insular subfunctor of F (relative to X) is a collection of subsets
G(a) ⊂ F (a) for a ∈ X, such that for any objects p1, . . . , p`, q ∈ C with some pi ∈ X, morphism
f ∈ C (p1, . . . , p`; q), and elements xj ∈ F (pj) and y ∈ F (q), if xi ∈ G(pi) and y 6∈ G(q) then

(3.8) s−1(x1, . . . , x`) ∩ t−1(y) = ∅ ⊂ F (f).

Extend G to a functor G : C → B by defining G(p) = F (p) for p ∈ Ob(C ) \ X and, for
f ∈ C (p1, . . . , p`; q),

G(f) = s−1(G(p1)× · · · ×G(p`)) ∩ t−1(G(q)) ⊂ F (f)

with the obvious source and target maps, and 2-morphisms induced by F in the obvious way. The
fact that G respects multi-composition follows from Equation (3.8).

Given an insular subfunctor G of F there is a quotient functor F/G : 2N ×̃T̃m;n → B defined
by:

• (F/G)(p) = F (p) if p 6∈ X,
• (F/G)(p) = F (p) \G(p) if p ∈ X,
• (F/G)(f) = s−1((F/G)(p1)× · · · × (F/G)(p`)) ∩ t−1((F/G)(q)) ⊂ F (f) for f ∈ C (p1, . . . , p`; q),

and
• the value of F/G on 2-morphisms is induced by F .

Lemma 3.4. If G is an insular subfunctor then F/G is a multifunctor.

Proof. Again, this is straightforward from the definitions and Equation (3.8). �
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If C is either 2N ×̃T̃2m;2n or 2N ×̃T̃ h;k
m;n , X is the collection of objects of the form {(v, a, T, b)},

F : C → B, and G is an insular subfunctor of F , then there is a cofibration sequence of

‖G‖ → ‖F‖ → ‖F/G‖

of bimodules (over ‖F |S̃2m‖ and ‖F |S̃2n‖ if C = 2N ×̃T̃2m;2n or over ‖F |S̃hm‖ and ‖F |S̃kn‖ if C =

2N ×̃T̃ h;k
m;n).

These two notions of subfunctor are compatible, in the following sense:

Lemma 3.5. Fix a multicategory C and a subset X ⊂ Ob(C ) as in Definition 3.3. Suppose
F : C → B is a multifunctor, G is an insular subfunctor of F , and H is an absorbing subfunctor
of F . Then G induces an insular subfunctor G of F/H via the formula

G(a) = G(a) \H(a).

for a ∈ X.

Proof. Fix objects p1, . . . , p`, q ∈ Ob(C ) with pi ∈ X, a morphism f ∈ Hom(p1, . . . , p`; q), and
elements xj ∈ (F/H)(pj) = F (pj) \H(pj) and y ∈ (F/H)(q) = F (q) \H(q). Suppose xi ∈ G(pi) =

G(pi) \H(pi) and y ∈ (F/H)(q) \G(q) = F (q) \ (G(q)∪H(q)). Then, in particular, xi ∈ G(pi) and
y ∈ F (q) \G(q), so since G is insular,

s−1(x1, . . . , x`) ∩ t−1(y) = ∅,
as desired. �

3.6. Equivalent functors. To prove the spectral refinements are invariant under Reidemeister
moves, we use a notion of equivalence of multifunctors to the Burnside category, which we spell out
here.

Let C be either T̃2m;2n or T̃ h;k
m;n .

Definition 3.6. A face inclusion is a functor i : 2M → 2N which is injective on objects and
preserves the relative grading. Given a face inclusion i, let |i| be the amount by which i shifts the
absolute grading.

The restriction of a functor 2N ×̃C → B under a face inclusion is a functor 2M ×̃C → B. We
can also extend functors under face inclusions:

Definition 3.7. [LLSb, Definition 3.24] Let i : 2M → 2N be a face inclusion and F : 2M ×̃C → B.
There is an induced functor i!F : 2N ×̃C → B defined on objects by (i!F )(a, b) = F (a, b) and

(i!F )(v, a, T, b) =

{
F (u, a, T, b) if v = i(u) is in the image of i,

∅ otherwise.

On multimorphisms, i!F is induced by F ; see our previous paper for an explicit description.

Given a stable functor (F, S) : 2N ×̃C → B, for each pair of crossingless matchings (a, b) we
have a cube of abelian groups by restricting Forget ◦F : 2N ×̃C → ZAb to the full subcategory spanned
by the objects of the form (v, a, T, b). Let Tot(Forget ◦ F, S) be the direct sum over a, b of the total
complex of this cube, with grading shifted down by S. So, for instance, if (F, S) = (ΨT , N+) then
Tot(Forget ◦ F, S) is the chain complex underlying the Khovanov tangle invariant.
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Definition 3.8. [LLSb, §3.5.2] We say that two stable functors (F, S), (G,T ) : 2N ×̃C → B are
simply stably equivalent if either:

(1) There is a face inclusion i : 2M → 2N so that G = i!F and T = S +N −M − |i|, or
(2) S = T and there is a functor H : 2N+1×̃C → B so that F = H|{0}×2N , G = H|{1}×2N , and the

chain complex Tot(Forget ◦H,S) is acyclic.

Two functors are stably equivalent if they can be connected by a sequence of simple stable equiva-
lences (i.e., stable equivalence is the symmetric, transitive closure of simple stable equivalence).

Lemma 3.9. If F1 and F2 are stably equivalent multifunctors then ‖F1‖ and ‖F2‖ are equivalent
spectral bimodules.

Proof. In the case C = T̃2m;2n this was proved in our previous paper [LLSb, Proposition 4.7]. The

proof for C = T̃ h;k
m;n is exactly the same. �

One way to produce stable equivalences is to produce insular subfunctors. Suppose G ⊂ F is
an insular subfunctor. Fix an integer S.

• If ‖F/G‖ is contractible then (F, S) ' (G,S).
• If ‖G‖ is contractible then (F, S) ' (F/G, S).
• If ‖F‖ is contractible then (G,S) ' (F/G, S + 1).

4. Spectral platform algebras and modules

Just like the definitions of the ordinary platform algebras and modules, we define the spectral
platform algebras by first restricting and then quotienting. We start by restricting—the analogues

of Ak
n and ( ◦ ık1−h1 ⊗ )∗CT .

Convention 4.1. In Section 2 we recalled how to associate an algebra Ak1,k2n to a tuple of integers

(n, k1, k2), so A0,0
2n is Khovanov’s platform algebra and Ak1,k2n is isomorphic to one of the Chen-

Khovanov algebras whenever k1 + k2 ≥ n. In the rest of the paper, we only consider the case that
k1 + k2 ≥ n (and similarly, tuples (m,h1, h2) with h1 + h2 ≥ m), so we are only considering the
Chen-Khovanov case.

Recall from Section 3.3 that we have full submulticategories

S̃kn ⊂ S̃n+k1+k2 , T̃ h;k
m;n ⊂ T̃m+h1+h2;n+k1+k2 , 2N ×̃T̃ h;k

m;n ⊂ 2N ×̃T̃m+h1+h2;n+k1+k2 .

