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Structured ring spectra and displays

We combine Lurie’s generalization of the Hopkins-Milleetrem with work of
Zink-Lau on displays to give a functorial construction oeaweriodicE, ring
spectraE, concentrated in chromatic layers 2 and above, assoc@mtedtainnx n
invertible matrices with coefficients in the Witt ring @b(E). This is applied to
examples related to Lubin-Tate and Johnson-Wilson spedfesalso give a Hopf
algebroid presentation of the moduli pfdivisible groups of height greater than
or equal to 2.

55P42; 55N22, 55P43, 14L05

1 Introduction

One of the most successful methods for understanding stable homotapy théts
connection to formal groups. By work of Quillen, a homotopy commutative and
associative ring spectrulR hasMU-homologyMU,R an algebra over the the Lazard
ring L, which carries a universal 1-dimensional formal group law, and Nté-
homology cooperations precisely provilftJ, R with rules for change-of-coordinates
on the formal group law.

In recent years much study has been devoted to the converse probleem &3ing

R with a formal group orR, can we reconstruct a ring spectriEnwhose associated
formal group lifts that orR? In addition, can more rigid multiplication (such as the
structure of anE., algebra) be imposed oB? Can these constructions be made
functorial?

There are several specific examples of spectra related to the chromadiiofiltin
stable homotopy theory for which this is of particular interest. The structiuea o
E.. algebra ork allows the construction of a symmetric monoidal model category of
E-modules, a highly useful tool, and allows for the studyeeélgebras. The complex
bordism spectrunMU , which carries a universal formal group law, hasan structure
and was one of the motivating examples for the definition of such a struciure.
Goerss-Hopkins-Miller theorend] showed the existence of canonical, functoial,
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ring spectraE,, associated to the Lubin-Tate universal deformations of heidgatmal
group laws over a perfect fields.

However, there are numerous other spectra in the chromatic approdebletsmo-
topy theory, carrying formal group laws of simple type, for whigk, structures are
not known to exist. The most prominent example is the Brown-PetersotrspeBP,
whose ring of homotopy groups is isomorphic to a polynomial t#g[v1, Vo, . . .].
This spectrum carries a univergadtypical formal group law and serves as the ba-
sis for much computational work. Other spectra arise from the height staditiin

of p-local formal group laws. Johnson-Wilson speci@n) have homotopy groups
Z)v1, - - - ,VEl] covering the strata of heights O through and truncated Brown-
Peterson spectra Bf) have homotopyZ[va, . . ., va] covering heights O through
andoco. (These definitions require making explicit choices of polynomial generator
vk of BP,, though several formal properties of these spectra are indepeoftre
choice.)

Of these, only certain specti(1) and their connective covers BE are classically
known to admitE,, structures, as they can be constructed from the periodic complex
K -theory spectrunKU and its connective cover. There exist sequences of maps

BP — BP(n) — E(n) — E,

classifying progressively more restricted formal group laws, and sawght regard
our problem as trying to lifE,, lifts of the Lubin-Tate rings to progressively more
global objects.

In 2005 Lurie announced a theorem that lifts formal group&ie ring structures,
generalizing the Goerss-Hopkins-Miller theorem. The application of thisréineo
requires extra data: an extension of the formal group to-divisible group. In
addition, thep-divisible group onR is required to satisfy a universality condition at
each point. This specifically can be applied to produce elliptic cohnomologyiésesnd
the theory of topological modular forms, and served as the basis faopsgoint work
with Behrens generalizing topological modular forms to moduli of higher-deicerl
abelian varieties that reach all chromatic levdls Point work with Hill showed that
a variant of BR2) at the prime 3 can be constructed by this method, \padivisible
group on an Atkin-Lehner quotient of the Shimura curve of discriminant7l.4

As the study ofp-divisible groups originated with their connection to abelian vari-

eties, from a geometric point of view these are some of the most natural faofilies

1-dimensionalp-divisible groups. However, one of the major obstructions to under-
standing the associated cohomology theories is that it rests on an undergtah
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Structured ring spectra and displays 1003

certain moduli of higher-dimensional abelian varieties, and in particular ¢halal
geometry. This presents barriers both because of the necessagydaukand because
these moduli seem to be intrinsically difficult. Moreover, from the point ofwié
homotopy theory one does not have as many of the “designer” tools afiltjecs 8],
which construct spectra with the explicit goal of capturing certain hometoggretic
phenomena.

