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Abstract

If E is a connective ring spectrum, then Pstragowski’s category Syng of
E-synthetic spectra is generated by the bigraded spheres S*/. In particular, it is
equivalent to the category of modules over a filtered ring spectrum.

1 Introduction

Our goal in this short note is to prove the following result.

Theorem L1. IfE is connective then the category Syny of E -synthetic spectra from [Pst22]
is cellular: it is generated under homotopy colimits by the bigraded spheres S*1.

The bigraded spheres then serve as a set of compact generators for Syny, and
thus the Schwede-Shipley theorem applies; this allows us to exhibit the synthetic
category as a category of left modules over a Z-graded ring spectrum R, whose
bigraded coefficient groups are 71“(50’0).

Our argument roughly parallels that of [Pst22, 6.2] for the case of M U-modules.
It relies relatively heavily on the classification of finitely generated abelian groups;
more specifically, it would apply to a category of “E-synthetic R-modules” for any
connective commutative ring spectrum R such that 7ty R is a principal ideal domain. (It
specifically does not apply to the spectra of Patchkoria-Pstragowski [PP23]; those are
no longer generated by finite X with E,X projective.) We are grateful to Pstragowski
for their comments.

Throughout this paper we assume that E is an associative ring spectrum and
that E, is connective. Associated to this, there is a natural retraction of graded rings
Ey — E. — E, the latter map realized by a map E — HEy of ring spectra. Finally,
when we refer to a category of modules over a ring, graded ring, or ring spectrum,
we are referring to left modules.

2 Graded projective modules

The coefficient ring E, is a connective graded ring, and so the following is a standard
result.



{prop:detectprojectivity}
Proposition 2.1. The following are equivalent for a bounded-below graded E,-module M :

o M is projective as an E,-module.
* M is of the form E, ®g, P for a projective graded Eq-module P.

o The graded Ey-module M = Ey ®g M is projective, and M is isomorphic to
E.®g, M.

* The graded Ey-module M = Eq ®p_M is projective, and the bigraded Tor-groups
Torgjq(M ;Eq) are zero if the homological degree p is positive.
The following is a relatively immediate consequence.

Corollary 2.2. Suppose f: M — N is a map of projective graded E.-modules, and the
map f: M — N is a split injective map of graded E-modules. Then f is a split injective
map of graded E, -modules. In particular, N/M is also projective.

{cor:splitinjection}

tiyahhirzebruchprojective}
Proposition 2.3. Suppose X is a bounded-below spectrum. Then E,X is a projective
E.-module if and only if:

o the ordinary homology H,(X; Ey) is a projective Ey-module, and
e the map E.(X) — H.(X;Ey) is surjective.
Proof If E. X is projective, then the Kiinneth spectral sequence
Tor’: (Ep, E.X) = H.(X; Eo),
induced by HEy A X =~ HEq Ag (E A X), degenerates to an isomorphism
H.(X;Ey) = Eq®g, E.X,

and so the conditions are clearly necessary. We now show that they are sufficient.
Smashing X with the Postnikov tower of E gives, by boundedness of X and E, a
convergent Atiyah-Hirzebruch spectral sequence
Hy(X;Eq) = EpigX

compatible with the E,-module structure. If H,(X;Eg) is a projective graded E -
module, then the Kiinneth spectral sequence

E
Tor.! (Ey, HJ(X; Ey)) = H.(XGE,)
degenerates to an isomorphism
Hy(X;Eq) = E; ®p, Hy(X;Ey),
and so the spectral sequence is of the form

E; ®E, Hy(X;Eg) = Ep g X.
If the map E.X — H,(X;E) is surjective, then the elements of H,(X;E) are per-
manent cycles which generate the left-hand side as an E,-module, and hence the
spectral sequence collapses. By projectivity, there are no extension problems as
E.-modules. ]



{prop:mooresurjective}

{prop:mooreprojective}

3 Moore spectra

Proposition 3.1. For any abelian group A with associated Moore spectrum MA, the map
E.MA — H,(MA;E) is surjective.

Proof The map E,MA — H,(MA;E) is the edge morphism in the Atiyah-Hirzebruch
spectral sequence H,(MA;E,) = E.MA. This degenerates due to sparsity; for a
Moore spectrum M A, only Hy(MA;-) and Hy(MA;~) can be nontrivial. O

Proposition 3.2. If A is finitely generated, then E,MA is a projective E, -module if and
only if Eg ® A is a projective Eq-module.

Proof If E,MA is a projective E,-module, then it is also flat and this induces a
Kiinneth isomorphism H,(MA;Eq) = Ey ®g, E.MA. As a result, H,(MA;E) is a
projective graded Eg-module, and in particular Hy(MA, Eq) = Eg® A is a projective
Ey-module.