The multifunctor Φn+k1+k2 restricts to a multifunctor

Φ
k
n : S̃kn → B.

Next, fix a flat (m,n)-tangle T and pairs h = (h1, h2) and k = (k1, k2) with h1 − h2 = k1 − k2.
Without loss of generality, assume that h1 ≤ k1. Recall that T is the result of adding k1 horizontal
strands below T and k2 horizontal strands above T . The multifunctor ΨT restricts to a multifunctor

Ψ
k;k
T : T̃ k;k

m;n → B.

The map ı : Bm+h1+h2 ↪→ Bm+h1+h2+2 induces an embedding

ı : T̃ h1,h2;k1,k2
m;n ↪→ T̃ h1+1,h2+1;k1,k2

m;n .
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Notation Meaning

B Graded Burnside multicategory.
S Multicategory of symmetric spectra.
S2n Strict arc algebra shape multicategory.

S̃2n Groupoid-enriched arc algebra shape multicategory.

Φ2n Functor S̃2n → B refining arc algebra.
A2n Spectral category refining A2n.
T2m;2n Strict tangle shape multicategory.

T̃2m;2n Groupoid-enriched tangle shape multicategory.

ΨT Functor 2N ×̃T̃2m;2n → B refining Khovanov cube of bimodules.
XT Spectral bimodule refining CT .

Skn Strict platform algebra shape multicategory.

S̃kn Groupoid-enriched platform algebra shape multicategory.

Φ
k
n Restriction of Φn+k1+k2 to S̃kn .

I Absorbing subfunctor of Φ
k
n corresponding to Ikn .

Φk
n Quotient functor Φ

k
n/I refining platform algebra.

A k
n Spectral category refining Ak

n.

A P
n Spectral category refining AP

n , given by
∐n
k=0 A n−k,k

n .

T h;k
m;n Strict platform tangle shape multicategory.

T̃ h;k
m;n Groupoid-enriched platform tangle shape multicategory.

Ψ
h;k
T Restriction of ΨT to 2N ×̃T̃ h;k

m;n .

J Absorbing subfunctor of Ψ
h;k
T corresponding to J h;k

T .

Ψ̃h;k
T Quotient functor Ψ

h;k
T /J refining platform cube of bimodules.

Ψh;k
T Minor modification of Ψ̃h;k

T taking into account certain natural isomorphisms.

X h;k
T Spectral bimodule refining Ch;k

T .

X P
T Spectral bimodule refining CP

T , given by
∐
h,k

m−n=2(h−k)

X m−h,h;n−k,k
T .

Table 4.1. Notation used in the homotopical refinements. The notions in
the top are used for spectral refinements of arc algebras and bimodules, and the
bottom ones are used for spectral refinements of platform algebras and bimodules.
Compare with their homological versions in Table 2.1.

Let

Ψ
h;k
T = Ψ

k;k
T ◦ ık1−h1 : T̃ h;k

m;n → B.
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More generally, given an (m,n)-tangle T with N crossings, ΨT restricts to a multifunctor

Ψ
k;k
T : 2N ×̃T̃ k;k

m;n → B.

The map ı induces an embedding

ı : 2N ×̃T̃ h1,h2;k1,k2
m;n ↪→ 2N ×̃T̃ h1+1,h2+1;k1,k2

m;n ,

and we again let

Ψ
h;k
T = Ψ

k;k
T ◦ ık1−h1 : 2N ×̃T̃ h;k

m;n → B.

Given (a1, a2) ∈ Ob(S̃kn ) define I(a1, a2) ⊂ Φ
k
n(a1, a2) to be the set of Khovanov generators for

a1â2 which are in the ideal Ikn (a1, a2). Similarly, given o ∈ Ob(2N ×̃T̃ h;k
m;n), if o has the form (a1, a2)

or (b1, b2) define J(o) ⊂ Ψ
h;k
T (o) to be I(o). If o has the form (v, a, T, b), define J(v, a, T, b) to be the

set of Khovanov generators for ık1−h1(a)Tv b̂ which are in the submodule J h;k
Tv

(a, b).

Lemma 4.2. The subsets I and J form absorbing subfunctors.

Proof. The proof is the same as the proofs of Lemma 2.1 and Proposition 2.6. Alternatively, we
can deduce this lemma from the combinatorial case. By Property (Ψ-3), for the multi-functor Ψ,
s−1(c1, . . . , c`) ∩ t−1(d) = ∅ unless d appears with non-zero coefficient in the product c1 · · · · · c`
in the combinatorial Khovanov bimodule. So, it follows from the fact that Ikn is an ideal and

J h;k
T is a submodule (Lemma 2.1 and Proposition 2.6), in conjunction with the fact that the

functor Forget : B → ZAb takes each morphism to a non-negative matrix, that I and J are absorbing
subfunctors. �

By Lemma 4.2, there are quotient functors

Φk
n =

(
Φ
k
n/I
)

: S̃kn → B

Ψ̃h;k
T =

(
Ψ

h;k
T /J

)
: 2N ×̃T̃ h;k

m;n → B.

Now, we fiddle around a little to avoid having to keep track of natural isomorphisms between
functors. Given h1 + h2 ≥ m and k1 + k2 ≥ n, there is a canonical isomorphism of multicategories

γ : 2N ×̃T̃ m−h,h;n−k,k
m;n → 2N ×̃T̃ h1,h2;k1,k2

m;n

where m− 2h = h1− h2 and n− 2k = k1− k2. We would like to say that Ψ̃h;k
T ◦ γ|S̃m−h,hm

= Φm−h,h
m

and Ψ̃h;k
T ◦ γ|S̃n−k,kn

= Φn−k,k
n . This is not quite true, but is true up to the following notion of

natural isomorphism:

Definition 4.3. [LLSb, Definition 3.22] Let C be a multicategory enriched in groupoids and
F,G : C → B multifunctors. A natural isomorphism η : F → G consists of:

• For each object x ∈ C a bijection of graded sets ηx : F (x)→ G(x), and
• For each multimorphism f ∈ C (x1, . . . , xn; y), a bijection of graded sets ηf : F (f)→ G(f)

such that:



24 TYLER LAWSON, ROBERT LIPSHITZ, AND SUCHARIT SARKAR

(1) For any objects x1, . . . , xn, y ∈ C and multimorphism f ∈ C (x1, . . . , xn; y), the following dia-
gram commutes:

F (f)

F (x1)× · · · × F (xn) F (y)

G(x1)× · · · ×G(xn) G(y)

G(f)

ηx1 × · · · × ηxn ηyηf

(2) For every f, g ∈ C (x1, . . . , xn; y) and φ ∈ Hom(f, g),

ηg ◦ F (φ) = G(φ) ◦ ηf : F (f)→ G(g).

(3) For every g ∈ C (y1, . . . , yn; z) and f1, . . . , fn with fi ∈ C (xi,1, . . . , xi,mi , yi),

ηg◦(f1,...,fn) = ηg ◦ (ηf1 , . . . , ηfn).