The aim of this paper is to provide a method for constructiag ring spectra from
purely algebraic data. Specifically, theor&n2 allows the functorial construction of
even-periodicE,, ring spectra withrg = R from the data of certaim x n invertible
matrices with coefficients in the Wittring &. Thisis obtained using Zinkiisplayson

R [11], which correspond to certaip-divisible groups over SpeRj. This generalizes
the Dieudon@ correspondence betwe@rdivisible groups over a perfect field and
their associated Dieudodmodules, and in particular restricts to this structure at any
perfect residue fieldk. Due to restrictions on thp-divisible groups constructible by
these displays, the associated spectra are concentrated in chromatigheadggr than
or equal to 2. In sectiob we constructe., ring structures on spectra interpolating
between Lubin-Tate and Johnson-Wilson spectra.

The layout of this paper is as follows. In secti®we recall the definitions of displays
and nilpotent displays over a rifg from [11], specifically concentrating on those in
matrix form. We state the equivalence of categories between nilpotent disataly
formal p-divisible groups on SpeBj due to Zink and Lau. In sectioB we apply
Serre duality to obtain a classificationpfdivisible groups of dimension 1 and formal
height at least 2 orR, and give a presentation of the moduli of sugfdivisible
groups by a large Hopf algebroid. In sectidrwe study the deformation theory of
nilpotent displays in matrix form over a rirf§ and use this to give a criterion for these
to satisfy the universal deformation property. Specifically, a display inixétrm
determines a map to projective spa& ! that is formallyétale if and only if the
associategb-divisible group is locally a universal deformation. In secttowe recall
the statement of Lurie’s theorem and apply it to functorially obtain eveiogierring
spectra associated to certain displays. Finally, we relate this (&} ito [the work of
Gross and Hopkins on the rigid analytic period m8jp [n the specific case of a Lubin-
Tate formal group oveR = W(K) [uy, . . ., un—1], there is a choice of coordinates such
that the above map Sp&)(— P"~* induces a rigid-analytic map that agrees with the
Gross-Hopkins period map modulo the ideay,( . ., un_1)P.

We mention that Zink's theory of Dieudoérdisplays provides objects equivalent to
generalp-divisible groups over certain complete local rings. These could be ajplie
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produce homology theories associated to universal deformatignslivisible groups
of dimension 1 over a field, analogous to Lubin-Tate spectra, which aréh \wtudy
in their own right. However, our goal in this paper is to allow more global ratien
local constructions.

Notation. For a ringR, we write W(R) for the ring of p-typical Witt vectors oveR.

This carries Frobenius and Verschiebung maps W(R) — W(R), the Teichniller

lift [-]: R— W(R), and ghost mapsi: W(R) — R. We write Ir for the ideal of
definition (W(R)).

Acknowledgments. The author would like to thank Eike Lau, William Messing, and
Niko Naumann for discussions related to this material, as well as the orgarizer
participants of a mini-FRG op-divisible groups and stable homotopy theory at UIUC
in June 2009.

2 Displays

We will first briefly recall the classical Dieudoartorrespondence. L&tbe a perfect
field. The Dieudona module functoi is a contravariant equivalence of categories
betweenp-divisible groups over Spek) and finitely generated free modulds over
the Witt ring W(K) that are equipped with operatdfsandV satisfying the following
properties.

e F issemilinear: forx € W(k), me M, F(xm) = f(xX)F(m).
e Vs anti-semilinear: fox € W(k), me M, xV(m) = V(f (x)m).
e FV=VF=p.

