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1 Introduction

Bousfield localization encodes a wide variety of constructions in homotopy theory,
analogous to localization and completion in algebra. Our goal in this chapter is
to give an overview of Bousfield localization, sketch how basic results in this area
are proved, and illustrate some applications of these techniques. Near the end we
will give more details about how localizations are constructed using the small object
argument. The underlying methods apply in many contexts, and we have attempted
to provide a variety of examples that exhibit different behavior.

We will begin by discussing categorical localizations. Given a collection of maps
in a category, the corresponding localization of that category is formed by making
these maps invertible in a universal way; this technique is often applied to discard
irrelevant information and focus on a particular type of phenomenon. In certain
cases, localization can be carried out internally to the category itself: this happens
when there is a sufficiently ample collection of objects that already see these maps as
isomorphisms. This leads naturally to the study of reflective localizations.

Bousfield localization generalizes this by taking place in a category where there
are spaces of functions, rather than sets, with uniqueness only being true up to
contractible choice. Bousfield codified these properties, for spaces in [Bou75] and for
spectra in [Bou79]. The definitions are straightforward, but proving that localizations
exist takes work, some of it of a set-theoretic nature.

Our presentation is close in spirit to Bousfield’s work, but the reader should go to
the books of Farjoun [Far96] and Hirschhorn [Hir03] for more advanced information
on this material. We will focus, for the most part, on left Bousfield localization, since
the techniques there are easier and is where most of our applications lie. In [Bar10]
right Bousfield localization is discussed at more length.

1.1 Historical background

The story of localization techniques in algebraic topology probably begins with Serre
classes of abelian groups [Ser53]. After choosing a class C of abelian groups that
is closed under subobjects, quotients, and extensions, Serre showed that one could
effectively ignore groups in C when studying the homology and homotopy of a simply-
connected space X. In particular, he proved mod-C versions of the Hurewicz and
Whitehead theorems, showed the equivalence between finite generation of homology
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and homotopy groups, determined the rational homotopy groups of spheres, and
significantly reduced the technical overhead in computing the torsion in homotopy
groups by allowing one to work with only one prime at a time. His techniques for
computing rational homotopy groups only require rational homology groups; p-local
homotopy groups only require p-local homology groups; p-completed homotopy
groups only require mod-p homology groups.

These techniques received a significant technical upgrade in the late 1960’s
and early 1970’s, starting with the work of Quillen on rational homotopy theory
[Qui69b] and work of Sullivan and Bousfield–Kan on localization and completion
of spaces [Sul05, Sul74, BK72]. Rather than using Serre’s algebraic techniques to
break up the homotopy groups π∗X and homology groups H∗X into localizations
and completions, their insight was that space-level versions of these constructions
provided a more robust theory. For example, a simply-connected space X has
an associated space X

Q
whose homotopy groups and (positive-degree) homology

groups are, themselves, rational homotopy and homology groups of X; similarly for
Sullivan’s p-localization X(p) and p-completion X∧p . Without this, each topological
tool requires a proof that it is compatible with Serre’s mod-C-theory, such as Serre’s
mod-C Hurewicz and Whitehead theorems or mod-C cup products. Now these are
simply consequences of the Hurewicz and Whitehead theorems applied to X

Q
, and

any subsequent developments will automatically come along. Moreover, Sullivan
pioneered arithmetic fracture techniques that allowed X to be recovered from its
rationalization X

Q
and its p-adic completions X∧p via a homotopy pullback diagram:

X //

��

∏
pX
∧
p

��
X
Q α

// (
∏
pX
∧
p )Q

This allows us to reinterpret homotopy theory. We are no longer using rationalization
and completion just to understand algebraic invariants of X: instead, knowledge of
X is equivalent to knowledge of its localizations, completions, and an “arithmetic
attaching map” α. This entirely changed both the way theorems are proved and the
way that we think about the subject. Later, work of Morava, Ravenel, and others
made extensive use of localization techniques [Mor85, Rav84], which today gives an
explicit decomposition of the stable homotopy category into layers determined by
Quillen’s relation to the structure theory of formal group laws [Qui69a].

Many of the initial definitions of localization and completion were constructive.
One can build X

Q
from X by showing that one can replace the basic cells Sn in a CW-

decomposition with rationalized spheres Sn
Q
, or by showing that the Eilenberg–Mac

Lane spaces K(A,n) in a Postnikov decomposition can be replaced by rationalized
versions K(A ⊗Q,n). One can instead use Bousfield and Kan’s more functorial,
but also more technical, construction as the homotopy limit of a cosimplicial space.
Quillen’s work gives more, in the form of a model structure whose weak equivalences
are isomorphisms on rational homology groups. In his work, the map X→ X

Q
is a

fibrant replacement, and the essential uniqueness of fibrant replacements means that
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X
Q
has a form of universality. It is this universal property that Bousfield localization

makes into a definition.

1.2 Notation

We will use S to denote an appropriately convenient category of spaces (one can use
simplicial sets, but with appropriate modifications throughout) with internal function
objects. We similarly write Sp for a category of spectra.

Throughout this paper we will often be working in categories enriched in spaces:
for any X and Y in C we will write MapC(X,Y ) for the mapping space, or just
Map(X,Y ) if the ambient category is understood. Letting [X,Y ] = π0MapC(X,Y ),
we obtain an ordinary category called the homotopy category hC. Two objects in C are
homotopy equivalent if and only if they become isomorphic in hC.

For us, homotopy limits and colimits in the category of spaces are given by the
descriptions of Vogt or Bousfield–Kan [Vog73, BK72]. A homotopy limit or homotopy
colimit in C is characterized by having a natural weak equivalence of spaces:

MapC(X,holimJ
Yj ) ' holim

J
MapC(X,Yj )

MapC(hocolimI
Xi ,Y ) ' holim

I
MapC(Xi ,Y )

In particular, since homotopy limit constructions on spaces preserve objectwise weak
equivalences of diagrams, homotopy limits and colimits also preserve objectwise
homotopy equivalences in C.

Some set theory is unavoidable, but we will not spend a great deal of time with it.
For us, a collection or family may be a proper class, rather than a set. Categories will
be what are sometimes called locally small categories: the collection of objects may
be large, but there is a set of maps between any pair of objects.
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2 Motivation from categorical localization

In general, we recall that for an ordinary category A and a classW of the maps called
weak equivalences (or simply equivalences), we can attempt to construct a categorical
localization A → A[W−1]. This localization is universal among functors A → D
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that send the maps in W to isomorphisms. The category A[W−1] is unique up to
isomorphism if it exists.1

Example 2.1. We will begin by remembering the case of the category S of spaces,
with W the class of weak homotopy equivalences. The projection p : X × [0,1]→ X
is always a weak equivalence with homotopy inverses it given by it(x) = (x, t). In the
localization, we find that homotopic maps are equal: for a homotopy H from f to
g , we have f = Hi0 = Hp−1 = Hi1 = g . Therefore, localization factors through the
homotopy category hS .

However, within the category of spaces we have a collection with special prop-
erties: the subcategory SCW of CW-complexes. For any CW-complex K , weak
equivalences X → Y induce bijections [K,X] → [K,Y ]—this can be proved, for
example, inductively on the cells of K—and any space X has a CW-complex K with
a weak homotopy equivalence K → X. These two properties show, respectively, that
the composite

hSCW → hS → S[W−1]

is fully faithful and essentially surjective. Within the homotopy category hS we have
found a large enough library of special objects, and localization can be done by
forcibly moving objects into this subcategory.2

Example 2.2. A similar example to the above occurs in the category KR of nonnega-
tively graded cochain complexes of modules over a commutative ring R, with W the

class of quasi-isomorphisms. Within KR there is a subcategory KInjR of complexes
of injective modules. Fundamental results of homological algebra show that for
a quasi-isomorphism A → B and a complex Q of injectives, there is a bijection
[B,Q]→ [A,Q] of chain homotopy classes of maps, and that any complex A has a
quasi-isomorphism A→Q to a complex of injectives. This similarly shows that the
composite functor

hKInjR → hKR→KR[W−1]

is an equivalence of categories.

These examples are at the foundation of Quillen’s theory of model categories, and
we will return to examples like them when we discuss localization of model categories.

3 Local objects in categories

In this section we will fix an ordinary category A.
1For the record, this category also satisfies a 2-categorical universal property: for any D, the map of

functor categories
Fun(A[W−1],D)→ Fun(A,D)

is fully faithful, and the image consists of those functors sendingW to isomorphisms. If we replace “image”
with “essential image” in this description, we recover a universal property characterizing A→A[W−1] up
to equivalence of categories rather than up to isomorphism.

2Technically speaking, we often use a result like this to actually show that S[W−1] exists.
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Definition 3.1. Let S be a class of morphisms in A. An object Y ∈ A is S-local if,
for all f : A→ B in S , the map

HomA(B,Y )
f ∗

−−→HomA(A,Y )

is a bijection. We write LS (A) for the full subcategory of S-local objects.
If S = {f : A→ B} consists of just one map, we simply refer to this property as

being f -local and write Lf (A) for the category of f -local objects.

Remark 3.2. If S = {fα : Aα→ Bα} is a set and A has coproducts indexed by S , then
by defining f =

∐
α fα :

∐
Aα→

∐
Bα we find that S-local objects are equivalent to

f -local objects.

A special case of localization is when our maps in S are maps to a terminal object.

Definition 3.3. Suppose S is a class of maps {Wα→ ∗}, where ∗ is a terminal object.
In this case, we refer to such a localization as a nullification of the objects Wα .

Remark 3.4. Nullification often takes place when A is pointed. If S is a set, A is
pointed, and A has coproducts, then any coproduct of copies of ∗ is again ∗ and we
can again replace nullification of a set of objects with nullification of an individual
object.

Definition 3.5. A map A→ B in A is an S-equivalence if, for all S-local objects Y ,
the map

HomA(B,Y )→HomA(A,Y )

is a bijection.

The class of S-equivalences contains S by definition.

Definition 3.6. A map X→ Y is an S-localization if it is an S-equivalence and Y is
S-local, and under these conditions we say that X has an S-localization. If all objects
in A have S-localizations, we say that A has S-localizations.

Proposition 3.7. Any two S-localizations f1 : X→ Y1 and f2 : X→ Y2 are isomorphic
under X in A.

Proof. Because Yi are S-local, Hom(B,Yi)→Hom(A,Yi) is always an isomorphism
for any S-equivalence A → B. Applying this to the S-equivalences X → Yj , we
get isomorphisms Hom(Yj ,Yi)→Hom(X,Yi) in A: any map X→ Yi has a unique
extension to a map Yj → Yi . Existence allows us to find maps Y1→ Y2 and Y2→ Y1
under X, and uniqueness allows us to conclude that these two maps are inverse to
each other in A.

More concisely, Y1 and Y2 are both initial objects in the comma category of S-local
objects under X in A, and this universal property forces them to be isomorphic.

As a result, it is reasonable to call such an object the S-localization of X and write
it as LSX (or simply LX if S is understood). More generally than this, if X → LX
and X ′→ LX ′ are S-localization maps, any map X→ X ′ in A extends uniquely to a
commutative square. This is encoded by the following result.

5



Proposition 3.8. Let LocS (A) be the category of localization morphisms, whose objects
are S-localization maps X → LX in A and whose morphisms are commuting squares.
Then the forgetful functor

LocS (A)→A,

sending (X→ LX) to X, is fully faithful. The image consists of those objects X that have
S-localizations.

Proposition 3.9. The collection of S-local objects is closed under limits, and the collection
of S-equivalences is closed under colimits.

Proof. If f : A→ B is in S and {Yj } is a diagram of S-local objects, then

Hom(B,Yj )→Hom(A,Yj )

is a diagram of isomorphisms, and taking limits we find that we have an isomorphism

Hom(B, lim
J
Yj )→Hom(A, lim

J
Yj ).

Since A→ B was an arbitrary map in S , this shows that limJ Yj is S-local.
Similarly, if {Ai → Bi} is a diagram of S-equivalences and Y is S-local, then

Hom(Bi ,Y )→Hom(Ai ,Y )

is a diagram of isomorphisms, and taking limits we find that

Hom(colim
I

Bi ,Y )→Hom(colim
I

Ai ,Y )

is also an isomorphism. Since Y was an arbitrary local object, this shows that the
map colimI Ai → colimI Bi is an S-equivalence.

Example 3.10. Consider the map f : N→Z in the category of monoids. A monoid
M is f -local if and only if any monoid homomorphism N → M automatically
extends to a homomorphism Z → M, which is the same as asking that every
element in M has an inverse. Therefore, f -local monoids are precisely groups. The
natural transformation M → Mgp, from a monoid to its group completion, is an
f -localization.