Lemma 4.4. If ı denotes the canonical isomorphism S̃h1,h2m
∼=−→ S̃h1+1,h2+1

m induced by ı : Bm+h1+h2 ↪→
Bm+h1+h2+2 then there is a natural isomorphism between Φh1,h2

m and Φh1+1,h2+1
m ◦ ı. Further, this

isomorphism sends I(o) ⊂ Φ
h1,h2
m (o) bijectively to I(ı(o)) ⊂ Φ

h1+1,h2+1
m (ı(o)) for each o ∈ Ob(S̃h1,h2m ).

Thus, Ψ̃h;k
T ◦γ|S̃m−h,hm

and Φm−h,h
m (respectively Ψ̃h;k

T ◦γ|S̃n−k,kn
and Φn−k,k

n ) are naturally isomorphic.

Proof. This is immediate from the definitions. �

Definition 4.5. Define Ψh;k
T : 2N ×̃T̃ m−h,h;n−k,k

m;n → B as follows. Let η (respectively ξ) be the

natural isomorphism from Φm−h,h
m to Ψ̃h;k

T ◦ γ|S̃m−h,hm
(respectively Φn−k,k

n to Ψ̃h;k
T ◦ γ|S̃n−k,kn

) from

Lemma 4.4.

• For objects x ∈ Ob(S̃m−h,hm ), define Ψh;k
T (x) = Φm−h,h

m (x).

• For objects x ∈ Ob(S̃n−k,kn ), define Ψh;k
T (x) = Φn−k,k

n (x).

• For all other objects x, define Ψh;k
T (x) = Ψ̃h;k

T (γ(x)).

• Given objects x1, . . . , xn, y ∈ Ob(2N ×̃T̃ m−h,h;n−k,k
m;n ) and a basic multimorphism (see [LLSb, §2.4])

f ∈ Hom
2N ×̃T̃ m−h,h;n−k,km;n

(x1, . . . , xn; y):

– if all the xi (and hence y) are in Ob(S̃m−h,hm ) define Ψh;k
T (f) = Φm−h,h

m (f),

– if all the xi (and hence y) are in Ob(S̃n−k,kn ) define Ψh;k
T (f) = Φn−k,k

n (f),

– and otherwise, if x1, . . . , xi ∈ Ob(S̃m−h,hm ) and xi+2, . . . , xn ∈ Ob(S̃n−k,kn ), define Ψh;k
T (f) =

Ψ̃h;k
T (γ(f)), viewed as a correspondence from

Φm−h,h
m (x1)× · · · × Φm−h,h

m (xi)× Ψ̃h;k
T (γ(xi+1))× Φn−k,k

n (xi+2)× · · · × Φn−k,k
n (xn)

to Ψ̃h;k
T (γ(y)) by composing the source map with η−1

x1 × · · · × η
−1
xi × Id×ξ−1

xi+1
× · · · × ξ−1

xn .

• On general multimorphisms, Ψh;k
T is the composition of its values on basic multimorphisms.

• On 2-morphisms, Ψh;k
T is induced by the values Ψ̃h;k

T , Φh
m, Φk

n, and the ηf and ξf .
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Consider the stable functor (Ψh;k
T , N+) (where N+ is the number of positive crossings of T ).

Define

A k1,k2
n = ‖Φk1,k2

n ‖ X h;k
T = ‖Ψh;k

T ‖.

Lemma 4.6. The spectra X h;k
T (a, b) form a spectral bimodule over A h

m and A k
n .

Proof. In view of Lemma 4.4 and the discussion in Section 3.3, all that remains is to verify that

rectifying K ◦Ψh;k
T and then restricting to the sub-multicategory Skn is the same as first restricting

to S̃kn and then rectifying. This follows from the fact that S̃kn ⊂ T̃
h;k
m;n has no morphisms in (i.e., is

blockaded in the language of [LLSb, Proposition 2.39]) [LLSb, Lemma 2.44]. �

Let

A P
n =

n∐
k=0

A n−k,k
n .

Let X P
T denote the bimodule over A P

m and A P
n induced by the various bimodules X m−h,h;n−k,k

T .

Composing the singular chain functor C∗ with A k
n gives a differential graded category (category

enriched in chain complexes), and composing C∗ with X h;k
T gives a bimodule over C∗A h

m and C∗A k
n .

Since A k
n has finitely many objects, by taking the direct sum of the morphism spaces we can view

C∗A k
n as a differential graded algebra and C∗X

h;k
T as a differential graded module over it.

The three main theorems are:

Theorem 3. There is a quasi-isomorphism C∗A k
n ' Ak

n and, for any tangle T , a quasi-isomorphism

C∗X
h;k
T ' Ch;k

T intertwining the module structures in the obvious sense.

Theorem 4. If T1 and T2 are equivalent tangles then X h;k
T1

and X h;k
T2

are weakly equivalent spectral
modules.

Theorem 5. If T1 is an (m,n)-tangle and T2 is an (n, p)-tangle then for any h1, h2, k1, k2, `1, `2
with

h1 − h2 = k1 − k2 = `1 − `2, h1 + h2 ≥ m, k1 + k2 ≥ n, and `1 + `2 ≥ p
there is a weak equivalence of spectral bimodules

X h;l
T1T2
'X h;k

T1
⊗L

A n−k,k
n

X k;l
T2
,

where the right side denotes the (derived) tensor product of bimodule spectra.

Proof of Theorem 3. The proof is the same as for the arc algebras [LLSb, Proposition 4.2] and is
left to the reader. �

Lemma 4.7. There are equivalences

X h1,h2;k1,k2
T 'X h1+1,h2+1;k1,k2

T 'X h1,h2;k1+1,k2+1
T

of bimodules over A m−h,h
m and A n−k,k

n .
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Proof. It is immediate from the definitions that there is a natural isomorphism Ψh1,h2;k1,k2
T →

Ψh1+1,h2+1;k1,k2
T of multifunctors from 2N ×̃T̃ m−h,h;n−k,k

m;n to B. This, in turn, implies that Ψh1,h2;k1,k2
T

and Ψh1+1,h2+1;k1,k2
T are stably equivalent. So, the first statement follows from Lemma 3.9. The

proof of the second statement is similar. �

Proof of Theorem 4. Reordering crossings induces an automorphism of the cube and a correspond-
ing equivalence of homotopy colimits. For invariance under Reidemeister moves, we lift the proof
of Theorem 1. By Lemma 4.7, we may assume (h1, h2) = (k1, k2). As in Theorem 1, we focus on
a Reidemeister II move; the other cases are similar. With notation as in the proof of Theorem 1,
it follows from the definitions that the subcomplex C1 corresponds to an insular subfunctor F1 of
ΨT (Definition 3.3). The quotient functor F2 = ΨT /F1 corresponds to the complex C2, and has a

further insular subfunctor F4 ⊂ F2 naturally isomorphic to ΨT ′ so that F3 = F2/F4 corresponds to

the acyclic complexes C3.