Now we need to prove the converse. Since MA & MB ~ M(A @ B), by the
classification of finitely generated abelian groups it suffices to prove the case where A
is cyclic.

If A=7Z, then EMZ = E, is a projective E,-module and E® Z = E; is a
projective Eg-module.

If A = Z/m, with associated Moore spectrum S$/m, then we have an exact
sequence

0 — H,(S/m;Ey) — Ey — Eo — Hy(S/m;Eg) — 0

of Eg-modules. If Eg ® Z/m is projective, this last term splits: there is an idempotent
e € Eg such that me =0 and e=1 mod m. This gives us a splitting

Ey = Ey[1/m]x Eq/m
of left Ey-modules. Our exact sequence therefore determines isomorphisms
Ho(S/m;Eg) = Hy($/m; Eg) = Eo/m.

In particular, both are projective Ey-modules.
Further, this idempotent gives us a splitting

E.=E.[1/m|®E./m
of left E,-modules, and the long exact sequence
...>E,5E, — E (&S/m) — ...
determines a short exact sequence
0 — E./m— E.(S/m)— XE,/m—0

of E,-modules. In particular, the outside terms are projective and hence so is E,(S/m).
(Alternatively, we could be less explicit and apply Propositions 2.3 and 3.1 to conclude
that E,(S/m) is projective.) O



prop:projectivefiltration}

{cor:moorefiltration}

4 Filtrations

Proposition 4.1. Let YO — Y! — Y2 — ... — Y™ =% be a sequence of maps of spectra,
and write F* for the fiber of Y — Y**1. Suppose that we have the following properties:

. E*(YO) is a projective E,-module; and

o the maps H,(Y*;Eq) — H.(Y**1; E) on ordinary homology are split surjections of
graded Eq-modules.

Then the sequences 0 — H.(F&Ey) — H(Y5 Ey) — H (YH;Eg) — 0 are split exact
sequences of projective graded E-modules. If, in addition, we have that

o the maps E,,Fk - H*(Fk;EO) are surjective,

then the sequences 0 — E,FX — E,YK — E,Y’*' — 0 are split exact sequences of
projective E,-modules.

Proof. Proposition 2.3 shows that H,(Y?; Eg) is a projective graded Ey-module, and
the split surjection criterion implies that

0 — H,(FXEg) - H,(Y Eg) > H(Y*E) > 0

is always a split exact sequence of graded Ey-modules. In particular, by induction on
k we find that H,(FX; Eo) and H,(YX;Ey) are projective graded Ej-modules.

If we additionally know that E.(FXy — H,(FKEy) is surjective, then the modules
E,(F¥) are projective by Proposition 2.3. Applying Corollary 2.2 inductively, we
find that 0 — E,F¥ — E, YK — E,Y¥*1 — 0 are split exact sequences of projective
E.-modules. ]

Corollary 4.2. Suppose E is commutative and Y* — Y! - Y? ... 5 Y"=xisa
sequence of maps of spectra satisfying the above three criteria. Then the synthetic analogues
form cofiber sequences v(EX) — v(YK) = v(YK*1) in Syng.

Proof. By [Pst22, 4.23], a fiber sequence F¥ — Y* — Y**1 which is E,-exact becomes
a fiber sequence of v(F¥) — v(Y*) — v(Y**1) in Syn,. O

Any finite spectrum X, with integral homology concentrated in degrees n through
m, has a “Moore filtration”

X=X"5 X" 5. S5 X" S
such that the fiber F¥ = fib(X* — X**1) is a Moore spectrum XM (H(X)).

Corollary 4.3. Let X be a finite spectrum with a Moore filtration X" — X" — ... —
X™ — «, with fibers F* ~ Y*M(H X).

If E,(X°) is a projective E,-module, then the sequences 0 — E,F* — E XK —
E.X**1 = 0 are split exact sequences of projective E,-modules, and v(F*) — v(X*) —
v(XK*1) are cofiber sequences in Synp.



{lem:localizationcellular}

{lem:quotientcellular}

Proof On integral homology, the map H,(X*) — H,(X**!) is a split surjection (ex-
plicitly, the kernel is the degree-k part Hi(X)). The universal coefficient theorem
(in particular, that its splitting is natural in the coefficient group) then implies that
H,.(XKEy) » H (X**15E) is a split surjection of Ey-modules. Applying Proposi-
tion 4.1 and Proposition 3.1, we arrive at the result. O

5 Cellularity of Moore spectra

Throughout this section we assume that E is commutative so that we can work with
the category Syng of synthetic spectra.