Example 3.11. Consider the map f : F2→Z
2, from a free group on two generators x

and y to its abelianization. A group G is f -local if and only if every homomorphism
F2 → G, equivalent to choosing a pair of elements x and y of G, can be factored
through Z

2, which happens exactly when the commutator [x,y] is sent to the
trivial element. Therefore, f -local groups are precisely abelian groups. The natural
transformation G→ Gab, from a group to its abelianization, is an f -localization.

These two localizations are left adjoints to the inclusion of a subcategory, and this
phenomenon is completely general.
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Proposition 3.12. Let S be a class of morphisms in A, and suppose that A has S-
localizations. Then the inclusion LSA→A is part of an adjoint pair

A
L
� LSA.

As a result, L is a reflective localization onto the subcategory LSA.

Proof. In this situation, the functor LocS (A)→A is fully faithful and surjective on
objects. Therefore, it is an equivalence of categories and we can choose an inverse,3

functorially sending X to a pair (X → LX) in LocS (A). The composite functor
sending X to LX is the desired left adjoint.

Remark 3.13. Embedding the category A as a full subcategory of a larger category
can change localization drastically. Consider a set S of maps in A ⊂ B. Then the
S-local objects of A are simply the S-local objects of B that happen to be in A, but
because there may be more local objects in B there may be fewer S-equivalences in
B than in A. Localization in B may not preserve objects of A; a localization map in
A might not be an equivalence in B; there might, in general, be no comparison map
between the two localizations.

For example, consider the set S of multiplication-by-p maps Z→Z (as p ranges
over primes) in the category of finitely generated abelian groups, considered as a full
subcategory of all abelian groups. An abelian group is S-local if and only if it is a
rational vector space, and the only finitely generated group of this form is trivial. A
map A→ B of finitely generated abelian groups is an S-equivalence in the larger
category of all abelian groups if and only if it induces an isomorphism A⊗Q→ B⊗Q,
whereas it is always an equivalence within the smaller category of finitely generated
abelian groups. Within all abelian groups, S-localization is rationalization, whereas
within finitely generated abelian groups, S-localization takes all groups to zero.

4 Localization using mapping spaces

We now consider the case where C is a category enriched in spaces. The previous
definitions and results apply perfectly well to the homotopy category hC. The
following illustrates that the homotopy category may be an inappropriate place to
carry out such localizations.

Example 4.1. Let us start with the homotopy category of spaces hS , and fix an n ≥ 0.
Suppose that we want to invert the inclusion Sn→Dn+1. We fairly readily find that
any space X has a map X→ X ′ such that [Dn+1,X ′]→ [Sn,X ′] is an isomorphism:
construct X ′ by attaching (n + 1)-dimensional cells to X until the n’th homotopy
group πn(X ′ ,x) = 0 is trivial at any basepoint.

3If the category A is large then we need to be a little bit more honest here, and worry about whether
a fully faithful and essentially surjective map between large categories has an inverse equivalence. This
depends on our model for set theory: it is asking for us to make a distinguished choice of objects for
our inverse functor, which may require an axiom of choice for proper classes. It is an awkward situation,
because choosing these inverses isn’t categorically interesting unless we can’t do it.
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However, this construction lacks universality. If Y is any other space whose
n’th homotopy groups are trivial, then any map X→ Y can be extended to a map
X ′ → Y because the attaching maps for the cells of X ′ are trivial. However, this
extension is not unique up to homotopy: any two extensions Dn+1→ X ′ → Y of a
cell Sn→ X→ Y glue together to an obstruction class in [Sn+1,Y ]. As a result, if we
construct two spaces X ′ and X ′′ as attempted localizations of X, we can find maps
X ′ → X ′′ and X ′′ → X ′ but cannot establish that they are mutually inverse in the
homotopy category.

In short, in order for Y to have uniqueness for filling maps from n-spheres, we have
to have existence for filling maps from (n+1)-spheres. Thus, to make this localization
work canonically we would need to enlarge our class S to contain Sn+1→Dn+2. The
same argument then repeats, showing that a canonical localization for S requires that
S also contain Sm→Dm+1 for m ≥ n.

The example in the previous section leads to the following principle. In our
definitions, we must replace isomorphism on the path components of mapping spaces
with homotopy equivalence.

Definition 4.2. Let S be a class of morphisms in the category C. An object Y ∈ C is
S-local if, for all f : A→ B in S , the map

MapC(B,Y )
f ∗

−−→MapC(A,Y )

is a weak equivalence.4 We write LS (C) for the full subcategory of S-local objects.
If S = {f : A→ B} consists of just one map, we simply refer to this property as

being f -local and write Lf (C) for the category of f -local objects.

Definition 4.3. A map A→ B in C is an S-equivalence if, for all S-local objects Y ,
the map

MapC(B,Y )→MapC(A,Y )

is a weak equivalence.

Definition 4.4. A map X→ Y is an S-localization if it is an S-equivalence and Y is
S-local, and under these conditions we say that X has an S-localization. If all objects
in C have S-localizations, we say that C has S-localizations.

By applying π0 to mapping spaces, we find that some of this passes to the
homotopy category.

Proposition 4.5. Let S̄ be the image of S in the homotopy category hC. If Y is S-local in
C, then its image in the homotopy category hC is S̄-local.

Remark 4.6. An S-equivalence in C does not necessarily becomes an S̄-equivalence
in hC because there is potentially a larger supply of S̄-local objects.

4Note that the homotopy class of the map MapC(B,Y )→MapC(A,Y ) only depends on the image of
f : A→ B in the homotopy category hC, and so we may simply view S as a collection of representatives
for a class of maps S̄ in hC.
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Proposition 4.7. Any two S-localizations f1 : X→ Y1 and f2 : X→ Y2 become isomor-
phic under X in the homotopy category hC.

Proof. This proceeds exactly as in the proof of Proposition 3.7. Applying MapC(−,Yi)
to the S-equivalence X→ Yj , we find that the maps X→ Yi extend to maps Yj → Yi
which are unique up to homotopy. By first taking i , j we construct maps between
the Yi whose restrictions to X are homotopic to the originals, and taking i = j shows
that the double composites are homotopic under X.

Remark 4.8. At this point it would be very useful to show that, if they exist, localiza-
tions can be made functorial in the spirit of Proposition 3.8. There is typically no
easy way to produce a functorial localization because many choices are made up to
homotopy equivalence, and this leads to coherence issues: for example, if we have a
diagram

X //

��

X ′

��
LX // LX ′

where the vertical maps are S-localization, then we can construct at best the dotted
map together with a homotopy between the two double composites. Larger diagrams
do get more extensive families of homotopies, but these take work to describe. This
is a rectification problem and in general it is not solvable without asking for more
structure on C. The small object argument, which we will discuss in §6, can often be
done carefully enough to give some form of functorial construction of the localization.

Proposition 4.9. The following properties hold for a class S of morphisms in C.

1. The collection of S-local objects is closed under equivalence in the homotopy category.

2. The collection of S-equivalences is closed under equivalence in the homotopy category.

3. The collection of S-local objects is closed under homotopy limits.

4. The collection of S-equivalences is closed under homotopy colimits.

5. The homotopy pushout of an S-equivalence is an S-equivalence.

6. The S-equivalences satisfy the two-out-of-three axiom: given maps A
f
−→ B

g
−→ C, if

any two of f , g , and gf are S-equivalences then so is the third.

Proof. If X→ Y becomes an isomorphism in the homotopy category, then one can
choose an inverse map and homotopies between the double composites. Composing
with these makes MapC(−,X)→MapC(−,Y ) a homotopy equivalence of functors on
C, and so X is S-local if and only if Y is.

Similarly, if two maps f : A→ B and f ′ : A′ → B′ become isomorphic in the
homotopy category, there exist homotopy equivalences A′→ A and B→ B′ such that
the composite A′ → A→ B→ B′ is homotopic to f ′ , and applying MapC(−,Y ) we
obtain the desired result.
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If f : A→ B is in S and {Yj } is a diagram of S-local objects, then

MapC(B,Yj )→MapC(A,Yj )

is a diagram of weak equivalences of spaces, and taking homotopy limits we find that
we have an equivalence

MapC(B,holimJ
Yj )→MapC(A,holimJ

Yj ).

Since A→ B was an arbitrary map in S , this shows that holimJ Yj is S-local.
Similarly, if {Ai → Bi} is a diagram of S-equivalences and Y is S-local, then

MapC(Bi ,Y )→MapC(Ai ,Y )

is a diagram of weak equivalences of spaces, and so

MapC(hocolimI
Bi ,Y )→MapC(hocolimI

Ai ,Y )

is also a weak equivalence. Since Y was an arbitrary S-local object, this shows that
the map hocolimI Ai → hocolimI Bi is an S-equivalence.

Suppose that we have a homotopy pushout diagram

A
f //

��

B

��
A′

f ′
// B′

where f : A→ B is an S-equivalence. Given any S-local object Y , we get a homotopy
pullback diagram

MapC(A,Y ) MapC(B,Y )oo

MapC(A
′ ,Y )

OO

MapC(B
′ ,Y )oo

OO

The top arrow is an equivalence by the assumption that f is an S-equivalence, and
hence the bottom arrow is an equivalence. Since Y was an arbitrary S-local object,
we find that f ′ is an S-equivalence.

The 2-out-of-3 property is obtained by first applying MapC(−,Y ) to the diagram
A→ B→ C and then using the 2-out-of-3 axiom for weak equivalences.

If we expand a class S to a larger class T of equivalences, our work so far gives
us an automatic relation between S-localization and T -localization.

Proposition 4.10. Suppose that S and T are classes of morphisms such that every map
in S is a T -equivalence. Then the following properties hold.

1. Every T -local object is also S-local.
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2. Every S-equivalence is also a T -equivalence.

3. Suppose X→ LSX is an S-localization and X→ LTX is a T -localization. Then
there exists an essentially unique factorization X → LSX → LTX, and the map
LSX→ LTX is a T -localization.

Proof. 1. By assumption, every map f : A→ B in S is a T -equivalence, and so
for any T -local object Y we get an equivalence MapC(B,Y )→ MapC(A,Y ).
Thus by definition Y is S-local.

2. If f : A→ B is an S-equivalence, and Y is any T -local object, then by the
previous point Y is also S-local, and so we get an equivalence MapC(B,Y )→
MapC(A,Y ). Since Y was an arbitrary T -local object, f is therefore a T -
equivalence.

3. Since X → LSX is an S-equivalence, the previous point shows that it is a
T -equivalence and so we have an equivalence

MapC(LSX,LTX)→MapC(X,LTX).

As a result, the chosen map X→ LTX has a contractible space of homotopy
commuting factorizations X→ LSX→ LTX. As the maps X→ LSX and X→
LTX are both T -equivalences, the 2-out-of-3 property implies that LSX→ LTX
is also a T -equivalence whose target is T -local. By definition, this makes LTX
into a T -localization of LSX.

5 Lifting criteria for localizations

In this section we will observe that, if C has homotopy pushouts, we can characterize
local objects in terms of a lifting criterion. To do so, we will need to establish a few
preliminaries. Fix a collection S of maps in C.

Proposition 5.1. Suppose that f : A→ B is an S-equivalence, and that C has homotopy
pushouts. Then the map

hocolim(B← A→ B)→ B

is an S-equivalence.

Proof. The map in question is equivalent to the map of homotopy pushouts induced
by the diagram

B A
foo f //

f
��

B

B Boo // B.

However, the vertical maps are S-equivalences, and so by Proposition 4.9 the map
hocolim(B← A→ B)→ B is an S-equivalence.

11



The lifting criterion we are about to describe rests on the following useful
characterization of connectivity of a map.

Lemma 5.2. Suppose that f : X → Y is a map of spaces and N ≥ 0. Then f is
N -connected if and only if the following two criteria are satisfied:

1. the map π0(X)→ π0(Y ) is surjective, and

2. the diagonal map X→ holim(X→ Y ← X) is (N − 1)-connected.

Proof. The map f is N -connected if and only if it is surjective on π0 and, for all
basepoints x ∈ X, the homotopy fiber Ff over f (x) is (N − 1)-connective.

However, Ff is equivalent to the homotopy fiber of holim(X → Y ← X)→ X
over x, and so this second condition is equivalent to holim(X → Y ← X) → X
being N -connected. The composite X → holim(X → Y ← X)→ X is the identity,
and the map holim(X → Y ← X) → X is N -connected if and only if the map
X→ holim(X→ Y ← X) is (N − 1)-connected.

Corollary 5.3. Suppose that C has homotopy pushouts and that we have a map f0 : A0→
B in C. Inductively define the n-fold double mapping cylinder fn as the map

An = hocolim(B← An−1→ B)→ B.

Then an object Y is f0-local if and only if the maps

HomhC(B,Y )→HomhC(An,Y )

are surjective; equivalently, for any map An → Y there is a map B→ Y such that the
diagram

An //

fn
��

Y

B

>>

is homotopy commutative.