Classical Dieudonatheory also incorporates duality. Egotdivisible groupG has a
Serre dualG", whose associated DieudanmoduleD(G") is isomorphic to the dual
module

D(G)' = Homyy(D(G), W(K))

equipped with Frobenius operat®f and Verschiebung operatéit. The covariant
Dieudonré module ofG is the Dieudona module ofG", and this provides a covariant
equivalence of categories between Dieudomodules ang-divisible groups.

Zink’s theory of displays is a generalization of the Dieudemorrespondence. How-
ever, over a non-perfect ring defining the mapVv is no longer sufficient. This is
instead replaced by a choice of “image”éf together with an inverse functiovi—*.
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Structured ring spectra and displays 1005

Definition 2.1 ([11, Definition 1]) A display over a ring R consists of a tuple
(P,Q,F,V~1), whereP is a finitely generated locally fre&V(R)-module, Q is a
submodule ofP, andF: P — P andV~1: Q — P are Frobenius-semilinear maps.
These are required to satisfy the following:

e IRPCQCP,

e the mapP/IrP — P/Q splits,

e Pis generated as W(R)-module by the image of 1, and

e VL(v(X)y) = xF(y) for all x € W(R), y € P.

If pis nilpotent inR, thenW(R) — R is a nilpotent thickeningl[1, Proposition 1.3],
and P being locally free onW(R) implies this is also true locally on Sp&)( In
addition,P/Q and Q/IrP are locally freeR-modules.

Therefore, locally on sucR we may choose a basi® |1 < i < h} of P such that
Q= IrP+ (ey+1, -+ ,en). We refer toh as the height and as the dimension of the
display, and these are locally constant on SBecAs in [11], in such a basis we may
define anh x h matrix (b;) as follows:

Fg = Zbijaforlgj <d,
Vg = > bjefor(d+1)<j<h
These determine all values BfandV—1:
Fg =V '(\(1)-g) = > (phyafor(d+1)<j<h,
VIV - g) = Y (xbjeforl<j<dxeW(R).
The image ofV~! generates all o if and only if this matrix is invertible, or
equivalently that its image under the projectiog: MW (R) — MR is invertible.

To aid calculation in sectiofhand further, we will refer to theversematrix B = (bij)_l
as a matrix form for the given display. Specifying the matrix form is equitaie
specifying the inverse matrix.

If R is a perfect field of characteristis, the operato’v—! has a genuine inverse
defining an anti-semilinear map: P — Q C P, and the maps satisiyF = FV = p.
Under these circumstances, if

-1_ _ | W
B —[U1U2],B—|:W2:|
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are block forms, then the operators reduce to the classical opefatarsl V on a
Dieudonré module which is free ove¥ (k) with basis{e }, and these operators have
the matrix expression

[t [ e [ s

A map between two displays isW(R)-module mapP — P’ preserving submodules
and commuting withF and V~. Given an isomorphismy from (P,Q,F,V~1)
to (P, Q,F,(V)™1), the operator§’ and {')~! are determined uniquely by’ =
¢F¢~1 and similarly forV’. If these displays have matrix fornBsandB’ respectively,

we can writeg in the block form
a|vb
(b - I: c :| Y

and calculate that the matrix form for the displdf,@, pFo—1, V1o~ 1) is given
by the change-of-coordinates formula

, fa | b alvb1™!
@ B:[p-fc fd}B'[c d} '

The associated map of displays induces the map of modyles® — Q' /IgrP’ given
in matrix form bywg(d).

Given a matrix formB, let B be the b — d) x (h — d) matrix in R/(p) which is the
image of lower-right corner dB under the projectio®W(R) — R/(p). We say that the
display isnilpotentif the product

f"B...f°B-fB-B
is zero for somen > 0. (This is independent of the choice of basis, as it is equivalent
to the semilinear Frobenius map acting nilpotently on the quotie@o§ (p) + IrP.)

Heref is the Frobenius oR/(p) applied to each entry of the matrix. A general display
over R is nilpotent if it is locally nilpotent in the Zariski topology.