Each Fi restricts to a functor Gi : 2N ×̃T̃ k;k
m;n → B, and G1 is an insular subfunctor of Ψ

k;k
T

with quotient functor G2, while G4 is an insular subfunctor of G2 with quotient functor G3. By

Lemma 3.5, G1 induces an insular subfunctor G1 of Ψ
k;k
T /I = Ψk;k

T , and G4 induces an insular

subfunctor G4 of G2 = Ψk;k
T /G1. Applying the realization procedure gives a zig-zag of spectral

bimodules X k;k
T → ‖G2‖ ←X k;k

T ′ . From the proof of Theorem 1, these maps induce isomorphisms
on homology, and hence are stable homotopy equivalences, as desired. �

Proof of Theorem 5. By Lemma 4.7, it suffices to prove Theorem 5 when h1 = k1 = `1 (and so
h2 = k2 = `2).

We start by recalling the proof of the gluing theorem for the spectral Khovanov bimod-
ules [LLSb, §5]. We introduced a gluing shape multicategory U2m;2n;2p (denoted U0

m,n,p in [LLSb])
with six kinds of objects: pairs (a1, a2) ∈ B2m × B2m, (b1, b2) ∈ B2n × B2n, (c1, c2) ∈ B2p × B2p,
triples (a, T1, b) with a ∈ B2m and b ∈ B2n, triples (b, T2, c) with b ∈ B2n and c ∈ B2p, and
triples (a, T1T2, c) with a ∈ B2m and c ∈ B2p. The categories T2m;2n, T2n;2p, and T2m;2p are full
subcategories of U2m;2n;2p, and there is also a unique multimorphism

(a1, a2), . . . , (aα−1, aα), (aα, T1, b1), (b1, b2), . . . , (bβ−1, bβ), (bβ, T2, c1), (c1, c2), . . . , (cγ−1, cγ)

→ (a1, T1T2, cγ).

There is also a thickened version Ũ2m;2n;2p and a thickened product with the cube 2N1+N2×̃Ũ2m;2n;2p.

We then construct a functor F : 2N1+N2×̃Ũ2m;2n;2p → B extending ΨT1 , ΨT2 , and ΨT1T2 . The
functor F induces a map of spectral bimodules

XT1 ⊗L
A2n

XT1 →XT1T2

and the induced map of singular chain complexes agrees with the map of Khovanov complexes of
bimodules (and so is an equivalence by Whitehead’s theorem).

Now, let Uk
m;n;p be the full subcategory of Um+k1+k2;n+k1+k2;p+k1+k2 spanned by objects as above

but with ai ∈ Bk
m, bi ∈ Bk

n, and ci ∈ Bk
p ; define the thickened version Ũk

m;n;p similarly. Let F̃ be

the restriction of F to 2N1+N2×̃Ũk
m;n;p. For an object o of 2N1+N2×̃Ũk

m;n;p define K(o) ⊂ F (o) to be
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JT1(o) if o ∈ Ob(T̃ k;k
m;n), JT2(o) if o ∈ Ob(T̃ k;k

n;p ), and JT1T2(o) if o ∈ Ob(T̃ k;k
m;p ). (It is immediate from

the definition that these definitions of K agree on the overlaps of these subcategories.)
The proof of Lemma 2.10 shows that K is an absorbing subfunctor.

As in Section 3.4 we can realize the quotient functor F̃ /K to obtain a functor |F̃ /K| : Uk
m;n;p →

ZS . Similarly to Section 3.3, we can reinterpret |F̃ /K| as a map of spectral bimodules

(4.1) X k;k
T1
⊗L

A k
n

X k;k
T2
→X k;k

T1T2
.

(This involves a little fiddling as in Definition 4.5.) As in the arc algebra case [LLSb, Lemma 5.6],
taking singular chains this is the gluing map

Ck;k
T1
⊗L
Ak
n
Ck;k
T2
→ Ck;k

T1T2

from Theorem 2. By Whitehead’s theorem, the map (4.1) is a weak equivalence, as desired. �

5. Topological Hochschild homology

Let T be an (n, n)-tangle. We can form the topological Hochschild homology of A P
n with

coefficients in X P
T , which we write THH(A P

n ; X P
T ) or THH(X P

T ). The spectral categories A P
n

are pointwise cofibrant (see [LLSb, Lemma 4.5]), so the topological Hochschild homology can be
obtained as the homotopy colimit of the diagram

· · · →→→→
∐

a1,a2,a3∈Ob(A P
n )

X P
T (a3, a1) ∧A P

n (a1, a2) ∧A P
n (a2, a3)

→→→
∐

a1,a2∈Ob(A P
n )

X P
T (a2, a1) ∧A P

n (a1, a2) ⇒
∐

a1∈Ob(C )

X P
T (a1, a1)

where the horizontal maps are given by the compositions in A P
n and its actions on X P

T [BM12,
Proposition 3.5].

Proposition 5.1. There is an isomorphism

H∗THH(X P
T ) ∼= HH∗(CP

T )

Proof. The proof is the same as the analogous result for the spectral Khovanov bimodules [LLSb,
Proposition 7.5]. �

Recall that the Hochschild homology of the Chen-Khovanov bimodules has another interpre-
tation. Given an (n, n)-tangle T , we can form the closure [T ] of T in the annulus S1 × [0, 1].
Asaeda-Przytycki-Sikora constructed a Khovanov homology for links in thickened surfaces [APS04]
which, in particular, gives an invariant AKh([T ]), the annular Khovanov homology of [T ]. (This
case was further studied by Roberts [Rob13], Grigsby-Wehrli [GW10], and others.) Specifically,
there is a filtration on the Khovanov complex of the closure of T in R3, coming from using the
labels of circles by 1 or X to orient them and then considering the winding number around the
axis. The invariant AKh([T ]; `) is the homology of the associated graded complex to this filtration,
in winding number grading `. As such, AKh([T ]) is tri-graded, by the homological, quantum, and
winding number gradings.
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(a)

(b)

(c)

(d)

Figure 5.1. The annular closure. (a) A (flat) tangle T . (b) The annular closure
[T ]. (c) âqa for a a particular crossingless matching, together with the cores of the
1-handles (dashed) in the saddle cobordism from â q a to the identity braid. (d)
The identity braid, inside the annulus.

Convention 5.2. Fix k, and let k = (n− k, k).

Beliakova-Putyra-Wehrli relate the annular Khovanov homology to the Chen-Khovanov invari-
ants:

Theorem 6. [BPW, Theorem C] There is an isomorphism

(5.1) HH∗(Ak
n; Ck;k

T ) ∼= AKh([T ];n− 2k){n− 2k}.

(A special case was proved earlier by Auroux-Grigsby-Wehrli in [AGW15].)
In order to prove a spectral refinement of Theorem 6, we need the explicit map

HC∗(Ak
n; Ck;k

T )→ CAKh([T ];n− 2k){n− 2k}
inducing the isomorphism (5.1). While Beliakova-Putyra-Wehrli’s proof does not explicitly give the
map, their ideas easily extend to do so. We emphasize that we do not give an independent proof
of Theorem 6: for instance, the proof of Lemma 5.9 relies on Theorem 6; we merely construct an
explicit isomorphism.

Let T be an (n, n)-tangle, and [T ] ⊂ R2 \ {(0, 0)} the annular closure of T . (See Figure 5.1.)
We can view [T ] as lying in R2 and so, in particular, can consider CKh([T ]). Given a ∈ Bk

n, define
the map

A = Aa,T : CT (a, a)→ CKh([T ])
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to be the map associated to the saddle cobordism from â q a to the identity braid around the
annulus. (Again, see Figure 5.1.)