Proof. We note that the definition of An gives an identification

MapC(An,Y ) ' holim
[
MapC(B,Y )→MapC(An−1,Y )←MapC(B,Y )

]
.

Inductive application of Lemma 5.2 shows that the map

MapC(B,Y )→MapC(A0,Y )

is N -connected if and only if the maps

HomhC(B,Y )→HomhC(An,Y )

are surjective for 0 ≤ n ≤ N . Letting N grow arbitrarily large, we find that Y is
f0-local if and only of the maps

HomhC(B,Y )→HomhC(An,Y )

are surjective for all n ≥ 0.
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Example 5.4. Suppose that C has homotopy pushouts and that f : W → ∗ is a map to
a homotopy terminal object of C. Then the iterated double mapping cylinders are
the maps ΣtW → ∗, and an object of C is f -local if and only if every map ΣtW → Y
factors, up to homotopy, through ∗.
Example 5.5. In the category of spaces S , the iterated double mapping cylinders fn
of a cofibration f0 : A→ B have a more familiar description as the pushout-product
maps

(Sn−1 ×B) ∪
Sn−1×A

(Dn ×A)→Dn ×B→ B.

6 The small object argument

We now sketch how, when we have some form of colimits in our category, Bousfield
localizations can often be constructed using the small object argument.

From the previous section we know that we can replace the mapping space
criterion for local objects with a lifting criterion when C has homotopy colimits, as
follows. Given a map f0 : A0→ B, we construct iterated double mapping cylinders
fn : An → B, and we find that an object is Y is f0-local if and only if every map
g : An→ Y can be extended to a map g̃ : B→ Y up to homotopy. More generally
we can enlarge a collection of maps S to a collection T closed under double mapping
cylinders, and ask whether Y satisfies an extension property with respect to T .

This leads to an inductive method.

1. Start with Y0 = Y .

2. Given Yα , either Yα is local (in which case we are done) or there exists some
set of maps Ai → Bi in T and maps gi : Ai → Yα which do not extend to Bi
up to homotopy. Form the homotopy pushout of the diagram∐

i

Bi ←
∐
i

Ai → Yα

and call it Yα+1. The map Yα → Yα+1 is an S-equivalence because it is a
homotopy pushout along an S-equivalence, and all the extension problems that
Yα had now have solutions in Yα+1.

3. Once we have constructed Y0,Y1,Y2, . . . , define Yω = hocolimYn. More gener-
ally, once we have constructed Yα for all ordinals α less than some limit ordinal
β, we define Yβ = hocolimYα . The map Y → Yβ is a homotopy colimit of
S-equivalences and hence an S-equivalence.

The critical thing that we need is that this procedure can be stopped at some point,
and for this we typically need to know that there will be some ordinal β which is
so big that any map Ai → Yβ automatically factors, up to homotopy, through some
object Yα with α < β. This is a compactness property of the objects Ai , and this
argument is called the small object argument. If we work on the point-set level this
can be addressed using Smith’s theory of combinatorial model categories; if we work
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on the homotopical level this can be addressed using Lurie’s theory of presentable
∞-categories. We will discuss these approaches in §10 and §11.

Another important aspect of the small object argument is that it can prove
additional properties about localization maps. If S is a collection of maps all
satisfying some property P of maps in the homotopy category, and property P is
preserved under homotopy pushouts and transfinite homotopy colimits, then this
process constructs a localization Y → LY that also has property P . Since localizations
are essentially unique, any localization automatically has property P as well.

Remark 6.1. If our category C does not have enough colimits, the small object
argument may not apply. However, Bousfield localizations may still exist even if this
particular construction cannot be applied.

7 Unstable settings

The classical examples of Bousfield localization are localizations of spaces. It is
worthwhile first relating the localization condition to based mapping spaces.

Proposition 7.1. Suppose f : A→ B is a map of well-pointed spaces with basepoint.
Then a space Y is f -local in the category of unbased spaces if and only if, for all
basepoints y ∈ Y , the restriction

f ∗ : Map∗(B,Y )→Map∗(A,Y )

of based mapping spaces is a weak equivalence.

Proof. Evaluation at the basepoint gives a map of fibration sequences

Map∗(B,Y )

��

// Map(B,Y )

��

// Y

Map∗(A,Y ) // Map(A,Y ) // Y .

The center vertical map is an isomorphism on π∗ at any basepoint if and only if the
left-hand map is.

Remark 7.2. As S-equivalences are preserved under homotopy pushouts and the
2-out-of-3 axiom, we find that any space Y local with respect to f : A→ B is also
local with respect to the map B/A→ ∗ from the homotopy cofiber to a point, and thus
that every path component of Y has a contractible space of based maps B/A→ Y .
However, we will see shortly that the converse does not hold in general.

Example 7.3. Let S be the category of spaces, and take f to be the map Sn → ∗.
Then a space X is f -local if and only if, for any basepoint x ∈ X, the iterated loop
space ΩnX at x is weakly contractible. Equivalently, for n ≥ 1 the space X is f -local
if and only if it is (n− 1)-truncated : πk(X,x) is trivial for all k ≥ n and all x ∈ X.

A map A→ B of CW-complexes, by obstruction theory, is an f -equivalence if and
only if it is (n−1)-connected. Therefore, for n > 0 a map A→ B of CW-complexes is
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an f -localization if and only if πk(A)→ πk(B) is an isomorphism for 0 ≤ k < n and
all basepoints, but πkB vanishes for all k ≥ n and all basepoints.5 This characterizes
a stage Pn−1(X) in the Postnikov tower of X.

Example 7.4. Let f be the inclusion Sn ∨ Sm→ Sn × Sm of spaces. The Cartesian
product is formed by attaching an (n+m)-cell to Sn ∨ Sm along an attaching map
given by a Whitehead product [ιn, ιm] ∈ πn+m−1(Sn ∨ Sm). Any map Sn ∨ Sm→ X,
classifying a pair of elements α ∈ πn(X) and β ∈ πm(X) at some basepoint x, sends
this attaching map to [α,β]. The fiber of Map(Sn ×Sm,X)→Map(Sn∨Sm,X) over
the corresponding point is either empty (if [α,β] is nontrivial) or equivalent to the
iterated loop space Ωn+mX at x (if [α,β] is trivial). A space X is therefore local with
respect to f if and only if, at any basepoint, the homotopy groups πk(X) are zero for
all k ≥ n+m and the Whitehead products

πn(X,x)×πm(X,x)→ πn+m−1(X,x)

vanish at any basepoint x.
Consider the case n =m = 1. For a path-connected CW-complex X with funda-

mental group G, the map X→ K(Gab,1) is an f -localization.

Example 7.5. If A is nonempty, then a space Y is local with respect to f : ∅ → A
if and only if Y is weakly contractible. All maps are f -equivalences, and X→ ∗ is
always an f -localization.

Example 7.6. Consider a degree-p map f : S1 → S1. A space Y is f -local if and
only if it is local for degree-p maps Sn→ Sn, and this occurs if and only if the p’th
power maps πn(Y )→ πn(Y ) are all isomorphisms.

By contrast, let M(Z/p,1) be the Moore space constructed as the cofiber of
f , and consider the map g : M(Z/p,1)→ ∗. A space Y is g-local if and only if
it satisfies the extension condition for the maps M(Z/p,n) → ∗ for all n ≥ 1, or
equivalently if the mod-p homotopy sets πn(Y ;Z/p) vanish for all n ≥ 2. This is
equivalent to the p’th-power maps being isomorphisms on πn(Y ) for all n > 1 and
injective on π1(Y ).

Example 7.7 ([Nei10]). Let S be the set of maps {K(Z/p,1)→ ∗} as p ranges over
the prime numbers. Then the Sullivan conjecture, as proven by Miller [Mil84],
is equivalent to the statement that any finite CW-complex X is S-local. Since S-
equivalences are closed under products and homotopy colimits, the expression of
K(Z/p,n+1) as the geometric realization of the bar construction {K(Z/p,n)q} shows
inductively that the maps K(Z/p,n)→ ∗ are all S-equivalences. However, if Y is any
nontrivial 1-connected space with finitely generated homotopy groups and a finite
Postnikov tower, then Y accepts a nontrivial map from some K(Z/p,n) and hence
cannot be S-local. This argument shows that a simply-connected finite CW-complex

5We should be careful about edge cases. When n = 0, X is (−1)-truncated if and only if it is either
empty or weakly contractible. By convention, S−1 = ∅, and X is (−2)-truncated if and only if it is weakly
contractible.

When n = 0 a map A→ B is an f -equivalence if and only if either both A and B are empty or neither
of them is, and a map A→ X is an f -localization if and only if either A is nonempty and X is weakly
contractible, or A and X are both empty. When n = −1 any map is an f -equivalence, and a map A→ X
is an f -localization if and only if X is weakly contractible.
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with nonzero mod-p homology has p-torsion in infinitely many nonzero homotopy
groups, which was conjectured by Serre in the early 1950’s and proven by McGibbon
and Neisendorfer [MN84].

Localization still applies to other categories closely related to topological spaces.

Example 7.8. Let C be the category of based spaces. A based space Y is local
with respect to the based map ∗ → S1 if and only if the loop space ΩY is weakly
contractible, or equivalently if and only if the path component Y0 of the basepoint is
weakly contractible. A model for the Bousfield localization is given by the mapping
cone of the map Y0→ Y .

Example 7.9. Fix a discrete group G, and consider the category of G-spaces: spaces
with a continuous action of a group G, with maps being continuous maps. For
example, the empty space has a unique G-action, while the orbit spaces G/H have
continuous actions under the discrete topology. Every G-space has fixed-point
subspaces XH �MapG(G/H,X) for subgroups H of G. In this context, there is an
abundance of examples of localizations.

A G-space Y is local with respect to ∅→ ∗ if and only if the fixed-point subspace
YG is contractible. A model for Bousfield localization is given by the mapping cone
of the map YG→ Y .

Fix a model for the universal contractible G-space EG. A G-space Y is local
with respect to EG→ ∗ if and only if the map from the fixed point space YG to the
homotopy fixed point space MapG(EG,Y ) = Y

hG is a weak equivalence. Since there
is a G-equivariant homotopy equivalence EG ×EG→ EG, a model for the Bousfield
localization is the space of nonequivariant maps Map(EG,Y ), with G acting by
conjugation.

A G-space Y is local with respect to ∅→ G if and only if the underlying space Y
is contractible. A model for the Bousfield localization is given by the mapping cone
of the map EG ×Y → Y , sometimes called ẼG∧Y+.
Example 7.10. Fix a collection S of maps and a space Z, letting C be the category of
spaces over Z . We say that a map X→ Y of spaces over Z is a fiberwise S-equivalence
if the map of homotopy fibers over any point z ∈ Z is an S-equivalence, and refer to
the corresponding localizations as fiberwise S-localizations.

A map X → Y over Z which is a weak equivalence on underlying spaces is in
particular a fiberwise S-equivalence. Applying this to the lifting characterization of
fibrations, we can find that for an object Y → Z of C to be fiberwise S-local the map
Y → Z must be a fibration. Moreover, for fibrations Y → Z we can recharacterize
being local. Given any map f : A→ B in S and any point z ∈ Z , there is a map in C
of the form fz : A→ B→ {z} ⊂ Z concentrated entirely over the point z; let SZ be
the set of all such maps. A fibration Y → Z in C fiberwise S-local if and only if it is
SZ -local in C.

Fiberwise localizations were constructed by Farjoun in [Far96, 1.F.3]; they are also
constructed in [Hir03, §7] and characterized from several perspectives.

Example 7.11. The category of topological monoids and continuous homomorphisms
has its own homotopy theory. Consider the inclusion f : N→Z of discrete monoids.
Then Mapmon(Z,M)→Mapmon(N,M) is isomorphic to the map M× →M from
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the space of invertible elements of M to the space M .6 An f -local object is a
topological group, and localization is a topologized version of group-completion.

We note, however, that the map N→ Z does not participate well with weak
equivalences of topological monoids: weakly equivalent topological monoids do not
have weakly equivalent spaces of invertible elements because homomorphisms out
of Z are not homotopical. We can get a version that respects weak equivalences in

two ways. With model categories, we can factor the map N→Z as N ↪→Zc
'−→Z

in the category of topological monoids, where Zc is a cofibrant topological monoid,
and there are explicit models for such. We could instead use coherent multiplications,
where a map Z→M is no longer required to strictly be a homomorphism but instead
be a coherently multiplicative map.

Using either correction, the space M× of strict units becomes replaced, up to
equivalence, by the pullback

M inv //

��

M

��
π0(M)× // π0M,

the union of the components of M whose image in π0(M) has an inverse. A local
object is then a grouplike topological monoid, and localization is homotopy-theoretic
group completion. These play a key role the study of iterated loop spaces and
algebraic K-theory [May72, Seg74, MS76].