Lemma 5.1. For any flat Z-module A, the synthetic analogue v(MA) of a Moore spectrum
is cellular.

Proof. We can construct MA from a resolution 0 — &;Z — &;Z — A — 0 of abelian
groups by lifting it to a cofiber sequence &;5 — &5 — MA. On E-homology, we
get a long exact sequence

"'—>€B]E*—>$[E*—>E*MA—>...

However, the kernel of the first map is Tor(E,, A), which is trivial, and so the above
is actually a short exact sequence. Therefore, the cofiber sequence is preserved by v
by [Pst22, 4.23], and so we have a cofiber sequence

®v(S) — o v(S) —» v(MA)
As a result, v(MA) is cellular. O

Lemma 5.2. Suppose that m is an integer such that Ey/m is a projective Ey-module.
Then the synthetic spectrum v(S/m) is cellular.

Proof. The object v(S[1/m]) is cellular by Lemma 5.1. The fiber sequence
IS/m® - S — §[1/m],
upon E,, becomes a long exact sequence including the maps
> E(S$/m®) — E, — E,[1/m].
However, recall from Proposition 3.2 that we have a splitting
E,=E,[1/m]xE,/m.

The map E, — E,[1/m] is then identified with the projection onto a split summand;
hence the first term is identified with the complementary summand E,/m, and this is
a short exact sequence on E,. Therefore, the sequence

v(EI8/m™®) — v(S) — v(S[1/m])

is a fiber sequence. The second two terms are cellular, and hence so is the first.



{cor:fingen}

Finally, the fiber sequence
21S/m™ - $/m — S/m™
becomes, on E,, a short exact seqence
0— E./m— E.(S/m)— XE,/m—0
and therefore by [Pst22, 4.23] we have a fiber sequence
V(ETIS/m™®) — v(S/m) — v(S/m™).

The outer two terms have just been shown to be cellular, and hence so is the middle
term, as desired. O

Corollary 5.3. Suppose that A is a finitely generated abelian group such that EyQ A is
projective over Ey. Given a Moore spectrum MA, then E,(MA) is a projective E,-module
and v(XXMA) is cellular.

Proof To prove that v(MA) is cellular, we can use the classification of finitely
generated abelian groups and apply the previous lemmas summand-by-summand. To
prove that v(X¥MA) is cellular, we recall that v(2XMA) ~ X5%y(MA), and so this
follows from cellularity of v(MA). O

6 Cellularity of synthetic spectra

We are now ready to prove that synthetic spectra are generated by bigraded spheres.

Proof of Theorem 1.1. (cf. [Pst22, 6.2]) The category Syng is a sheaf category, and so
generated under homotopy colimits by the Yoneda image: objects of the form v(X)
where X is finite and E, X is projective. It therefore suffices to prove that such v(X)
are cellular.

By Corollary 4.3, every such synthetic spectrum spectrum v(X) has a finite
filtration whose subquotients are of the form v(EZKMA) where A is a finitely generated
abelian group with Eqg ® A a projective graded Ej-module.

Finally, by Corollary 5.3, such Moore spectra v(XXMA) are cellular. O

Corollary 6.1. The category of E-synthetic spectra is equivalent to the category of left
modules over a Z-graded spectrum R, ~ mapg,, (S0, 500),

Proof. There is a lax symmetric monoidal functor Z — Syng, given by n > S
(The synthetic spectrum SO is the sheafification of the presheaf X — 7>_, map(X,$),
and so this is implied by lax symmetric monoidality of the Whitehead tower.) The set
of S%" are invertible compact generators for Syny as a stable category, and so the
functors

X mapSynE (SO,nl X)nez



determine a conservative functor Syny — Fun(Z,Sp) which preserves homotopy
limits and colimits. The monadicity theorem thus applies. The left adjoint is
(V) ez — @ $%"®Y,, and so the associated monad sends (Y,,),cz to

(D 525010,
n

= [@ mapgy,, (SO,m—n, SO,O) ®Y,
n

meZ meZ

However, this is equivalent to a monad
0, 0,0
Y, > mapg,, (S ., SMeY,

where ® is the Day convolution on Z-graded spectra, as desired. O

Remark 6.2. The functor 1+ S is actually a strong monoidal functor (Z, <) —
Syng, and the functor

X > mapg,,, (8%, X)

is thus a lax symmetric monoidal functor Syn; — Fun((Z,<)°?,Sp). The ring
spectrum R, is the image of the unit, and thus has the structure of a commutative
ring object in filtered spectra.
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