Proposition 5.3. The maps Aa,T satisfy the following properties:

(1) Each Aa,T is a chain map.
(2) The image of Aa,T lies in annular filtration ≤ 0.

(3) Given a, b ∈ Bk
n, the following diagram commutes:

CKh(aT b̂q bâ){2n} sb //

sa
��

CKh(aT â){n}

Aa,T
��

CKh(bT b̂){n}
Ab,T

// CKh([T ]).

Here, the arrows labeled sa and sb are induced by the saddle cobordisms from âqa to the identity

braid and b̂q b to the identity braid.
(4) Given (n, n)-tangles T1 and T2 and a, b ∈ Bk

n, the following diagram commutes:

CKh(aT1b̂q bT2â){2n} sb //

sa
��

CKh(aT1T2â){n}

Aa,T
��

CKh(bT2T1b̂){n}
Ab,T

// CKh([T1T2] = [T2T1]).

Again, the arrows labeled sa and sb are induced by the saddle cobordisms from â q a to the

identity braid and b̂q b to the identity braid.

Proof. Point (1) follows from far-commutativity of the cobordism maps. Point (2) follows from
the facts that the cobordism maps respect the annular filtration and aT â has winding number
0. Point (3) is a special case of Point (4). Point (4) again follows from far-commutativity of the
cobordism maps. �

Let F≤0CKh([T ]) be the subcomplex of CKh([T ]) in filtration≤ 0. By Point (2) of Proposition 5.3,
the image of Aa,T is contained in F≤0CKh([T ]). Let

B : F≤0CKh([T ])→ F≤0CKh([T ])/F<0CKh([T ])

be projection to the associated graded complex.
Let PL be the image of the lower-left platform for T in the annulus R2 \ {(0, 0)} and let PU be

the image of the upper-left platform. In [T ], there are several kinds of circles:

(A-i) Circles which are disjoint from PL and PU .
(A-ii) Circles which pass through PL once and are disjoint from PU . Call these lower horizontal

circles.
(A-iii) Circles which pass through PU once and are disjoint from PL. Call these upper horizontal

circles.
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Observe that the complex CKh([T ]) decomposes as a direct sum corresponding to the different
ways of labeling the upper and lower horizontal circles. Define

C : F≤0CKh([T ])/F<0CKh([T ])→ CAKh([T ];n− 2k){n− 2k}
to be the result of projecting to the summand where each of the k upper horizontal circles is labeled
1 and each of the (n − k) lower horizontal circles is labeled X, and then forgetting the lower and
upper horizontal circles. It is clear that the image of this map lies in the summand with winding
number grading n− 2k.

Lemma 5.4. The composition C ◦B ◦A vanishes on

J k;k
T (a, a) ⊂ C[T ](a, a).

Proof. Unsurprisingly, the proof is a case analysis. Fix a generator y ∈ J k;k
T (a, a). Suppose first

that (aT â, y) has a type II circle Z labeled X. If the circle passes through the upper platforms
then Aa,T (y) will have a upper horizontal circle labeled X, so C(B(Aa,T (y))) = 0. If the circle
Z passes through the lower platforms, notice that at some point in the saddles corresponding to
Aa,T , Z either splits into two essential circles labeled X or merges with an essential circle labeled
1 to form an essential circle labeled X. In either case, the annular filtration strictly decreases, so
B(Aa,T (y)) = 0.

Next, suppose (aT â, y) has a type III circle Z passing through the upper platforms. If Z is
labeled X then Aa,T (y) will have an upper horizontal circle labeled X, so C(B(Aa,T (y))) = 0. More
generally, let P and Q be two points on the intersection of Z and one of the upper platforms. During
the saddles in Aa,T , if a circle containing P or Q is ever labeled X then we have C(B(Aa,T (y))) = 0.
However, since P and Q end up on separate circles, at some point the saddle cobordism must be a
split with P and Q ending on opposite components. Since the split map sends 1 to 1⊗X +X ⊗ 1,
one of these components will be labeled X.

Finally, suppose (aT â, y) has a type III circle Z passing through the lower platforms. If Z is
labeled X, the same analysis as in the type II circle case implies C(B(Aa,T (y))) = 0. So, suppose Z
is labeled 1. Let P and Q be two points at the intersection of Z and a lower platform. Eventually,
both P and Q must lie on circles labeled X, or else C(B(Aa,T (y))) = 0. If P (or Q) is ever on
an inessential circle labeled X then P cannot later be on an essential circle labeled X without
decreasing the annular filtration. Similarly, if P (or Q) is ever on an essential circle labeled 1 then
P can never later be on an essential circle labeled X. If P and Q are on the same essential circle
labeled X, then (using the previous two observations) there is no way for P and Q to end up on
different essential circles labeled X. But now we have ruled out all possibilities: P and Q start on
the same inessential circle labeled 1, and the only changes that can happen are for them to next
be on the same inessential circle labeled X, the same essential circle labeled 1, the same essential
circle labeled X, or different essential circles one of which is labeled 1. �

Definition 5.5. By Lemma 5.4, C ◦B ◦A descends to a map

(5.2) Ξ0 :
⊕
a∈Bk

n

Ck;k
T (a, a)→ CAKh([T ];n− 2k){n− 2k}

which we call the annular gluing map.
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If HC∗(Ak
n; Ck;k

T ) denotes the standard Hochschild complex, which is the total complex of the
bicomplex

· · · →
⊕

a1,a2,a3∈Bk
n

Ck;k
T (a1, a2)⊗Z Ak

n(a2, a3)⊗Z Ak
n(a3, a1)

→
⊕

a1,a2∈Bk
n

Ck;k
T (a1, a2)⊗Z Ak

n(a2, a1)→
⊕
a1∈Bk

n

Ck;k
T (a1, a1),

then there is an induced map

Ξ: HC∗(Ak
n; Ck;k

T )→ CAKh([T ];n− 2k){n− 2k}

defined by projecting to Ck;k
T and then applying the map Ξ0 from Equation (5.2).

Lemma 5.6. The map Ξ is a chain map.

Proof. This follows from the fact that Ξ0 is a chain map (since A is a chain map by Item (1)
of Proposition 5.3 and it is immediate from their definitions that B and C are chain maps), and

Item (3) of Proposition 5.3, which implies that A vanishes on the image of
⊕

a1,a2∈Bk
n
Ck;k
T (a1, a2)⊗Z

Ak
n(a2, a1). �

Lemma 5.7. Let T1 be an (m,n)-tangle and T2 and (n,m)-tangle. Then for any h, k with m−n =
2(h− k), the following diagram commutes:

HC∗(Am−h,hm ; Cm−h,h;m−h,h
T1T2

)
' //

Ξ

��

HC∗(An−k,kn ; Cn−k,k;n−k,k
T2T1

)

Ξ

��

CAKh([T1T2];m− 2h){m− 2h} '
// CAKh([T2T1];n− 2k){n− 2k}.