8 Stable settings

One of the great benefits of the stable homotopy category, and stable settings in
general, is that a map f : X→ Y becoming an equivalence is roughly the same as
the cofiber Y /X becoming trivial.

We recall the definition of stability from [Lur17, §1.1.1].

Definition 8.1. The category C is stable if it satisfies the following properties:

1. C is (homotopically) pointed : there is an object ∗ such that, for all X ∈ C, the
spaces MapC(X,∗) and MapC(∗,X) are contractible.

2. C has homotopy pushouts of diagrams ∗ ← X→ Y and homotopy pullbacks of
diagrams ∗ → Y ← X.

As a special case, we have suspension and loop objects:

ΣX = hocolim(∗ ← X→ ∗)
ΩX = holim(∗ → X← ∗)

6As a point-set digression the reader should, as usual, be warned that the source may not have the
subspace topology. The space of invertible elements is, instead, homeomorphic to the subspace of M ×M
of pairs of elements (x,y) such that xy = yx = 1.
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3. Suppose that we have a homotopy coherent diagram

X //

��

Y

��
∗ // Z,

meaning maps as given and a homotopy between the double composites. Then
the induced map

hocolim(∗ ← X→ Y )→ Z

is a homotopy equivalence if and only if the map

X→ holim(∗ → Z← Y )

is a homotopy equivalence.

Taking Y = ∗, we find that a map X→ΩZ is an equivalence if and only if the
homotopical adjoint ΣX→ Z is an equivalence.

Example 8.2. The category of (cofibrant–fibrant) spectra is the canonical example of
a stable category.

Example 8.3. For any ring R, there is a category KR of chain complexes of R-modules.
Any two complexes C and D have a Hom-complex HomR(C,D), and the Dold–Kan
correspondence produces a simplicial set MapKR(C,D) whose homotopy groups
satisfy

πnMapKR(C,D) �HnHomR(C,D)

for n ≥ 0.7 This gives the category KR of complexes an enrichment in simplicial sets,
and these mapping spaces make the category KR stable. Within this category there
are many stable subcategories: categories of complexes which are bounded above or
below or both, with homology groups bounded above or below or both, which are
made up of projectives or injectives, and so on.

We will write CR be the category of cofibrant objects in the projective model
structure on R, whose homotopy category is the derived category D(R).

Theorem 8.4 (see [Lur17, Theorem 1.1.2.14]). If C is stable, then the homotopy category
hC has the structure of a triangulated category.

In a stable category, every object Y has an equivalence Y → ΩΣY . However,
there is a natural weak equivalence

MapC(X,ΩZ) ' holim
[
MapC(X,∗)→MapC(X,Z)←MapC(X,∗)

]
' holim(∗ →MapC(X,Z)← ∗)
'ΩMapC(X,Z),

7More generally, if R[m] is the complex equal to R in degree n and zero elsewhere, then for all
complexes C we have [R[m],C]hKR �Hm(C).
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and hence the mapping spaces

MapC(X,Y ) 'Ω
nMapC(X,Σ

nY )

can be extended to be valued in Ω-spectra. This makes it much easier to detect
equivalences: we only need to check the homotopy groups of ΩtMapC(X,Y ) at the
basepoint.

Definition 8.5. Suppose that C is stable and S is a class of maps in C. We say that
S is shift-stable if the image S̄ in hC is closed under suspension and desuspension, up
to isomorphism.

Proposition 8.6. Suppose that C is stable and S is a shift-stable class of maps {fα : Aα→
Bα}. Then an object Y in C is S-local if and only if the homotopy classes of maps
[Bα/Aα ,X]hC are trivial.

Proof. The individual fiber sequences

ΩtMapC(Bα/Aα ,Y )→ΩtMapC(Bα ,Y )→ΩtMapC(Aα ,Y ),

on homotopy classes classes of maps, are part of a long exact sequence

· · · → [ΣtBα/Aα ,Y ]hC→ πtMapC(Bα ,Y )→ πtMapC(Aα ,Y )→ [Σt−1Bα/Aα ,Y ]hC→ . . .

from the triangulated structure. We get an isomorphism on homotopy groups if and
only if the terms [ΣtBα/Aα ,Y ]hC vanish for all values of t.

By contrast with the unstable case where basepoints are a continual issue, these
shift-stable localizations in a stable category are always nullifications, and they are
equivalent to nullifications of the triangulated homotopy category by a class S that is
closed under shift operations.

Definition 8.7. Suppose that D is a triangulated category. A full subcategory T is
called a thick subcategory if its objects are closed under closed under isomorphism,
shifts, cofibers, and retracts. If D has coproducts, a thick subcategory T is localizing
if it is also closed under coproducts.

Proposition 8.8. Suppose that D is a triangulated category and that T ⊂ D is a thick
subcategory. Then there exists a triangulated category D/T called the Verdier quotient of
D by T , with a functor D→D/T . The Verdier quotient is universal among triangulated
categories under D such that the objects of T map to trivial objects.

This universal characterization allows us to strongly relate Bousfield localization
of stable categories to localization of the homotopy category.

Proposition 8.9. Suppose that C is stable, and that S is a shift-stable collection of maps
in C.

1. An object in C is S-local if and only if its image in the homotopy category hC is
S-local.
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2. A map in C is an S-equivalence if and only if its image in the homotopy category is
an S-equivalence.

3. The subcategories LSC of S-local objects and T of S-trivial objects are thick subcat-
egories of C.

4. The subcategory T of S-trivial objects is closed under all coproducts that exist in C.
If C has small coproducts then it is a localizing subcategory.

5. If all objects in C have S-localizations, then the left adjoint to the inclusion
hLSC → hC has a factorization

hC → hC/hT → hLSC.

The latter functor is an equivalence of categories.

Remark 8.10. The fact that Bousfield localization of C is determined by a construction
purely in terms of hC is special to the stable setting.

Remark 8.11. This relates Verdier quotients in a stable category to Bousfield localiza-
tion, but only quotients by a localizing subcategory. For a homotopical interpretation
of more general Verdier quotients, see [NS17, §I.3].

Example 8.12. Let S be the collection of multiplication-by-m maps Sn → Sn for
n ∈ Z, m > 0. A spectrum Y is S-local if and only if multiplication by m is an
isomorphism on the homotopy groups π∗Y for all positive m, or equivalently if the
maps π∗Y →Q⊗π∗Y are isomorphisms. Such spectra are called rational.

If Y is such a spectrum, we can calculate that the natural map

[X,Y ]→
∏
n

Hom(πnX,πnY )

is an isomorphism for any spectrum X: because πnY is a graded vector space,
Hom(−,πnY ) is exact and so both sides are cohomology theories in X that satisfy
the wedge axiom and agree on spheres. Therefore, A→ B is an S-equivalence if and
only if Q⊗πn(A)→Q⊗πn(B) is an isomorphism for all n, and such maps are called
rational equivalences. In this case, this is the same as the map H∗(A;Q)→H∗(B;Q)
being an isomorphism.

This analysis allows us to conclude that X→HQ∧X = X
Q
is a rationalization

for all X.

Example 8.13. In the above, we can make S smaller. If S is the set of multiplication-
by-p maps Sn→ Sn, we similarly find that S-local spectra are those whose homotopy
groups are Z[1/p]-modules, and that equivalences are those maps which induce
isomorphisms on homotopy groups after inverting p. The localization of S is the
homotopy colimit

S[1/p] = hocolim(S
p
−→ S

p
−→ S

p
−→ . . . ),

which is also a Moore spectrum for Z[1/p]. We similarly find that X→ S[1/p]∧X
is an S-localization for all X.

We could also let S be the set of multiplication-by-m maps for m relatively prime
to p, which replaces the ring Z[1/p] with the local ring Z(p) in the above.
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Example 8.14. Fix a commutative ring R and a multiplicatively closed subset W ⊂ R,
recalling that localization with respect to W is exact. If we define S to be the set of

maps of the form R[n]
w−→ R[n] for w ∈W , then a complex C of R-modules is S-local

if and only if the multiplication-by-w maps H∗(C)→ H∗(C) are isomorphisms, or
equivalently if and only if H∗(C)→W −1H∗(C) �H∗(W −1C) is an isomorphism. A
map A→ B of complexes is an S-equivalence if and only if the map W −1A→W −1B
is an equivalence.

The natural map C→W −1C �W −1R⊗R C is an S-localization.

These examples have such nice properties that it is convenient to axiomatize
them.

Definition 8.15. A stable Bousfield localization on spectra8 is a smashing localization
if either of the following equivalent conditions hold.

1. There is a map of spectra S→ LS such that, for any X, the map X→ LS∧X
is a localization.

2. Local objects are closed under arbitrary homotopy colimits.

The equivalence between these two characterizations is not immediately obvious.
The first implies the second, because

LS∧hocolimXi → hocolim(LS∧Xi)

is always an equivalence and the former is always local. The converse follows because
the only homotopy-colimit preserving functors on spectra are all equivalent to functors
of the form X 7→ A∧X for some A, and the resulting localization map S→ A is of
the desired form.

Example 8.16. A spectrum Y is local for the maps S[1/p]∧ Sn→ ∗ if and only if the
homotopy limit

holim(· · · → Y
p
−→ Y

p
−→ Y ) ' F(S[1/p],Y )

of function spectra is weakly contractible. However, taking homotopy limits of the
natural fiber sequences

. . . // Y
p //

p2

��

Y
p //

p

��

Y

1
��

. . . // Y
1 //

��

Y
1 //

��

Y

��
. . . // Y /p2 // Y /p // ∗

shows that Y is local if and only if the map Y → Y ∧p = holimY /pk is an equivalence.
Therefore, we refer to a spectrum local for these maps as p-complete; a Bousfield

8This definition extends if we have a stable category C with a symmetric monoidal structure appropri-
ately compatible with the stable structure.
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localization of Y will be called the p-completion; a trivial object is called p-adically
trivial; an equivalence is called a p-adic equivalence. The above presents Y ∧p as a
candidate for the p-completion of Y .

If we construct the fiber sequence

Σ−1S/p∞→ S→ S[1/p],

we find that we can identify Y ∧p with the function spectrum F(Σ−1S/p∞,Y ). Moreover,
the map Y ∧p → (Y ∧p )

∧
p is always an equivalence. Therefore, Y ∧p is always p-complete.

If multiplication-by-p is an equivalence on Z , then Z ' Z ∧S[1/p], and so maps
Z → Y are equivalent to maps Z → F(S[1/p],Y ). For any Y which is p-adically
complete, this is trivial, so such objects Z are p-adically trivial. In particular, the
fiber of Y → Y ∧p is always trivial and so Y → Y ∧p is a p-adic equivalence. Therefore,
this is a p-adic completion.

If each homotopy group of Y has a bound on the order of p-power torsion, we
can further identify the homotopy groups of Y ∧p as the ordinary p-adic completions
of the homotopy groups of Y ; if the homotopy groups of Y are finitely generated,
then π∗(Y ∧p )→ π∗(Y )⊗Zp.

9

Remark 8.17. Note that the previous example is not a smashing localization. For any
connective spectrum X, the map S

∧
p∧X→ X∧p induces the map π∗(X)⊗Zp→ π∗(X)∧p

on homotopy groups; this is typically only an isomorphism if the homotopy groups
π∗(X) are finitely generated.

Example 8.18. For an element x in a commutative ring R, let Kx be the complex

· · · → 0→ R→ x−1R→ 0→ . . .

concentrated in degrees 0 and −1, with a map KX → R. For a sequence of elements
(x1, . . . ,xn), let K(x1,...,xn) =

⊗
RKxi be the stable Koszul complex. If y is in the

ideal generated by (x1, . . . ,xn), then the inclusion K(x1,...,xn)→ K(x1,...,xn,y) is a quasi-
isomorphism, and so up to quasi-isomorphism the Koszul complex only depends on
the ideal. Let KI be a cofibrant replacement.

We say that a complex C is I-complete if and only if it is local with respect to
the shifts of the map KI → R. This is true if and only if the homology groups of C
are I-complete in the derived sense. If R is Noetherian and the homology groups
of C are finitely generated, this is true if and only if the homology groups of C are
I-adically complete in the ordinary sense.

These frameworks for the study of localization and completion, and many gener-
alizations of it, were developed by Greenlees and May [GM95].

Example 8.19. Fix a ring R, and let C be the category of unbounded complexes of
finitely generated projective left R-modules that only have nonzero homology groups
in finitely many degrees. Consider the set S of maps R[n]→ 0. An object C is
S-local if and only if its homology groups are trivial.

9In general, the homotopy groups of the p-adic completion are somewhat sensitive and one needs to be
careful about derived functors of completion.
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We can inductively take mapping cones of maps R[n] → C to construct a
localization C→ LC, embedding C into an unbounded complex of finitely generated
projective modules with trivial homology groups. Therefore, localizations exist in this
category.