Define a formalZy-algebra to be a topological ring that is complete and separated
in the | -adic topology for an ideal of definitioh containingp. We refer to a display
on a formalZ,-algebraR = lim R/I¥ as nilpotent if its restrictions to thB/I¥ are
nilpotent.

Theorem 2.2 ([11, Theorem 9], 10, Theorem 1.1]) If R is a formalZ,-algebra,
there is a (covariant) equivalence of categories between nilpotentysplarR and
formal p-divisible groups orSpf(R).
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Structured ring spectra and displays 1007

Remark 2.3 Under this correspondence, the Lie algebra ofgikdivisible group as-
sociated to a display?( Q, F, V1) is the locally freeR-moduleP/Q (see immediately
following [11, Theorem 4]).

3 Moduli of 1-dimensional p-divisible groups

Beginning in this section we specialize to the case of topological interest: thigy thie
1-dimensionap-divisible groups. Unfortunately, there are very few 1-dimensigaal
divisible groups to which Theoregh2applies. The only ones satisfying the conditions
of Lurie’s theorem (seB.1) are analogues of the Lubin-Tate formal groups.

However, the category gi-divisible groups has a notion of duality, compatible with a
corresponding duality on the display. Serre duality is a contravarianegalbalence

of the category ofp-divisible groups over a general ba¥ethat associates to p-
divisible group G of constant heighth and dimensiond a new p-divisible group
GY = Hom(G, Gn,) of heighth and dimensiorh — d. This equivalence takes for-
mal p-divisible groups top-divisible groups whose Verschiebung endomorphism is
topologically nilpotent. Over an algebraically closed field, this is equivalerit to
containing no subobjects of height 1 and dimension 1. There is a compatible no
tion of duality for displays {1, 1.13, 1.14], sending a display,(Q,F,V~1) to a
new display P, Q', F',V~!) whereP' = Hom(P, W(R)) and Q' is the submodule of
maps sending into Ig. The operatorst and V—! are determined by the formula
(V) (VIX) = f(x) for f € Q', x € Q.

Composing this duality equivalence with Theor2rg, we find the following.

Corollary 3.1 If R is a formalZy-algebra, there is a contravariant equivalence of
categories between nilpotent displays of helgkand dimensiorth — 1) overR and
p-divisible groups of dimensioh and formal height at leag on SpecR).

Under this correspondence, the Lie algebra of gheéivisible group associated to a
display(P, Q,F,V~1) is the locally freeR-moduleHomg(Q/IrP, R), and the module
of invariant1-forms is isomorphic t&Q/IrP.

Remark 3.2 In particular, thep-divisible group associated to a display in matrix form
B, with basise; . .. e,, has a canonical nowhere-vanishing invariant 1-farnvhich

is the image of, in Q/IrP, and a change-of-coordinates as in equatijra¢ts onu

by multiplication bywp(d).
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We can use this data to given a presentation for the modufi-divisible groups
of height > 2. We recall that the Witt ring functoW is represented by the ring
W = Z[ag, a1, a,...].

Proposition 3.3 Displays in matrix form of heighh and dimensionh — 1) are
represented by the ring

A= Z[(Bn)i, detd) 1] = WE [de5) Y]
The indices range overc N, 1 <i,j < h. The elementle{( () is the determinant of
the matrix((5o)jj) -

Isomorphisms between displays are represented by the ring

I = Al(¢n);, det(¢) ] = Ae W [det(9) Y]
The indices range over € N, 1 < i,j < h, with the convention thalpo);; is zero if
1<i < (h—1),j=h. The elementief(¢) is the determinant of the matr{X¢o);).

The ideald = (p, (Go)nn) Of A is invariant. A display represented By— R for R a
formal Zy-algebra is nilpotent if and only if it factors through the completiorhct
this ideal.