Here, the top horizontal map is induced by Theorem 2 and cyclic symmetry of Hochschild homology
and the bottom by the fact that the closures of T1T2 and T2T1 are isotopic links (in fact, link
diagrams) in the annulus. (Note that m− 2h = n− 2k.)

Proof. This follows from the definitions and Item (4) of Proposition 5.3. �

Lemma 5.8. Let T be an (n, n)-tangle diagram which is the union of an (n, n)-tangle T ′ and an
unknotted circle U disjoint from T ′. Then the following diagram commutes:

HC∗(Ak
n; Ck;k

T )
∼= //

Ξ

��

HC∗(Ak
n; Ck;k

T ′ )⊗ V

Ξ⊗Id

��

CAKh([T ]){n− 2k} ∼=
// CAKh([T ′]){n− 2k} ⊗ V.

Here, the top horizontal map is induced by the obvious isomorphism Ck;k
T
∼= Ck;k

T ′ ⊗V and the bottom
horizontal map is also the obvious isomorphism.

Proof. This is immediate from the definitions. �
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Lemma 5.9. Suppose T is the (n, n)-tangle diagram consisting of n horizontal strands. Then the

map Ξ∗ : HH∗(Ak
n; Ck;k

T )→ AKh([T ];n− 2k){n− 2k} is an isomorphism.

Proof. Let S be the set of all subsets of {1, 2, . . . , n} of size k. Define a partial order � on S by
declaring S = {s1 < s2 < · · · < sk} � T = {t1 < t2 < · · · < tk} if si ≤ ti for all 1 ≤ i ≤ k.

Since T is a flat tangle, AKh([T ];n−2k) = CAKh([T ];n−2k). Moreover, in order to have winding
number grading n − 2k, exactly k of the n circles in [T ] have to be labeled X. Therefore, after
numbering the strands of T by 1, 2, . . . , n from bottom to top, AKh([T ];n − 2k) can be identified
with the free Z-module generated by S: the generator corresponding to S ∈ S labels the circles in
S by X, and the remaining circles by 1. We will view AKh([T ];n − 2k) as a filtered group, with
the filtration given by the partial order � on S.

Since Beliakova-Putyra-Wehrli have already established that HH∗(Ak
n; Ck;k

T ) ∼= AKh([T ];n −
2k){n − 2k}, it is enough to show that the map Ξ∗ : HH∗(Ak

n; Ck;k
T ) → AKh([T ];n − 2k){n − 2k}

is surjective. Since T is a flat tangle, the chain complex
⊕

a∈Bk
n
Ck;k
T (a, a) has no differential, so it

is enough to show that the annular gluing map Ξ0 from Definition 5.5 is surjective. Given a ∈ Bk
n,

let ya be the generator of Ck;k
T (a, a) where each circle of aT â is labeled 1. Let

M = 〈{ya | a ∈ Bk
n}〉 ⊂

⊕
a∈Bk

n

Ck;k
T (a, a).

We will show that Ξ0|M is an isomorphism (and therefore, Ξ0 is surjective).
Recall that Bk

n is in canonical bijection with S [CK14, §6], as follows: for any a ∈ Bk
n, the

corresponding element Sa ∈ S is the subset of the n non-platform points (numbered 1, 2, . . . , n
from bottom to top) which are matched to a higher point by a. Therefore, � induces a filtration
� on M by ya � yb if and only if Sa � Sb.

Therefore, the generators of M = Z〈{ya}〉 and AKh([T ];n − 2k) = Z〈{Sa}〉 are in bijection
with each other, via ya ↔ Sa. We will prove Ξ0|M is a filtered map, and the associated graded
piece of the map sends each generator of M to the corresponding generator of AKh([T ];n− 2k); it
follows that Ξ0|M is an isomorphism.

Consider a generator ya of M . Recall that Ξ0 is a composition of three maps, C ◦ B ◦ A. The
map A is a composition of n splits, each splitting a non-essential circle labeled 1. Therefore, A
preserves the winding number grading, and so we do not need the map B. The map C projects
onto the summand where each circle passing through the lower (respectively upper) platform is
labeled X (respectively 1).

Circles in aT â are of the following four types.

• Circles Z that pass through both the upper and the lower platform. Under the map Ξ0, Z splits
into an upper horizontal circle labeled 1 and a lower horizontal circle labeled X, which are then
forgotten.
• Circles Z that pass through only the upper platform. Assume Z contains the ith strand of T ,

and consequently, i ∈ Sa. Under the map Ξ0, Z splits into an upper horizontal circle labeled 1
(which is then forgotten) and the ith component of [T ] labeled X.
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+ + +

Figure 5.2. An example of the map Ξ0|M . Here, n = 7, k = 3 and we are
starting with generator ya corresponding to the subset Sa = {2, 3, 7}. The map
sends ya to a sum of four generators, corresponding to the subsets {2, 3, 7}, {3, 5, 7},
{2, 4, 7}, and {4, 5, 7}. (Circles labeled 1 are oriented counter-clockwise and circles
labeled X are oriented clockwise. The arcs of T are solid, the platforms are thick,
the arcs in a and â are dotted, and the new arcs in the annular closure [T ] are
dashed.)

• Circles Z that pass through only the lower platform. Assume Z contains the ith strand of T ,
and consequently, i ∈ {1, 2, . . . , n} \Sa. Under the map Ξ0, Z splits into a lower horizontal circle
labeled X (which is then forgotten) and the ith component of [T ] labeled 1.
• Circles Z that are disjoint from the platforms. Assume Z contains the ith and jth strand of T ,

with i < j, and consequently, i ∈ Sa and j ∈ {1, 2, . . . , n} \ Sa. Under the map Ξ0, Z splits into
the ith and jth component of [T ], one labeled 1 and the other labeled X.

In the first three cases, the map Ξ0 sends the generator ya to the corresponding generator Sa. In
the last case, Ξ0 sends ya to a sum of two generators—one corresponding to the same subset Sa
and one corresponding to T = Sa∪{j}\{i}—and we have Sa ≺ T . Therefore, the map increases or
preserves the filtration given by �, and the associated graded piece of the map sends each generator
to the corresponding generator. See Figure 5.2 for an example of this map. �

Theorem 7. The map Ξ induces the isomorphism from Theorem 6.

Proof. First, assume that T is a flat (n, n)-tangle. We prove the result by induction on n. By
Lemma 5.8, we can assume that T has no closed components. So, if n = 0, T is empty and the
result is trivial. Next, for general n, if T is the identity braid, the result is Lemma 5.9. Otherwise,
we can decompose T as T1T2 where T1 is a flat (n,m)-tangle, T2 is a flat (m,n)-tangle, and m < n.
By Lemma 5.7, Ξ is an isomorphism for T1T2 if and only if Ξ is an isomorphism for T2T1 which is
true by induction.
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Next, for a general tangle T , note that each generator of HC∗(Ak
n; Ck;k

T ) lies over some vertex v

of the cube. Consider the filtrations on HC∗(Ak
n; Ck;k

T ) and CAKh([T ];n− 2k) by |v|, the grading on
the cube. The map Ξ respects this filtration and, by the previous case, induces an isomorphism at
the E1-page of the associated spectral sequence. Thus, Ξ is a quasi-isomorphism, as desired. �

We give a spectral refinement of this result. Before stating the main theorem, we observe:

Lemma 5.10. The topological Hochschild homology of X k;k
T is an invariant of the annular closure

of T .