For two such complexes C and D with trivial homology, we have

HomhC(C,D) � lim
n

HomR(ZnC,ZnD)/HomR(ZnC,Dn+1)

where Dn+1 → Zn(D) is the boundary map—a surjective map from a projective
module.

This can be interpreted in terms of the stable module category of R. Defining
Wn(C) = Z−n(C), the short exact sequences 0→ Z−n(C)→ C−n → Z−n−1(C)→ 0
determine isomorphisms Wn(C) �ΩWn+1(C) in the stable module category, assem-
bling the Wn into an “Ω-spectrum”. Maps C→ D are then equivalent to maps of
Ω-spectra in the stable module category.10

9 Homology localizations

9.1 Homology localization of spaces

Definition 9.1. Suppose E∗ is a homology theory on spaces. Then we say that a map
f : A→ B of spaces is an E∗-equivalence if it induces an isomorphism f∗ : E∗A→ E∗B.
A space is E∗-local if it is local with respect to the class of E∗-equivalences.

Example 9.2. Suppose that E∗ is integral homology H∗. Any Eilenberg–Mac Lane
space K(A,n) is H∗-local by the universal coefficient theorem for cohomology. More-
over, any simply-connected space X is the homotopy limit of a Postnikov tower built
from fibration sequences PnX → Pn−1X → K(πnX,n + 1). Since local objects are
closed under homotopy limits, we find that simply-connected spaces are H∗-local.

11

Remark 9.3. This example illustrates a very different approach to the construction
of localizations. Because homology isomorphisms are detected by the K(A,n), these
spaces are automatically local; therefore, any object built from these using homotopy
limits is automatically local. Such objects are often called nilpotent. Thus gives us
a dual approach to building the Bousfield localization of X: construct a natural
diagram of nilpotent objects that receive maps from X, and try to verify that the
homotopy limit is a localization of X.

Example 9.4. Serre’s rational Hurewicz theorem implies that a map of simply-
connected spaces is an isomorphism on rational homology groups if and only if it is
an isomorphism on rational homotopy groups. A simply-connected space is local for
rational homology if and only if it its homotopy groups are rational vector spaces.

10In certain cases, such as for Frobenius algebras, Ω is an autoequivalence. This definition then simply
recovers the stable module category of R by itself. If R has finite projective dimension, Ω-spectrum objects
are necessarily trivial.

11This argument can be refined to show that nilpotent spaces (where π1(X) is nilpotent, and acts
nilpotently on the higher homotopy groups) are H∗-local.
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The same is not true for general spaces. The map RP
2 → ∗ is a rational

homology isomorphism, and the covering map S2 → RP
2 is an isomorphism on

rational homotopy groups, but the composite S2→ ∗ is neither. The problem here is
the failure of a simple Postnikov tower for RP

2 due to the action of π1 on the higher
homotopy groups.

Example 9.5. If X is a connected space with perfect fundamental group, then Quillen’s
plus-construction gives a map X→ X+ that induces an H∗-isomorphism such that
X+ is simply-connected. This makes X+ into an H∗-localization of X.

Classically, Quillen’s plus-construction can be applied to groups with a perfect
subgroup. In order to properly identify the universal property, we need to work in a
relative situation.

Example 9.6. Fix a group G, and let C be the category of spaces over BG. Given
an abelian group A with G-action, there is an associated local coefficient system A
on BG, and so given any object X→ BG of C we can define the homology groups
H∗(X;A). We say that a map X → Y over BG is a relative homology equivalence
if it induces isomorphisms on homology with coefficients in any A. Taking A to
be the group algebra Z[G], we find that this is equivalent to the map of homotopy
fibers FX → FY being a homology isomorphism, so this is the same as a fiberwise
H∗-equivalence. If an object Y over BG has simply-connected homotopy fiber it is
automatically local.

Suppose that X is any connected space such that π1(X) contains a perfect normal
subgroup P with quotient group G. The homomorphism π1(X)→ G lifts to a map
X→ BG. The plus-construction with respect to P is a fiber homology equivalence
X → X+ where X+ → BG has simply-connected homotopy fiber, and thus is a
localization in C.

Localization with respect to homology is very difficult to analyze in the case
when a space is not simply-connected, especially if the space is not simple (either
the fundamental group is not nilpotent or it does not act nilpotently on the higher
homotopy groups). Many natural spaces are not local. Here are some basic tools to
prove this.

Lemma 9.7. Suppose that Fn is a free group on n generators and α : Fn → Fn
is a homomorphism, with induced map αab : Z

n → Z
n. Under the identification

Hom(Fn,G) � Gn for any group G, write α∗ for the natural map of sets Gn→ Gn.
Suppose the map αab becomes an isomorphism after tensoring with a ring R. Then, for

any space X, a necessary condition for X to be H∗(−;R)-local is that α∗ : π1(X,x)n→
π1(X,x)n must be a bijection at any basepoint.

Proof. The map αab, after tensoring with R, can be identified with the mapH1(Fn;R)→
H1(Fn;R) on homology induced by α. If αab becomes an isomorphism after tensoring
with R, then α : K(Fn,1)→ K(Fn,1) is an H∗(−;R)-equivalence.

For a space X to be H∗(−;R)-local, the induced map

Map∗(K(Fn,1),X)→Map∗(K(Fn,1),X)
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must be a weak equivalence. Taking a wedge of circles as our model, we find that the
induced map

(ΩX)n→ (ΩX)n

must be a weak equivalence. On π0, this is the map α∗ on π1(X)n.

Example 9.8. For n , 0, the multiplication-by-n map Z→ Z is a rational isomor-
phism. Therefore, for X to be rationally local, the n’th power map π1(X)→ π1(X)
should be a bijection: every element g ∈ π1(X) has a unique n’th root g1/n. Such
groups are called uniquely divisible, or sometimes Q-groups. The structure of free
Q-groups was studied in [Bau60].

Example 9.9. Let F2 be free on the generators x and y, and define α : F2→ F2 by

α(x) = x−9y−20(y2x)10

α(y) = x−9y10(yx−1)−9.

The map αab is the identity map. Therefore, for a space with fundamental group G
to be local with respect to integral homology, any pair of elements (z,w) ∈ G has to
be uniquely of the form (z,w) = (x−9y−20(y2x)10,x−9y−10(yx−1)−9) for some x and
y in G. Most groups do not satisfy this property.

We can use this to show that any space whose fundamental group G has a
surjective homomorphism φ : G → A5 cannot be local with respect to integral
homology—in particular, this applies to a free group F2. Choose elements x and
y in G with φ(x) = (123) and φ(y) = (12345). Then φ(y2x) = (14)(25) and
φ(yx−1) = (145), and φ ◦α is the trivial homomorphism while φ is surjective.12

Several other, more easily defined, maps α can be shown to not be bijective. For
example, the map (x,y) 7→ (x[x,y], y[x,y]) can be shown to not be a bijection, e.g.
by using Fox’s free differential calculus [Fox53].

Lemma 9.10. Let G be a group, R a ring, and β ∈ Z[G] an element such that the
composite ring homomorphism Z[G]

ε−→Z→ R sends β to zero.
Then, for any based space X with fundamental group G, a necessary condition for X

to be H∗(−;R)-local is that πk(X) must be complete in the topology defined by β.13

Proof. Fix the space X and basepoint and consider the space Y = X ∨Sk . The group
πk(Y ) is isomorphic to πk(X)⊕Z[G], and so the element β ∈ Z[G] lifts to a map
β : Y → Y given by the identity on X together with the map Sk → Y corresponding
to the element (0,β) ∈ πk(X)⊕Z[G]. The induced self-map of

H∗(Y ;R) �H∗(X;R)⊕ H̃∗(Sk ;R)

is given by the identity on H∗(X;R) together with the map ε(β) tensored with R on
the second factor. If ε(β) becomes zero after tensoring with R, then this map is zero
on the second factor.

12In order to use this particular technique to show that φ was not a bijection, we needed to have a
homomorphism φ whose image was a perfect group—the image of αab is contained in the kernel of φab .
This particular map α is complicated because it was reverse-engineered from φ.

13This refers to being derived complete in the sense of Example 8.18.
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Define

X ′ = hocolim(Y
β
−→ Y

β
−→ ·· · ).

By construction, the map

H∗(X;R)→H∗(X
′ ;R) = colimH∗(Y ;R)

is an isomorphism. Therefore, X→ X ′ is an H∗(−;R)-equivalence.
For X to be H∗(−;R)-local, the induced map

Map(X ′ ,X)→Map(X,X)

must be a weak equivalence. Taking the fiber over the identity map of X, we find
that there is an induced equivalence

holim(· · ·
β
−→ΩkX

β
−→ΩkX)

∼−→ ∗.

Using the Milnor lim1-sequence, we find that all of the homotopy groups of X must
be derived-complete with respect to β.

Remark 9.11. If R = Z, then this implies that any element s ∈ Z[G] with ε(s) = ±1
must act invertibly on the higher homotopy groups of X, and so the action must
factor through a large localization S−1Z[G].

Example 9.12. Consider X = S1 ∨ S2, whose fundamental group is isomorphic to Z

with generator t. The second homotopy group satisfies

π2(S
1 ∨ S2) �Z[t±1]

as a module over Z[t±1]. This is not complete with respect to the ideal generated
by β = (t − 1) even though ε(β) = 0. Therefore, S1 ∨ S2 is not local with respect to
integral homology.

Example 9.13. The space RP
2 has fundamental group Z/2 generated by an element

σ , and the second homotopy group Z satisfies σ (y) = −y. The element (1− σ ) has
ε(1− σ ) = 0 and acts as multiplication by 2. Since Z is not complete in the 2-adic
topology we find that RP

2 is not local with respect to integral homology.14

Example 9.14. If R =Q, then any element S ∈Z[G] with ε(s) , 0 must act invertibly
on the higher homotopy groups of X for X to be local with respect to rational
homology. The homotopy groups of K(Q,1)∨ (S3)

Q
are Q in degree 1 and the

rational group algebra Q[Q] in degree 3. If t is the generator of Z ⊂Q, the element
2t − 1 has ε(2t − 1) = 1 and does not act invertibly on this group algebra. Therefore,
this space is not local with respect to rational homology even though its homotopy
groups are rational.

Remark 9.15. Bousfield localization with respect to E∗-equivalences leads us to some
uncomfortable pressure with our previous notation. At first glance, it is not clear
whether being an equivalence on E∗-homology is the same as having the same

14The homology localization of RP
2 has, in fact, a fiber sequence (S2)∧2 → LRP

2→ K(Z/2,1).
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mapping spaces into any E∗-local object.
15 To prove this, one needs to prove that

there is a sufficient supply of E∗-local objects: for any X, we need to be able to
construct an E∗-homology isomorphism X→ LEX such that LEX is E∗-local. Here is
how Bousfield addressed this in [Bou75, Theorem 11.1]. It is essentially a cardinality
argument, whose general form is called the Bousfield–Smith cardinality argument in
[Hir03, §2.3].

Let E∗ be a homology theory on spaces. We then have a class S of E∗-equivalences,
which are those maps which induce equivalences on E∗-homology. Unfortunately, this
is a proper class of morphisms, and so we cannot immediately apply the small object
argument to construct localizations. Moreover, because we do not know anything
about local objects we cannot assert that an S-equivalence X→ Y is the same as a
map inducing an isomorphism E∗X→ E∗Y .

Bousfield addresses this by showing the following. Suppose K → L is an inclusion
of simplicial sets such that E∗K → E∗L is an isomorphism, and that we choose any
simplex σ of L. Then there exists a subcomplex L′ ⊂ L with the following properties:

1. The simplex σ is contained in L′ .

2. The map E∗(K ∩L′)→ E∗(L′) is an isomorphism on E∗.

3. The complex L′ has size bounded by a cardinal κ, which depends only on E.

Because of the cardinality bound on L′ , we can find a set T of E∗-equivalences A→ B
so that any such map K ∩L′→ L′ must be isomorphic to one of them; an arbitrary
E∗-equivalence K → L can then be factored as a (possibly transfinite) sequence of
pushouts along the maps in the set T followed by an equivalence. The maps in T
are E∗-isomorphisms, and an object is S-local if and only if it is T -local. The small
object argument then applies to T , allowing us to construct T -localizations Y → LY
which are also E∗-isomorphisms.

We will see in § 10 and § 11, in general constructions of Bousfield localization, that
this verification is the key step.

9.2 Homology localization of spectra

Definition 9.16. For a spectrum E, a map f : X→ Y is an E-homology equivalence (or
simply an E-equivalence) if the corresponding map E∗X→ E∗Y is an isomorphism,
and we say that Z is E-trivial if E∗Z = 0. A map f is an E-equivalence if and only if
the cofiber of f is E-trivial.16

This is most often employed when E is a ring spectrum.

Proposition 9.17. If E has a multiplication m : E ∧E→ E with a left unit η : S→ E
in the homotopy category, then any spectrum Y with a unital map E ∧Y → Y is E-local.