Proof The ringW®"™ represents the functor
R+— {h x h matrices with entries iV (R)},

and so the ringA represents x h invertible matrices ;) = B with entries in the
Witt ring. Similarly, the ringI" represents pairs of a display in matrix form and an
isomorphism to a second display in matrix form, according to the changeeufliinates
formula (1).

The change-of-coordinates formula, még, takes Sn, to a unit times itself, and
therefore the idealp( (5o)nn) is invariant.

SupposeR is aZ/pk-algebra andA — R represents a matri, which we view as the
matrix form of the display. The display is nilpotent as in sec@ahand only if

(Bo)h- - - (Bo)s, - (o)

is zero inR/(p) for somen. This is equivalent to {p)nn being nilpotent inR, and
so the display is then nilpotent ov&if and only if the mapA — R factors through
a continuous mag\" — R. The corresponding statement for forniaj-algebras
follows. m|
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Structured ring spectra and displays 1009

Corollary 3.4 The pair(A,T) forms a Hopf algebroid, and the completioh®, ')
at the invariant ideal has an associated stack (in the flat topology) isomorphic to the
moduli of p-divisible groups of heighih, dimensionl, and formal height at leagt

Proof The existence of a Hopf algebroid structure énl() is a formal consequence
of the fact that this pair represents a functor from rings to groupoids.

Let Mp(h) be the moduli stack op-divisible groups of heighh and dimension
1. The universal nilpotent display o gives rise to a natural transformation of
functors SpfA") — Mp(h). Theorem3.1implies that the 2-categorical pullback
SPf(A™) x a,hy SPTA™), representing a pair of nilpotent displays in matrix form with
an isomorphism between the associgpedivisible groups, is Spi{").

The resulting natural transformation of groupoid valued functors frempéir (Spf&™), Spf(C"))
to Mp(h) is fully faithful by Theorem3.1, and hence fully faithful on the categories

of descent data for any cover. Therefore, it remains to show that tipefrmia the
associated stack is essentially surjective. Givemrdivisible groupG on a formal
Zp-schemeX of heighth, dimension 1, and formal height at least 2, there exists a
Zariski open cover oX by affine coordinate charts S} — X small enough that

each pullback ofs to Spf(R;) can be represented by a display in matrix form. Equiva-
lently, there are factorizations SEj — Spf(A") — Mp(h). It follows that A", T")

gives a presentation of the moduli as desired. O

Remark 3.5 The Hopf algebroid described is unlikely to be the best possible. Zink’s
equivalence of categories shows that locally in the Zariski topology, nergép-
divisible group can be described in matrix form; there are more canoni¢gkrftams
locally in the flat topology.

For example, ifh = 2 then a general matrix form
a ]

v 0]

(with § topologically nilpotent) can be canonically reduced to the form
0 1]

,}/l 5/ ’

and by adjoining elements R to obtain a solution of?t = t+/ we obtain a faithfully
flat extension in which the matrix can canonically be reduced to the form

01
el
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However, it is not immediately clear whether the resulting Hopf algebroid wioave:
any flatness properties. The existence of canonical forms at higlgrtieas well as
more explicit determination of the associated Hopf algebroids, merits futtiiny. s

4 Deformation theory

In this section we briefly study the deformations of displays in matrix form. We no
that [11] has already fully interpreted the deformation theory of displays in terms of
the deformations of the Hodge structu@gIgP. The approach there is specifically in
terms of fixing deformations of andV~—! and classifying possible deformations of
the “Hodge structureQ. For calculational reasons we will instead fix the deformation
of Q and study possible deformations of the operators.

Let GL, C Agzp be the group scheme bfx h invertible matrices. There is a projection
map Spedd) — GLy classifying the map that sends a display represented by a matrix
B € GLn(W(R)) to the matrixwg(B). Let p: GL, — P"1 be the projection map
sending a matrix/;) to the point with homogeneous coordinatgg[: Bon : ... : Shn).