Proof. It suffices to verify that THH(X k;k
T ) is invariant under Reidemeister moves and cyclic rota-

tion of T . Invariance under Reidemeister moves is Theorem 4. The fact that

THH(X k;k
T1T2

) ' THH(X k;k
T2T1

)

follows from Theorem 5 and the fact that topological Hochschild homology is a trace. �

Given a link L ⊂ S1×D2, the winding number filtration on CKh(L ⊂ R3) induces a filtration on

the Khovanov spectrum XL. The associated graded spectrum AX `
L in winding number grading

` is a spectral refinement of annular Khovanov homology AKh(L; `); verifying that the homotopy
type of this associated graded spectrum is an invariant of the annular link is straightforward. (See
also [SZ].)

Theorem 8. There is a weak equivalence

THH(X k;k
T ) ' AX n−2k

[T ] {n− 2k}

of bigraded spectra.

The last ingredient in the proof of Theorem 8 is a mild extension of the divided cobordism
category Cobd from our previous paper [LLSb, §3.1] to the annulus, and the Khovanov-Burnside
functor to this divided cobordism category in the presence of platforms. To have strict identities
and make composition strictly associative while not destroying interesting topology, we will quotient
by a particular class of diffeomorphisms:

Definition 5.11. Let Diff ′(S1) denote the group of orientation-preserving diffeomorphisms φ : S1 →
S1 so that there is some ε = ε(φ) > 0 with φ|Bε(1) = Id. (Here, 1 ∈ S1 ⊂ C and Bε(1) is an interval
around 1.)

Let Diff ′([0, 1]×S1) denote the group of orientation-preserving diffeomorphisms φ : [0, 1]×S1 →
[0, 1]× S1 so that there is some ε = ε(φ) > 0 and some ψ0, ψ1 ∈ Diff ′(S1) so that φ|[0,1]×Bε(1) = Id,
and φ(p, q) = (p, ψ0(q)) for all p ∈ [0, ε), and φ(p, q) = (p, ψ1(q)) for all p ∈ (1− ε, 1]. (That is, φ is
the identity near 1 and is invariant in the [0, 1]-direction near the boundary.)

(Compare [LLSb, Definitions 2.46 and 2.47].)

Definition 5.12. Let ◦© = S1× (−1, 1) denote the annulus. The divided cobordism category of the
annulus, Cobd( ◦©), is defined as follows:

• An object of Cobd( ◦©) consists of:
– A smooth, closed 1-manifold Z embedded in ◦©.
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– A collection of disjoint, closed arcs A ⊂ Z such that I = Z \A is also a union of disjoint arcs.
We call components of A active arcs and components of I inactive arcs.

We declare two objects (Z,A) and (Z ′, A) to be equivalent if there is a φ ∈ Diff ′(S1) so that
(φ× Id(−1,1))(Z,A) = (Z ′, A′).
• A morphism from (Z,A) to (Z ′, A′) is an equivalence class of pairs (Σ,Γ) where

– Σ is a smoothly embedded cobordism in [0, 1]× ◦© from Z to Z ′ which is vertical (invariant in
the [0, 1]-direction) near {0, 1} × ◦© and [0, 1]× {1} × (−1, 1).

– Γ ⊂ Σ is a collection of properly embedded arcs in Σ, also vertical near {0, 1} × ◦©, with
(∂A ∪ ∂A′) = ∂Γ, and so that every component of Σ \ Γ has one of the following forms:

(I) A rectangle, with two sides components of Γ and two sides components of A ∪A′.
(II) A (2n + 2)-gon, with (n + 1) sides components of Γ, one side an arc component of I ′,

and the other n sides arc components of I. (The integer n is allowed to be zero.)
We call the components of Γ divides.

The pairs (Σ,Γ) and (Σ′,Γ′) are equivalent if there is a φ ∈ Diff ′([0, 1]×S1) with (φ×Id(−1,1))(Σ) =
Σ′, and (φ× Id(−1,1))(Γ) = Γ′.
• There is a unique 2-morphism from (Σ,Γ) to (Σ′,Γ′) whenever (some representative of the equiv-

alence class of) (Σ,Γ) is isotopic to (some representative of the equivalence class of) (Σ′,Γ′) rel
boundary and [0, 1]× {1} × (−1, 1).
• Composition of divided cobordisms is defined as follows. Given (Σ,Γ): (Z,A) → (Z ′, A′) and

(Σ′,Γ′) : (Z ′, A′)→ (Z ′′, A′′), choose a representative of the equivalence class of (Z ′, A′) and rep-
resentatives of the equivalence classes (Σ,Γ) and (Σ′,Γ′) which end / start at this representative

of (Z ′, A′). Define (Σ′,Γ′) ◦ (Σ,Γ) to be (Σ′ ◦Σ, Γ̃′ ◦ Γ). The same proof from [LLSb] shows that
composition is well-defined.

Recall that a multicategory C has a canonical groupoid enrichment [LLSb, §2.4.1]. In the
case that C is an ordinary category—the case of interest in this section—the canonical groupoid
enrichment C ′ has the same objects as C , 1-morphisms C ′(x, y) the set of finite sequences of

morphisms x
f1−→ z1

f2−→ · · · fk−1−→ zk
fk−→ y, and a unique 2-morphism (f1, . . . , fk) → (g1, . . . , g`)

whenever fk ◦ · · · ◦ f1 = g` ◦ · · · ◦ g1. The relevance of this enrichment is that there is a (strict)
2-functor VHKK : Cob′d → B, the Burnside category [LLSb, §3.4]. The definition of VHKK extends
immediately to a functor VHKK : Cobd( ◦©)′ → B.

Recall that to define a functor T̃m;n → Cobd induced by a tangle T , we introduce some extra
decorations on T :

Definition 5.13. [LLSb, §3.3] A poxed tangle is a tangle diagram T together with a collection of
marked points (pox ) on the arcs in T so that for every resolution Tv of T , there is at least one pox
on each closed circle of Tv.

Call a poxed tangle T sufficiently poxed if for every resolution Tv of T there is at least one pox
on each closed circle of the annular closure [Tv].

Given a poxed (n, n)-tangle T , there is an induced functor 2N ×̃T̃2n;2n → Cobd which restricts

to a functor 2N ×̃T̃ k;k
n;n → Cobd [LLSb, §3.4]. Further, the composition 2N ×̃T̃2n;2n → Cobd → B is

independent of the choice of pox. If T is sufficiently poxed, there is also an induced functor 2N →
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Cobd( ◦©) coming from the annular closure [T ] of T . Again, the composition 2N → Cobd( ◦©) → B
is independent of the choice of pox.