15One could, but should not, say it this way: it is not clear that an (E∗-equivalence)-equivalence is
automatically an E∗-equivalence.

16Again, the definitions of this section can be applied to a stable category C with a compatible symmetric
monoidal structure.
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Remark 9.18. Such spectra Y are sometimes called homotopy E-modules. Any spectrum
of the form E ∧W is a homotopy E-module.

Proof. Any map f : Z→ Y has the following factorization in the homotopy category:

Z
η∧1
−−−→ E ∧Z

1∧f
−−−→ E ∧Y m−→ Y

If Z has trivial E-homology, then E ∧Z is trivial and so the composite Z → Y is
nullhomotopic. Therefore, [Z,Y ] = 0 for all E-trivial Z, as desired.

Corollary 9.19. If E has a multiplication m : E∧E→ E with a left unit η : S→ E in
the homotopy category, then any homotopy limit of spectra that admit homotopy E-module
structures is E-local.

Example 9.20. A particular case of interest is when E = HZ. Any Eilenberg–Mac
Lane spectrum HA is HZ-local, being of the form HZ∧MA for a Moore spectrum
for A.

Then any connective spectrum Y is HZ-local, as follows. As HZ-local objects
form a thick subcategory, any spectrum with finitely many nonzero homotopy groups
is therefore HZ-local. If Y is connective then PnY is HZ-local due to having a
finite Postnikov tower. Therefore, Y = holimPnY is the homotopy limit of HZ-local
spectra, and is thus HZ-local.

Similarly, any product of Eilenberg–Mac Lane spectra
∏
ΣnHAn is also HZ-local.

Any rational spectrum is of this form.
However, not all spectra are HZ-local. For any prime p and integer n > 0,

there are p-primary Morava K-theories K(n) such that HZ∧K(n) is trivial; these
are HZ-acyclic. The complex K-theory spectrum KU satisfies the property that
H∗(KU ;Z)→H∗(KU ;Q) is an isomorphism: from this we can find that KU → KU

Q

is an HZ-equivalence. The target is also HZ-local because it is rational, and so
KU

Q
is the HZ-localization of KU .

Example 9.21. We can consider the case where E = HZ/p. By a similar argument,
we find that any connective spectrum which is p-adically complete in the sense of
Example 8.16 is also HZ/p-complete. Again, in connective cases there is not a
difference between being p-adically complete and being HZ/p-local.

For nonconnective spectra, these are quite different. The Morava K-theories K(n)
are p-adically complete but HZ/p-trivial. The periodic complex K-theory spectrum
KU has π∗(KU∧p ) � (π∗KU )∧p , but KU is also HZ/p-trivial.

These localizations have the flavor of completion with respect to an ideal. In
some cases we can express them as such.

Definition 9.22. Suppose that E has a binary multiplication m with a left unit
η : S→ E, and let j : I → S be the fiber of η : S→ E. Assemble these into the
inverse system

· · · → I∧3
j∧1∧1
−−−−−→ I ∧ I

j∧1
−−−→ I

j
−→ S

The E-nilpotent completion X∧E is the homotopy limit

holim
n

(S/I∧n)∧X,
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with map X→ X∧E induced by the maps S→ S/I∧n.

Proposition 9.23. The E-nilpotent completion is always E-local.
If E is a finite complex, or X and I are connective and E is of finite type, then the map

X→ X∧E is an E-localization.

Proof. The cofiber sequence I → S→ E, after smashing with I∧(n−1), becomes a
cofiber sequence I∧n→ I∧(n−1)→ E ∧ I∧(n−1), and so there are cofiber sequences

S/I∧n ∧X→ S/I∧(n−1) ∧X→ E ∧ I∧(n−1) ∧X.

By induction on n we find that S/I∧n ∧X is E-local, and so the homotopy limit X∧E
is E-local.

After smashing with E, the cofiber sequence

E ∧ I∧n ∧X→ E ∧ I∧(n−1) ∧X→ E ∧E ∧ I∧(n−1) ∧X

has a retraction of the second map via the (opposite) multiplication of E, and so the
first map is nullhomotopic. Therefore, the homotopy limit holimE ∧ (I∧n ∧X) is
trivial, and from the cofiber sequences

E ∧ (I∧n ∧X)→ E ∧X→ E ∧ (S/I∧n ∧X)

we find that E ∧X→ holim(E ∧ (S/I∧n ∧X) is an equivalence.
This reduces us to proving that the map

E ∧holim(S/I∧n ∧X)→ holim(E ∧S/I∧n ∧X)

is an equivalence: we can move the smash product with E inside the homotopy limit.
This is always true if E is finite or if E is of finite type and the homotopy limit is of
connective objects.

Remark 9.24. The spectral sequence arising from the inverse system defining X∧E is
the generalized Adams–Novikov spectral sequence based on E-homology. It often abuts to
the homotopy groups of the Bousfield localization with respect to E.

We can generalize our construction by allowing more general towers with a
nilpotence property, after Bousfield in [Bou79], or by extending these methods to
the category of modules over a ring spectrum, as Baker–Lazarev did in [BL01] or
Carlsson did in [Car08].

Example 9.25. For any prime p and any n > 0, we have the Johnson–Wilson homology
theories E(n)∗ and the Morava K-theories K(n)∗. Associated to these we have E(n)-
localization functors and K(n)-localization functors, as well as categories of E(n)-local
and K(n)-local spectra, which play an essential role in chomatic homotopy theory.
Ravenel conjectured, and Devinatz–Hopkins–Smith proved, that the localization LE(n)
is a smashing localization [Rav84, DHS88, Rav92]. These localizations also have
chromatic fractures which are built using the following result.
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Proposition 9.26. Suppose that E and K are spectra such that LKLEX is always trivial.
Then, for all X, there is a homotopy pullback diagram

LE∨KX //

��

LEX

��
LKX // LELKX.

Proof. The objects in the diagram

LEX→ LELKX← LKX

are either E-local or K-local, and hence automatically E ∨K-local; therefore, the
homotopy pullback P is E∨K-local. It then suffices to show that the fiber of the map
X→ P is E ∨K-trivial, which is equivalent to showing that

X //

��

LEX

��
LKX // LELKX.

becomes a homotopy pullback after smashing with E ∨K . After smashing with E,
the horizontal maps become equivalences, and so the diagram is a pullback. After
smashing with K , the left-hand vertical map is an equivalence and the right-hand
vertical map is between trivial objects, so the diagram is also a pullback. Therefore,
the diagram becomes a pullback after smashing with E ∨K .

10 Model categories

The lifting characterization of local objects from §5 falls very naturally into the
framework of Quillen’s model categories. The groundwork for this is in [Bou75, §10].

Definition 10.1. Suppose thatM is a category with a model structure. We say that
a second model structureM′ with the same underlying category is a left Bousfield
localization of M if M′ has the same family of cofibrations but a larger family of
weak equivalences thanM.

As a first consequence, note that the identity functor (which is its own right and
left adjoint) preserves cofibrations and takes the weak equivalences in M to weak
equivalences inM′ . This makes it part of a Quillen adjunction

M�M′ .

This has the immediate consequence that the induced adjunction on homotopy
categories is a reflective localization.

Proposition 10.2. Suppose that L : M�M′ : R is the adjunction associated to a left
Bousfield localization. Then the right adjoint R identifies the homotopy category hM′
with a full subcategory of hM.

30



Proof. It is necessary and sufficient to show that the counit ε : LRx → x of the
adjunction on homotopy categories is always an isomorphism, for this is the same as
asking that, in the factorization

HomhM(Rx,Ry) �HomhM′ (LRx,y)→HomhM′ (x,y),

the second map is an isomorphism.
For an object of y, the composite functor LR on homotopy categories is calculated

as follows: find a fibrant replacement y
'′−−→ yf ′ inM′ , apply the identity functor to

get to M, find a cofibrant replacement (yf ′ )c
'−→ yf ′ in M, and apply the identity

functor to get toM′ . The counit of the adunction is represented in the homotopy
category ofM′ by the composite

(yf ′ )c
'−→ yf ′

'′←−− y.

However, equivalences inM are automatically equivalences inM′ , and so the counit
is an isomorphism in the homotopy category ofM′ .

Because fibrations and acyclic fibrations are determined by having the right lifting
property against acyclic cofibrations and fibrations, the new model structure has the
same acyclic fibrations but fewer fibrations. For example, a fibrant object in the left
Bousfield localization has to have a lifting property against the cofibrations which are
weak equivalences inM′ .

The next proposition establishes the connection between left Bousfield localization
and ordinary Bousfield localization when both are defined and compatible: the case
of a simplicial model category.

Proposition 10.3. Suppose thatM is a simplicially enriched category with two model
structures, makingM→M′ is a left Bousfield localization of simplicial model categories.
Let S be the collection of weak equivalences between cofibrant objects inM′ . Then, in the
category of cofibrant-fibrant objects ofM, the objects which are fibrant inM′ are precisely
the S-local fibrant objects.

Proof. Fix an object Y ofM′ . For it to be fibrant inM′ , it must also be fibrant inM.
Suppose Y is a fibrant object inM′ . Given any acyclic cofibration A→ B inM′ , the
map of simplicial sets MapM′ (A,Y )→MapM′ (B,Y ) is an acyclic fibration by the
SM7 axiom of simplicial model categories. Thus, the functor MapM′ (−,Y ) fromM′
to the homotopy category of spaces takes acyclic cofibrations to isomorphisms. Thus,
Ken Brown’s lemma implies that it also takes weak equivalences between cofibrant
objects inM′ to isomorphisms in the homotopy category of spaces.

Suppose that we have a map f : A→ B in S between cofibrant objects of M
that is also a weak equivalence inM′ . Then f is also a weak equivalence between
cofibrant objects ofM′ . The induced map MapM(B,Y )→MapM(A,Y ) is a weak
equivalence because the mapping spaces in M and M′ are the same. Thus, Y is
S-local.
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We would now like to establish results in the other direction. Namely, given a
model category M and a collection S of maps Ai → Bi in M, we would like to
establish the existence of a Bousfield localization M′ of M. Because we want to
work within the already-established homotopy theory ofM, we want to use derived
mapping spaces out of A and B and replace homotopy lifting properties with strict
lifting properties. We assume without loss of generality that our set S is made up of
cofibrations Ai → Bi between cofibrant objects.

Definition 10.4. Suppose thatM is a simplicial model category, and that f : A→ B
is a map. Then the iterated double mapping cylinders are the maps

(B⊗∂∆n)
∐
A⊗∂∆n

(A⊗∆n)→ B⊗∆n.

This definition is rigged so that an object Y has the right lifting property
with respect to the iterated double mapping cylinders if and only if the map
MapM(B,Y )→ MapM(A,Y ) is an acyclic fibration of simplicial sets. One of the
equivalent formulations of the SM7 axioms for a simplicial model category is that
double mapping cylinders are always cofibrations, as follows.

Proposition 10.5. Suppose that f : A→ B is a map. If f is a cofibration, then the
iterated double mapping cylinders are cofibrations. If A is also cofibrant, then the iterated
double mapping cylinders have cofibrant source.

Remark 10.6. If M does not have a simplicial model structure, we can obtain
replacements for these objects by iteratively replacing the maps B

∐
AB→ B with

equivalent cofibrations.

Definition 10.7. Suppose thatM is a simplicial model category, that S is a collection
of maps, and that T is the collection of iterated double mapping cylinders of maps in
S . We say that a map inM is an S-cofibration if it is a cofibration inM, and that it
is an S-fibration if it has the right lifting property with respect to the maps in T . If
these determine a new model structureM′ , we call this the left Bousfield localization
with respect to S .

This gives us two fundamentally different approaches to the process of construct-
ing a left Bousfield localization. In the first, we may try to expand our family of
weak equivalences to some new family W ; we must then prove that we can construct
enough fibrations and fibrant objects to make the model structure work. In the
second, we may try to start with some collection of maps S which serve as new “cells”
to build acyclic cofibrations, and use them to contract our family of fibrations; we
then lose control over the weak equivalences, and typically must work to prove that
cofibrations which are weak equivalences can be built out of our new cells.

The most advanced technology available for Bousfield localization is Jeff Smith’s
theory of combinatorial model categories.

Definition 10.8. A model categoryM is cofibrantly generated if there are sets I and
J of maps satisfying the following properties:
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1. the fibrations inM are the maps that have the right lifting property with respect
to J ;

2. the acyclic fibrations in M are the maps that have the right lifting property
with respect to I ;

3. I permits the small object argument, so that from any object X we can construct
a map X→ X ′ , as a transfinite composition of pushouts along coproducts of
maps in I , that has the right lifting property with respect to I ;

4. J also permits the small object argument.

We refer to I as the set of generating cofibrations and to J as the set of generating
acyclic cofibrations respectively.