Let (A, T") be the Hopf algebroid representing displays in matrix form, as in Proposi-
tion 3.3

Theorem 4.1 Let k be a field of characteristip, and Speck) — Specf) C
Spec(/\/)h2 be a point that defines a nilpotent display okewith matrix form B.
The composite magpech) — GL, — P"~1 maps the set of isomorphism classes of
lifts of this display tok[e]/(¢?) bijectively to the set of extensions of the composite
Speck) — P"-1 to Speckle]/(€?)), i.e. the tangent space Pﬁfl at Speck).

Proof Suppose we are given the matrix foBrof a display ovek, and write in block

form
a|p

(Nilpotence of the display forces the final entry to reduce to zeta)irGiven any lift
of the display ork to a display ork[¢] /e?, Nakayama’s lemma implies that any lift of
the basis of the display gives a basis of the lift, whose matrix form is a lift afntieix
form overk.

Lifts of the matrix form B to k[¢]/e? are precisely of the fornB + s where s is
a matrix in W(ek), as any such element is automatically invertible. Applying the
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change-of-basis formuld), we find that the lifts isomorphic to this one are of the form

([t e o (i [2R5])

for a, b, ¢, d matrices inW(ek). The idealW(ek) is square-zero and annihilated by
f, so this reduces to

o+ (o [Gfe]o-o[eri])

The space of all isomorphism classes of lifts is therefore the quotiévit, GV (ek)) by
the subspace generated by elements of the form

o(- [l el - [5])

As B is invertible, this subspace consists of the h matrices inW(ek) whose final
column is congruent to a multiple of the final column®{mod IR).

However, this coincides with the kernel of the (surjective) map on relatingent
spaces Spegj — P"-1 over Zyp at Speck). ad

Corollary 4.2 Suppose that we are given a dispk; Q, F,V~1) of heighth and

dimension(h — 1) over a formalZy-algebraR in matrix form (3j). ThenR gives a

universal deformation of the associatedlimensionalp-divisible group at all points
if and only if the mapSpecR) — P%;l given by

[Wo(B1h) = Wo(B2n) = - - - - Wo(Bhn)]

is formally étale.

Proof The ring R gives a universal deformation of the associapedivisible group
at a residue field Spdd(= x if and only if the completed local ring?} is mapped
isomorphically to the universal deformation ring of tpedivisible group. Ifk is

perfect, this is isomorphic to a power series ridKk)[us, ..., un—1]. It suffices to
check that the map Sg®{ — Mp(h) is formally étale at geometric points. In

particular,R gives a universal deformation at a geometric paititand only if:

o Spf(R) is formally smooth ovefZ, atx, and

o the relative tangent space of SBf(over Z, at x, which is the set of lifts
Speck[e] /%) — Spf(R), maps isomorphically to the set of lifts of the display
to k[e] /€.
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However, becaus@%1 is formally smooth over Sp#), the map SpfR) — P%gl is
formally étale at Speg] if and only if:

o Spf(R) is formally smooth ovefZ, atx, and

o the relative tangent space of SRJ(over Z, at x maps isomorphically to the
tangent space df} ! at x.

By the previous theorem, these conditions coincide. a

5 Associated spectra

We recall a statement of Lurie’s generalization of the Goerss-HopkitisrNheorem
(as yet unpublishedy]. We write Mp(h) for the moduli of p-divisible groups of
heighth and dimension 1 Mgg for the moduli of 1-dimensional formal groups, and
Mp(h) — Mg for the canonical map representing completion at the identity.

Theorem 5.1 (Lurie) Let X' be an algebraic stack, formal ovég, equipped with a
morphism
X — Mp(h)

classifying ap-divisible groupG. Suppose that at any poirtc X, the complete
local ring of X atx is mapped isomorphically to the universal deformation ring of the
p-divisible group ax. Then the composite realization problem

X = Mp(h) — Mg

has a canonical solution; that is, there is a she& . pfeven weakly periodi& on the
étale site ofX with Eg locally isomorphic to the structure sheaf and the associated
formal group isomorphic to the formal group™ . The space of all solutions is
connected and has a preferred basepoint.