Proof of Theorem 8. It suffices to show that there is a map of spectra

THH(X k;k
T )→ AX n−2k

[T ] {n− 2k}

so that the induced map on Hochschild complexes agrees with the map from Definition 5.5.
Fix a collection of pox on T making T sufficiently poxed. When talking about T , below, add a

pox in the middle of each horizontal strand added to T .
Let ∆inj be the subcategory of the simplex category generated by the face maps. That is, ∆inj

has objects the positive integers and Hom(p, q) the order-preserving injections {0, . . . , p − 1} ↪→
{0, . . . , q−1}. Then the topological Hochschild homology THH(A k

n ; X k;k
T ) is the homotopy colimit

of a diagram ∆op
inj → ZS .

We will reformulate this homotopy colimit over a larger diagram, but first we need some more
notation from the guts of the construction. Recall that 2N+ is the result of adding one object ∗ to

2N and a morphism v → ∗ for each vertex v except ~1. Given a functor G : 2N → ZS , we can extend
G to a functor G+ : 2N+ → ZS by declaring that G(∗) = {pt}. Then hocolimG+ is the iterated
mapping cone of G. Consider the functor

(K ◦Ψk;k
T )+ : 2N+ ×̃T k;k

n;n → ZS

where K is Elmendorf-Mandell’s K-theory, Ψk;k
T is as in Section 4, and the bar denotes applying

Elmendorf-Mandell’s rectification construction, to obtain an honest functor. To shorten notation,
let

X
k;k
Tv (a1, a2) = (K ◦Ψk;k

T )+(v, a1, T, a2).

(The spectrum X
k;k
Tv (a1, a2) is weakly equivalent to X k;k

Tv
(a1, a2){−|v|−N+ + 2N−}; the difference

arises based on when the rectification construction was applied.)
Now, let C be the category with one object for every finite sequence a1, . . . , aα ∈ Bk

n, α ≥ 1, and
with a unique morphism (a1, . . . , aα) → (a1, . . . , âi, . . . , aα) for each i, composing in the obvious
way. Define a functor F : 2N+ × C → ZS (where 2N is viewed as a 1-category) by declaring that:

• For v ∈ Ob(2N ) and a1, . . . , aα ∈ Bk
n,

F (v, a1, . . . , aα) = X
k;k
Tv (aα, a1) ∧A k

n (a1, a2) ∧ · · · ∧A k
n (aα−1, aα).

• F (∗, a1, . . . , aα) = {pt}.
• F sends a morphism in v → w in 2N to the map from X

k;k
Tv (aα, a1) to X

k;k
Tw (aα, a1) from the

functor (K ◦Ψk;k
T )+, smashed with the identity map in the other factors.

• F sends the morphism (v, a1, . . . , aα)→ (v, a1, . . . , âi, . . . , aα) to the multiplication map

A k
n (ai−1, ai) ∧A k

n (ai, ai+1)→ A k
n (ai−1, ai+1) if 1 < i < α
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or maps from the functor (K ◦Ψk;k
T )+

X
k;k
Tv (aα, a1) ∧A k

n (a1, a2)→X
k;k
Tv (aα, a2) if i = 1

A k
α (aα−1, aα) ∧X

k;k
Tv (aα, a1)→X

k;k
Tv (aα−1, a1) if i = α,

smashed with the identity map in the remaining factors.

The homotopy colimit of F , shifted down by N+, is clearly equivalent to the topological Hochschild

homology THH(A k
n ; X k;k

T ).
The advantage of the reformulation in terms of F is that F factors through the divided cobor-

dism category of the annulus. Specifically, there is a functor G : (2N ×C )′ → Cobd( ◦©)′ which sends
an object (v, a1, . . . , aα) to the 1-manifold

aαTvâ1 q a1â2 q · · · q aα−1âα,

embedded in ◦© so that the middle of Tv is on the line {1} × (−1, 1) and the disjoint unions are in
the cyclic order shown. The set A is the union of:

• a small closed neighborhood of the crossings labeled 0 in v,
• a small closed neighborhood of each pox in T , and
• the complement in each ai (respectively âi) of a neighborhood of the boundary.

Each morphism in (2N × C ) is sent to a composition of saddle cobordisms (cf. [LLSb, §3.3–3.4]).
Consider the composition VHKK ◦G : (2N × C )′ → B. Define a functor L : (2N × C )′ → B by

declaring that for an object (v, a1, . . . , aα), L(v, a1, . . . , aα) = ∅ if there is a type III circle in any
of aαTvâ1, a1â2, . . . , aα−1âα. Otherwise, after shifting quantum grading by n − |v| − N+ + 2N−,
L(v, a1, . . . , aα) is the set of elements y ∈ VHKK (G(v, a1, . . . , aα)) which label each type II circle
by 1. On morphisms, L is obtained by restricting VHKK ◦G. It follows from Lemma 4.2 that this
defines a 2-functor.

Clearly, composing the Elmendorf-Mandell K-theory functor with L, rectifying, and adding a
basepoint ∗ to 2N , gives a diagram equivalent to F . In particular, hocolim((K ◦ L)+) ' hocolimF ,
desuspended N+ times, is the topological Hochschild homology.

Let C T be the result of adding a terminal object T to C . Extend G to a functor GT : (2N ×
C T )′ → Cobd( ◦©)′ by declaring that GT (v, T ) = [T ], and GT sends each morphism to the corre-
sponding saddle cobordism. Define LT : C T → B as follows. On (2N × C )′, LT |2N×C = L. After

shifting quantum grading by −|v| − N+ + 2N−, define LT (v, T ) ⊂ VHKK (GT (v, T )) to be those
elements which

• have annular filtration 0,
• label every lower horizontal circle X, and
• label every upper horizontal circle 1.

On morphisms, define LT to be the restriction of VHKK ◦GT . It follows from the proof of Lemma 5.4
that this defines a 2-functor.

Consider the functor K ◦ LT : (2N × C T )′ → ZS , and let K ◦ LT be its rectification. By

definition, hocolim((K ◦ LT |2N×{T})+), desuspended N+ times, is AX n−2k
[T ] {n− 2k}. This leads to
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a cofibration sequence

ΣN+AX n−2k
[T ] {n− 2k} → hocolim(K ◦ LT )+ → Σ hocolim(K ◦ L)+ ' Σ hocolimF.

Further, by construction the map H∗(Σ hocolimF )→ H∗(Σ
N++1AX n−2k

[T ] {n−2k}) induced by the

Puppe construction is the map Ξ∗ from Theorem 7. Thus, the Puppe map is a weak equivalence

hocolimF ' ΣN+AX n−2k
[T ] {n − 2k}. Since hocolimF ' ΣN+ THH(A k

n ; X k;k
T ), this proves the

result. �

Corollary 5.14. The action of the Hochschild cohomology of Ak
n on the annular Khovanov ho-

mology AKh([T ];n − 2k){n − 2k} ∼= HH∗(Ak
n; Ck;k

T ) satisfies a Cartan formula with respect to

the action by Steenrod operations. For example, with mod-2 coefficients, for a ∈ HH∗(Ak
n) and

β ∈ HH∗(Ak
n; Ck;k

T ),

Sqn(a · β) =
∑
i+j=n

Sqi(a) · Sqj(β).

References

[AGW15] Denis Auroux, J. Elisenda Grigsby, and Stephan M. Wehrli, Sutured Khovanov homology, Hochschild
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