The cofibrantly generated model category is also combinatorial if it is also locally
presentable, meaning there exists a regular cardinal κ and a set M0 of objects
satisfying the following properties:

1. any small diagram inM has a colimit;

2. for any object x in M0, the functor HomM(x,−) commutes with κ-filtered
colimits;

3. every object inM is a κ-filtered colimit of objects inM0.

Theorem 10.9 (Dugger’s theorem [Dug01]). Any combinatorial model category is Quillen
equivalent to a left proper simplicial model category.

Remark 10.10. The axioms of a cofibrantly generated model category and a locally
presentable category have nontrivial overlap. In one direction, the model category
axioms already ask that M has all colimits. In the other direction, being locally
presentable means that every set of maps admits the small object argument.

Example 10.11. Simplicial sets are the motivating example of a combinatorial model
category. Fibrations and acyclic fibrations are defined as having the right lifting
property with respect to the generating acyclic cofibrations Λni → ∆n and the gener-
ating cofibrations ∂∆n→ ∆n. The category is also locally presentable because it is
generated by finite simplicial sets. Every simplicial set is the filtered colimit of its finite
subobjects; there are only countably many isomorphism classes of finite simplicial
sets; for any finite simplicial set X, Hom(X,−) commutes with filtered colimits.

Theorem 10.12 (Smith’s theorem [Bek00, Bar10, Lur09]). Suppose thatM is a locally
presentable category with a familyW of weak equivalences and a set I of generating
cofibrations. Call those maps which have the right lifting property with respect to I the
acyclic fibrations, and those maps which have the left lifting property with respect to
acyclic fibrations the cofibrations. Suppose that we have the following:

1. W satisfies the 2-out-of-3 axiom;

2. acyclic fibrations are inW ;
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3. the class of cofibrations which are in W is closed under pushout and transfinite
composition; and

4. maps in W are closed under κ-filtered colimits for some regular cardinal κ, and
generated under κ-filtered colimits by some set of maps inW .

Then there exists a combinatorial model structure onM with set I of generating cofibrations
and set W of weak equivalences. This model structure onM has cofibrant and fibrant
replacement functors. Moreover, any combinatorial model structure arises in this fashion.

Corollary 10.13. Suppose that M is a combinatorial model category with set I of
generating cofibrations and classW of weak equivalences. Given a functor E : M→D
factoring through the homotopy category hM, define a map to be an E-equivalence if its
image under E is an isomorphism. Then there exists a left Bousfield localization ME ,
whose equivalences are the E-equivalences, if the following conditions hold:

1. E-equivalence is preserved by transfinite composition along cofibrations;

2. pushouts of E-acyclic cofibrations are E-equivalences; and

3. there exists a set of E-acyclic cofibrations that generate all E-acyclic cofibrations
under κ-filtered colimits.

Proof. The 2-out-of-3 axiom is automatic: if two of E(g), E(f ) and E(gf ) = E(g)E(f )
are isomorphisms, then so is the third. The fact that E factors through the homotopy
category automatically implies that acyclic fibrations are taken by E to isomorphisms.

Example 10.14. Let E∗ be a homology theory on the category of simplicial sets. The
excision and direct limit axioms for homology imply that E-equivalences are preserved
by homotopy pushouts and transfinite compositions. Therefore, the verification that
we have a model structure is immediately reduced to the core of the Bousfield–Smith
cardinality argument of Example 9.15: that there is a set of E-acyclic cofibrations
generating all others under filtered colimits.

The great utility of combinatorial model structures is that they allow us to build
new model categories: categories of diagrams and Bousfield localizations.

Theorem 10.15 ([Lur09, A.2.8.2, A.3.3.2]). Suppose thatM is a combinatorial model
category and that I is a small category. Then there exists a projective (resp. injective)
model structure on the functor categoryMI , where a natural transformation of diagrams is
an equivalence or fibration (resp. cofibration) if and only if it is an objectwise equivalence
or fibration (resp. cofibration).

IfM is a simplicial model category, then the natural simplicial enrichment onMI

makes the injective and projective model structures into simplicial model categories.

Theorem 10.16 ([Lur09, A.3.7.3]). Suppose thatM is a left proper combinatorial sim-
plicial model category and that S is a set of cofibrations in M. Let S−1M have the
same underlying category asM and the same cofibrations, but with weak equivalences the
S-equivalences.

Then S−1M has the structure of a left proper combinatorial model category, whose
fibrant objects are precisely the S-local fibrant objects ofM.
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11 Presentable ∞-categories

Bousfield localization for model categories has the useful property that it keeps the
category in place and merely changes the equivalences. One cost is that making
localization canonical or extending monoidal structures to localized objects takes
hard work. By contrast, localization for ∞-categories has the useful property that it is
genuinely defined by a universal property, automatically making localization canonical
and making it much easier to extend a monoidal structure to local objects without
rectifying structure. Of course, this comes at the cost of coming to grips with coherent
category theory itself.

The homotopy theory of presentable∞-categories is equivalent, in a precise sense,
to the homotopy theory of combinatorial model categories [Lur09, A.3.7.6]. However,
by contrast with our techniques for Bousfield localization using model categories
and fibrant replacement functors, it allows us to rephrase some of our localization
techniques in a way that connects more directly with the homotopical techniques that
we originally used in §5.

In this section, we will let C be an∞-category in the sense of [Lur09]. It is outside
our scope to give a technically correct discussion of these. However, the study of
∞-categories is equivalent to the study of categories with morphism spaces, and
where possible we will attempt to make connection with classical techniques. With
this in mind, if C is an enriched category we will say that a coherent diagram I →C is
a coherent functor in the sense of Vogt [Vog73]. This is equivalent to either the notion
of a functor C[I]→C from a certain simplicially enriched category or to the notion
of a functor I →NC of simplicial sets to the coherent nerve in the sense of [Lur09].
As before a homotopy colimit for such a diagram is based on classical homotopy limits
and colimits in spaces, and is characterized by having natural weak equivalences

MapC(hocolimI
F(i),Y ) ' holim

I
MapC(F(i),Y ).

Definition 11.1 ([Lur09, 5.5.1.1]). An ∞-category C is presentable if there there exists
a regular cardinal κ and a set C0 of objects satisfying the following properties:

1. any small diagram in C has a homotopy colimit;

2. for any object x in C0, the functor HomC(x,−) commutes with κ-filtered
homotopy colimits;

3. every object in C is a κ-filtered homotopy colimit of objects in C0.

This definition is precisely parallel to the definition of local presentability in
an ordinary category (see Definition 10.8). In essence, C is a large category that is
formally generated under colimits by a small category.

Given such an∞-category C and a collection S of morphisms in C, it makes sense
to define the S-local objects and S-equivalences just as in §4: an object Y is S-local if
and only if the mapping spaces MapC(−,Y ) take maps in S to equivalences of spaces.

Definition 11.2 ([Lur09, 5.5.4.5]). Suppose that C is an∞-category with small colimits
and that W is a collection of maps in C. We say that W is strongly saturated if it
satisfies the following conditions:
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1. given a homotopy pushout diagram

C
f //

��

D

��
C′

f ′
// D ′ ,

if f is in W then so is f ′ ;

2. the class W is closed under homotopy colimits;

3. the classW is closed under equivalence, and its image in the homotopy category
satisfies the 2-out-of-3 axiom.

Proposition 11.3 ([Lur09, 5.5.4.7]). Given a set S of morphisms in C, there is a smallest
saturated class of morphisms containing S . We denote this as S̄ . IfW = S̄ for some set S ,
then we say thatW is of small generation.

Example 11.4. Suppose that E : C → C′ is a functor of ∞-categories that preserves
homotopy colimits. Then the set WE of maps in C that map to equivalences is
strongly saturated.

The presentability axioms for an ∞-category provide a homotopical version of
what we needed to construct localizations by ensuring that the small object argument
goes through. As a result, we obtain a result on the existence of Bousfield localizations
for presentable ∞-categories.

Theorem 11.5 ([Lur09, 5.5.4.15]). Let C be a presentable ∞-category and S a set of
morphisms in C, generating the saturated class S̄ . Let LSC be the full subcategory of
S-local objects. Then the following hold:

1. for every object C ∈ C, there is a map C→ C′ in S̄ such that C′ is S-local;

2. the ∞-category LSC is presentable;

3. the inclusion LSC → C has a (homotopical) left adjoint L;

4. the class of S-equivalences coincides with both the saturated class S̄ and the set of
maps taken to equivalences by L.

Remark 11.6. The homotopical left adjoint can be rephrased as follows. If we write
LocS (C) for the category of S-localizations C→ C′ , then the forgetful functor

LocS (C)→C,

sending (C → C′) to C, is an equivalence of categories (in fact, a trivial fibration
of quasicategories). By choosing a section, given by C 7→ (C → LC), we obtain a
localization functor L.
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As in the case of Bousfield localization of combinatorial model categories, this
connects the two approaches to Bousfield localization. We can start with a set S of
generating equivalences and construct localizations from those, so for a given class
W of weak equivalences we are reduced to showing that W is generated by a set S
of maps. Moreover, if the maps in S all happen to be in a particular saturated class,
then so are the maps in W .

12 Multiplicative properties

Many of the categories where we carry out Bousfield localization have monoidal
structures, and under good circumstances localization is compatible with them. In
this section we will briefly discuss the circumstances under which this is true.

12.1 Enriched monoidal structures

In order to begin to work with these definitions, we need a monoidal or symmetric
monoidal structure on C that respects morphism spaces.

Definition 12.1. Suppose C is a category enriched in spaces. The structure of an
enriched monoidal category on C consists of a functor ⊗ : C ×C → C of enriched cate-
gories, a unit object I of C, and natural associativity and commutativity isomorphisms
that satisfy the axioms for a monoidal category.

A compatible symmetric monoidal structure on C is defined similarly.

Throughout this section we will fix such an enriched monoidal category C.

Definition 12.2. Suppose that S is a class of morphisms in C. We say that S-
equivalences are compatible with the monoidal structure (or simply that S is compatible)
if, for any S-equivalence f : Y → Y ′ and any object X ∈ C, the maps idX ⊗ f and
f ⊗ idX are S-equivalences.

Proposition 12.3. Suppose that S is compatible with the monoidal structure. Then
localization respects the monoidal structure: any choices of localization give an equivalence

L(X1 ⊗ · · · ⊗Xn)→ L(LX1 ⊗ · · · ⊗LXn).

Proof. By induction, the map X1 ⊗ · · · ⊗Xn→ LX1 ⊗ · · · ⊗ LXn is an S-equivalence,
and therefore any S-localization of the latter is equivalent to any S-localization of
the former.

Corollary 12.4. The monoidal structure on the homotopy category of C induces a monoidal
structure on the homotopy catogory of the localization LSC, making any localization functor
into a monoidal functor. If C was symmetric monoidal, then so is the localization.

Remark 12.5. The inclusion LSC → C is almost never monoidal. For example, it
usually does not preserve the unit.
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Example 12.6. Let C be the category of spaces with cartesian product, and let E∗ be
a homology theory. Then any map X→ X ′ which induces an isomorphism on E∗-
homology also induces isomorphisms E∗(X×Y )→ E∗(X ′×Y ) for any CW-complex Y :
one can prove this inductively on the cells of Y . Therefore, E-homology equivalences
are compatible with the Cartesian product monoidal structure.

Similarly, E-homology equivalences are compatible with the smash product on
based spaces (using that based spaces are built from S0) or the smash product on
spectra (using that all spectra are built from spheres Sn).

Example 12.7. Let C be the category of spectra, and f be the map Sn → ∗. Then
f -equivalences are maps inducing isomorphisms in degree strictly less than n. This is
not compatible with the smash product on spectra: for example, smashing with Σ−1S
does not preserve f -equivalences. If one restricts to the subcategory of connective
spectra, however, one finds that f -equivalences are compatible with the smash
product.

Example 12.8. Consider the map f : Sn → ∗ of spaces, so that S-equivalences are
maps inducing an isomorphism on all homotopy groups in degrees less than n. This
map is compatible with several symmetric monoidal structures, such as:

1. spaces with Cartesian product;

2. spaces with disjoint union;

3. based spaces with wedge product; and

4. based spaces with smash product.

Despite the usefulness of these results, the existence of a (symmetric) monoidal
localization functor on the homotopy category does not, by itself, allow us to extend
very structured multiplication from an object X to its localization LX. To counter
this we typically require the theory of operads.

Definition 12.9. Suppose that C is (symmetric) monoidal, and that X is an object
of C. The endomorphism operad EndC(X) is the (symmetric) sequence of spaces
MapC(X ⊗ · · · ⊗X,X), with (symmetric) operad structure given by composition.