We may then combine this result with Corollady2 to produceE.,-ring spectra
associated to schemes or stacks equipped with an appropriate coveoriynate
charts carrying displays. Rather than stating in maximal generality, we have th
following immediate consequence.

Theorem 5.2 SupposeR is a formal Zy-algebra andB is the matrix form of a
nilpotent display oveR, with associateg-divisible groupG. If the associated map

Geometry &7opology XX (20XX)



Structured ring spectra and displays 1013

SpfR) — PZl is formally étale, then there is df., even-periodi& = E(R, B) with
Eo = R, E» = Q/IRP, and formal group isomorphic to the formal groGf" .

Given matrix formsB, B’ of such displays oveR andR respectivelyg: R — R
a ring map, andp a change-of-coordinates frogiB to B’ as in equation), there
exists a map oE,, ring spectréE(R, B) — E(R, B') inducingg on mo and lifting the
associated ma@' — (G')°". This construction is functorial iB' as an object over
B.

Proof The existence oE(R, B) follows from Theorenb.1and Corollary4.2 Given
any such map SpR) — Spf(R), the maps Sp®) — P"1 and SpfR) — P"1 both
being formallyétale forces SpK') to be formallyétale over Spf). Lurie’s theorem
then implies that the map lifts.

We recall from remark3.2 that in matrix form there is a nowhere vanishing 1-form
u on the cotangent spad®@/IrP of the formal groupG™", implying that the tensor
powers of the cotangent bundle are all free. This implies the strictly eggneic
structure ork. |

Associated to a display not in matrix form, we would instead obtain a weakly even
periodic ring spectrum whosek2h homotopy group is thé'th tensor power of the
locally free moduleQ/IrP of invariant 1-forms.

Example 5.3 Leth > 2 andR = (Z[uy, - - - 7Uh—1])@),ul)- Then we have the following
display overR:

0 0 0 0 1 |

1 0 0 -+ 0O [up1]

010 0 [n—2]
@ . ;

0 0O 0 |u]

000 -~ 1 [u] ]|

Recall ] denotes the Teichiller lift of the elemenix. The associated map SB)(—
P"-1 is the map

[1:uUp_1:---:uq],

which is the completion of a coordinate chart Bf—! at the ideal ,u;) and is
therefore formallyétale. Because this display is given in matrix form, there is a
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canonical non-vanishing invariant 1-formand the resulting spectrum has homotopy
groups

(Z[ulv sy uh*l])a:),ul)[u:tl]'

Here |u| = 2. This spectrum carries an extension of a Lubin-Tate formal group to the
completion of a larger closed set in affinespaceA".

Example 5.4 Let S = W(Fy)[uy, - - ,uh,l]alu y» With the same display as given
h_ 1)’st root of unity in [, with

in the previous example. L&t be a primitive p
Teichmiller lift [{]. Then the groupF; = (¢) acts onS with generator, acting by

1— 1— 2 1— h—1
C-(Ug,...,Un—1) = (¢ Pug, ¢ Pug, ..., P ),

and the action of lifts to an action on the display via the change-of-coordinates matrix

¢ o 0 0]
0 "7 -~ 0 0
0 0 .. [ 0

0o o ]

This acts on the invariant 1-form by multiplication by(. This gives a well-defined
action on thep-divisible group associated to the display.

Similarly, there is a Galois automorphism of S which acts by the Frobenius on
W(Fy) and acts trivially on the generatorg. This automorphism preserves the
display, and satisfies the relation8 = id, ¢¢ = (Po. Together these give an action
of G= (IF;h X GaI]th/Fp) on Spf@E) which lifts to an action on the associatedlivisible

group.
Theorem5.2 implies that this lifts to an associated spectrum with an actio®s of
(More generally, there is an associated shedEgfring spectra on the quotient stack
[Spf(9//C].) The canonical invariant 1-formis acted on by, by left multiplication,

and acted ontrivially by . The homotopy fixed point object (whichis the global section
object of the quotient stack) has homotopy groups

G
(WE U1, - - -, U1l [U11)” = Z[va, .. Voo, Vi -

Herev, = upi—lui has degree® — 2. This has the homotopy type of a generalized
Johnson-Wilson spectrum after applicationkg®) Vv - - - v K(n)-localization.
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6 The period map

In section4 we associated to each display in matrix form ofRea map Sped) —
P"-1, In this section we will briefly relate this, in a specific choice of coordinates,
the rigid analytic period map constructed by Gross and HopKhsThe formulas of
this section appear as the special cése- Z,, of [2, .2.4].

Let k be a perfect field of characteristie Let R = W(K) [u, ..., un—1], equipped
with the ring homomorphisna: R — R which acts by the Frobenius oW (k) and
sendsu; to uP; this is a lift of the Frobenius map oR/p, and provides a splitting
R — W(R) commuting with the Frobenius. We writkfor the ideal (11, ..., uUn_1).
This ring R carries the display of equati@ This display is a universal deformation of
a 1-dimensional formal group of heightover the residue fielld, and so the associated
p-divisible group on SpR) is a universal deformation of the formal group on Sggec(
The map SpfR) — P"1 of sectiondisthe map [1 Up_1: --- : Ug].

To translate this into the (covariant) language of the Gross-Hopkins maypirsie
convert the display into the dual, covariant, display, which is a #&&)-module P!
with dual basise’, . .., €" and Hodge structur®' c P! generated byel, ..., e 1,
andlIg€". (This Hodge structure is determined by the linear functionge — ar.)
A straightforward calculation finds that the matrixBf with respect to this basis is

0 p 0 0 0]

0 0 p - 0 0

0 0 0 0 0
3) : :

0 0 0 p 0

0 0 0 0 1

[P Plun-1] plun—2] -+ pluz] [ud]]

As in [11]], there is a Dieudon crystal associated to this display. The data of such
a crystal produces: a modud = R ®@wg) P!, a Hodge structur®'/IgP* € M, a
o-semilinear Frobenius map: M — M, and ac-anti-semilinear mafy: M — M
satisfying FV = VF = p. Associated to this data there is a unique connection
Vi M — M® Qg for which F andV are horizontal.

We recall the construction of the period map. ket= W(k) ® Q. For a sufficiently
large ringR € SC K [Juy, ..., un—1] the horizontal sections of this crystal on Sggc(
form a vector spac¥ overK of rankh, containing a family of ranki(— 1) -submodules
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determined by the Hodge structure. The Gross-Hopkins period mapppedf(V)
sends a point of this rigid-analytic extension of Lubin-Tate space to thgéisiducture
at that point.

Let ¥ be the matrix ofF in this basis (the reduction mokk of equation3) and

U the image given by sending; to 0. There exists a deformation of the basis
{ei} to a basis of horizontal sections for this connection; i.e., there is a mAthx
GLn(K [ug, ..., un—1]) whose columns are annihilated ¥ satisfyingA = | modJ.
The expression in this basis for the linear functional cutting out the Hadgetsre is
given by the last row oA.

As F is horizontal, it takes horizontal sections to horizontal sections, andetemty-
ing the Frobenius to the columns Afgives a linear combination of the combinations
of A. Thisimplies that?A® = AB for some matrix8 with coefficients inK. Reducing
mod J we find thatB = ¥. Thus, such a matrix must satisfy= UATT (Taking

a limit of iterative substitutions recovessitself.)

As A=1 modJ, A° =1 modJP. Therefore, we findA = o7 mod JP. Applying
this to equatior8, we find

1 0 0 Q
0 1 --- 0 O
A= : | modJP.
0 0 1 0
[Uh-1 Up2 -+ U 1]

As a result, the Gross-Hopkins map classifying the Hodge structure igwmgto
[Uh_1:---:up: 1] modJP. With an appropriate choice of coordinates we can then
regard the map defined in sectidms an approximation of the Gross-Hopkins map.
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