Given a map f : X→ Y , the endomorphism operad EndC(f ) is the (symmetric)
sequence which in degree n is the pullback diagram

EndC(f )n //

��

MapC(X ⊗ · · · ⊗X,X)

��
MapC(Y ⊗ · · · ⊗Y ,Y ) // MapC(X ⊗ · · · ⊗X,Y ).

The space EndC(f )n is the space of strictly commutative diagrams

X⊗n //

f ⊗n

��

X

f

��
Y ⊗n // Y ,
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and as such the operad structure is given by composition.

The operad EndC(f ) has forgetful maps to EndC(X) and EndC(Y ).

Proposition 12.10. Suppose that the (symmetric) monoidal structure on C is compatible
with S and that f : X → LX is an S-localization. If the maps MapC(LX

⊗n,LX)→
MapC(X

⊗n,LX) are fibrations for all n ≥ 0, then in the diagram of operads

EndC(X)← EndC(f )→ EndC(LX),

the left-hand arrow is an equivalence on the level of underlying spaces.

Proof. This is merely the observation that EndC(f )→ EndC(X) is, level by level, a
homotopy pullback of the equivalences MapC(LX

⊗n,LX)→MapC(X
⊗n,LX).

This condition then allows us to lift structured multiplication.

Corollary 12.11. Suppose that a (symmetric) operad O acts on X via a map C → EndC(X).
Then there exists a weak equivalence O′→O of operads and an action of O′ on LX such
that f is a map of O′-algebras.

Proof. We define O′ to be the fiber product of the diagram O→ EndC(X)← EndC(f ).
The map O′ →O is an equivalence by the fibration condition, and the map O′ →
EndC(f ) of operads precisely states that f is a map of O′-algebras. 17

This means that A∞ and E∞ multiplications on X extend automatically to A∞
and E∞ multiplications on LX. However, this is the best we can do in general: lifting
more refined multiplicative structures requires stronger assumptions.

In cases where the category C has more structure, it is typically easier to verify
that S is compatible with the monoidal structure.

Proposition 12.12. Suppose that the monoidal structure on C has internal function objects
FL(X,Y ) and FR(X,Y ) that are adjoint to the monoidal structure: there are isomorphisms

MapC(X,F
L(Y ,Z)) �Map(X ⊗Y ,Z) �MapC(Y ,F

R(X,Z))

that are natural in X, Y , and Z . Then S is compatible with the monoidal structure on
C if and only if, for any f : A→ B in S and any object X ∈ C, the maps idX ⊗ f and
f ⊗ idX are S-equivalences.

Proof. Suppose that for any f : A→ B in S and any object X ∈ C, the maps idX ⊗ f
are S-equivalences. Using the unit isomorphisms, we find that if Z is S-local the
maps in the diagram

MapC(X ⊗B,Z) //

��

MapC(X ⊗A,Z)

��
MapC(B,F

R(X,Z)) // MapC(A,FR(X,Z))

17If O happens to be a cofibrant (symmetric) operad O in Berger–Moerdijk’s model structure [BM13] we
can do better. Any map O→ EndC(X) lifts, up to homotopy, to a map O→ EndC(f )→ EndC(LX).
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are equivalences. Therefore, FR(X,Z) is S-local, and so for any S-equivalence
f : Y → Y ′ the maps in the diagram

MapC(X ⊗Y ′ ,Z) //

��

MapC(X ⊗Y ,Z)

��
MapC(Y

′ ,FR(X,Z)) // MapC(Y ,FR(X,Z))

are all equivalences. Similar considerations apply to FL.

12.2 Monoidal model categories

The necessary conditions for compatibility between model structures and monoidal
structures were determined by Schwede–Shipley [SS00] and Hovey [Hov99, §4.2], in
the symmetric and nonsymmetric cases respectively. This structure allows us, after
[SS00], to construct model structures on categories of algebras and modules inM′
such that the localization functorM→M′ preserves this structure.

Definition 12.13. A (symmetric) monoidal model category M is a model category with
a (symmetric) monoidal closed structure18 satisfying the following axioms.

1. (Pushout-product) Given cofibrations i : A → A and j : B → B′ in M, the
induced pushout-product map

i � j : (A⊗B′)
∐
A⊗B

(A′ ⊗B)→ A′ ⊗B′

is a cofibration, which is acyclic if either i or j is.

2. (Unit) Let QI→ I be a cofibrant replacement of the unit. Then the natural
maps QI⊗X→ X← X ⊗QI are isomorphisms for all cofibrant X.

Proposition 12.14. Suppose thatM is a monoidal model category. Then, for cofibrant
objects X, the functors X ⊗ (−) and (−)⊗X preserve cofibrations, acyclic cofibrations, and
weak equivalences between cofibrant objects.

Proof. Since ⊗ has adjoints, it preserves colimits in each variable. In particular, any
object tensored with an initial object ofM is an initial object ofM. Applying the
pushout-product axiom to the map ∅ → X in either variable, we find that the two
functors in question preserve cofibrations and acyclic cofibrations. By Ken Brown’s
lemma, they also automatically take weak equivalences between cofibrant objects to
weak equivalences.

This connects with our work in the the previous section, which only asked that the
tensor product preserved equivalences in each variable. The pushout-product axiom
for monoidal model categories looks stronger, in principle, but Proposition 12.14 has
a partial converse.

18Analogously to the previous section, this means that the symmetric monoidal structure must have left
and right function objects which are adjoints in each variable.
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Proposition 12.15. Suppose that j : B→ B′ is a map such that (−)⊗B preserves acyclic
cofibrations and that (−)⊗B′ preserves weak equivalences between cofibrant objects. If i
is an acyclic cofibration with cofibrant source, then the pushout-product map i � j is an
equivalence.

Proof. Without loss of generality, let i : A→ A′ be an acyclic cofibration and j : B→
B′ a cofibration, with all four objects cofibrant. Then the pushout-product i � j is
part of the following diagram:

A′ ⊗B

�� $$
A⊗B

∼
::

$$

P
i�j // A′ ⊗B′

A⊗B′
∼

OO

∼

::

The upper-left and lower-right maps are equivalences because they are obtained
by tensoring an acyclic cofibration with the cofibrant objects B and B′ . The map
A⊗B′→ P is the pushout of an acyclic cofibration, and so it is an acyclic cofibration.
Therefore, by the 2-out-of-3 axiom the map i � j is an equivalence.

The adunction isomorphism HomM(X ⊗Y ,Z) �HomM(X,FR(Y ,Z)), and sim-
ilarly for the left, allows us to rephrase the pushout-product axiom in multiple
ways.

Proposition 12.16 ([Hov99, 4.2.2]). The following are equivalent for a model category
M with a closed monoidal structure.

1. The model categoryM satisfies the pushout-product axiom.

2. For a cofibration i : A→ B and a fibration p : X→ Y inM, the induced map

FR(B,X)→ FR(B,Y )×FR(A,Y ) FR(A,X)

is a fibration, which is acyclic if either i or p are.

3. For a cofibration i : A→ B and a fibration p : X→ Y inM, the induced map

FL(B,X)→ FL(B,Y )×FL(A,Y ) FL(A,X)

is a fibration, which is acyclic if either i or p are.

Corollary 12.17 ([Hov99, 4.2.5]). Suppose that M is a cofibrantly generated model
category with a closed monoidal structure, a set I of generating cofibrations and J of
generating acyclic cofibrations. Then the pushout-product axiom forM holds if and only
if the pushout-product takes I × I to cofibrations inM and takes both I × J and J × I to
acyclic cofibrations.

41



Because left Bousfield localization doesn’t change the cofibrations in a model
structure, one is reduced to a few key verifications.

Proposition 12.18. Suppose thatM is a (symmetric) monoidal closed model category with
left Bousfield localization M′ . Then M′ is compatibly a (symmetric) monoidal model
category if and only if, for cofibrations i and j such that one is acyclic, the pushout-product
map i � j is acyclic.

If M′ is cofibrantly generated, then it suffices to check that the pushout-product of
a generating acyclic cofibration with a generating cofibration, in either order, is a weak
equivalence.

Remark 12.19. If the generating cofibrations and generating acyclic cofibrations ofM′
have cofibrant source, then by Proposition 12.15 we only need to show that tensoring
with the sources or target of any map in I or J takes generating cofibrations inM′ to
weak equivalences.

Remark 12.20. Bousfield localization of stable model categories has been more
extensively studied by Barnes and Roitzheim [BR14, BR15]. To have homotopical
control over commutative algebra objects in a symmetric monoidal model category,
one needs to obtain control over the extended power constructions; see [Whi].

12.3 Monoidal ∞-categories

We will begin by giving a brief background on monoidal structures on ∞-categories
which is light on technical details.

Recall that a multicategory O is equivalent to the following data:

1. a collection of objects of O;

2. for any object Y and indexed set of objects {Xs}s∈S of O, a spaceMapO({Xs}s∈S ;Y )
of multimaps; and

3. for a surjection p : S→ T of finite sets, natural composition maps

MapO({Yt}t∈T ;Z)×
∏
t∈T

MapO({Xs}s∈p−1(t);Yt)→MapO({Xs}s∈S ;Z)

that are compatible with composing surjections S→ T →U .

Remark 12.21. As a special case, for σ a permutation of S there is an isomorphism
MapO({Xs}s∈S ;Y )→MapO({Xσ (s)}s∈S ;Y ), and the composition operations are ap-
propriately equivariant with respect to these isomorphisms.

For such a multicategory, we could give a prototype definition of an O-monoidal
∞-category C as an enriched functor from O to ∞-categories. This data specifies,
for each object X of O, a category CX . For each object Y and indexed set {Xs}s∈S of
objects, there is a specified continuous map from MapO({Xs}s∈S ;Y ) to the space of
functors

∏
s∈S CXs →CY . Moreover, these maps must be compatible with composition

on both sides.
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The definition of an ∞-operad O and an O-monoidal ∞-category C is slightly
different from this [Lur17, §2.1]. Roughly, it is an unstraightened definition where the
spaces of multimaps in O and the product functors on C are only specified up to
a contractible space of choices; the technical details are related in spirit to Segal’s
work [Seg74]. Even though the functors induced from O are specified only up to
contractible indeterminacy, it still makes sense to ask about compatibility of the
monoidal structure with localization.

The following result very general result encodes the situations under which
homotopical localization is compatible with monoidal structures.

Theorem 12.22 ([Lur17, 2.2.1.9]). Let O⊗ be an∞-operad and let C be an O-monoidal∞-
category. Suppose that for all objects X of O we have a localization functor LX : CX →CX ,
and that for any map α : {Xs}s∈S → Y in O⊗ the induced functor

∏
s∈S CXs → CY

preserves L-equivalences in each variable. Then there exists an O-monoidal structure on
the category LC of local objects making the localization L : C → LC into an O-monoidal
functor.

Corollary 12.23. Suppose that C is a (symmetric) monoidal ∞-category and that L is a
localization functor on C such that L(X ⊗Y )→ L(LX ⊗ LY ) is always an equivalence.
Then the subcategory LC of local objects has the structure of a (symmetric) monoidal
∞-category and any localization functor L has the structure of a (symmetric) monoidal
functor.

Example 12.24. In the category of spaces, we can use the mapping space adjunctions
and find that for any S-local object Z, we have

Map(X ×Y ,Z) 'Map(X,Map(Y ,Z))

'Map(X,Map(LY ,Z)

'Map(X ×LY ,Z)

and similarly on the other side, showing that LX ×LY is a localization of X ×Y . This
gives the cartesian product on spaces the special property that it is compatible with
all localization functors.

Example 12.25. Fix an En-operad O and an O-algebra B in spaces representing an
n-fold loop space. Consider the category C of functors B → S , viewed as local
systems of spaces over B. Then the category C has a Day convolution, developed by
Glasman [Gla16] in the E∞-case and by Lurie [Lur17, §2.2.6] in general, making C
into an O-monoidal category. The category C is equivalent (via unstraightening) to
the category of spaces over B. In these terms the O-monoidal structure is given by
maps

O(n)→Map(Bn,B)

→ Fun((S/B)n,S/B)

that respect composition. Here f ∈ O(n) first goes to f : Bn→ B, then to the functor

sending {Xi → B} to the map
∏
Xi → Bn

f
−→ B. An O-algebra in C is equivalent to

an En-space X with a map X→ B of En-spaces.

43



Suppose L is a Bousfield localization on spaces, and consider the associated
pointwise localization on the functor category C (which corresponds to the fiberwise
localization on spaces over B). All operations in O are, up to homotopy, composites
of the binary multiplication operation, and so it suffices to show that this preserves
localization. However, if the maps Xi → B have homotopy fibers Fi , then the
homotopy fiber of the map X1 ×X2→ B×B→ B is, up to equivalence, the geometric
realization of the bar construction

B(F1,ΩB,F2).

Since any localization preserves homotopy colimits and products of spaces, this bar
construction preserves it also. Therefore, fiberwise localization is an En-monoidal
functor on the category of spaces over B.19
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