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1

En ring spectra and Dyer–Lashof
operations

1.1 Introduction

Cohomology operations are absolutely essential in making cohomology an ef-
fective tool for studying spaces. In particular, the mod-p cohomology groups
of a space X are enhanced with a binary cup product, a Bockstein deriva-
tion, and Steenrod’s reduced power operations; these satisfy relations such as
graded-commutativity, the Cartan formula, the Adem relations, and the insta-
bility relations [92]. The combined structure of these cohomology operations
is very effective in homotopy theory because of three critical properties.

These operations are natural. We can exclude the possibility of certain
maps between spaces because they would not respect these operations.

These operations are constrained. We can exclude the existence of cer-
tain spaces because the cup product and power operations would be in-
compatible with the relations that must hold.

These operations are complete. Because cohomology is representable, we
can determine all possible natural operations which take an n-tuple of
cohomology elements and produce a new one. All operations are built,
via composition, from these basic operations. All relations between these
operations are similarly built from these basic relations.

In particular, this last property makes the theory reversible: there are mech-
anisms which take cohomology as input and converge to essentially complete
information about homotopy theory in many useful cases, with the principal
examples being the stable and unstable Adams spectral sequences. The stable
Adams spectral sequence begins with the Ext-groups Ext(H∗(Y ), H∗(X)) in
the category of modules with Steenrod operations and converges to the sta-
ble classes of maps from X to a p-completion of Y [1]. The unstable Adams
spectral sequence is similar, but it begins with nonabelian Ext-groups that
are calculated in the category of graded-commutative rings with Steenrod
operations [20, 19].

Our goal is to discuss multiplicative homotopy theory: spaces, categories,
or spectra with extra multiplicative structure. In this situation, we will see
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2 Tyler Lawson

that the Dyer–Lashof operations play the role that the Steenrod operations
did in ordinary homotopy theory.

In ordinary algebra, commutativity is an extremely useful property pos-
sessed by certain monoids and algebras. This is no longer the case in mul-
tiplicative homotopy theory or category theory. In category theory, commu-
tativity becomes structure: to give symmetry to a monoidal category C we
must make a choice of a natural twist isomorphism τ : A⊗B → B⊗A. More-
over, there are more degrees of symmetry possible than in algebra because
we can ask for weaker or stronger identities on τ . By asking for basic iden-
tities to hold we obtain the notion of a braided monoidal category, and by
asking for very strong identities to hold we obtain the notion of a symmetric
monoidal category. In homotopy theory and higher category theory we rarely
have the luxury of imposing identities, and these become replaced by extra
structure. One consequence is that there are many degrees of commutativity,
parametrized by operads.

The most classical such structures arose geometrically in the study of it-
erated loop spaces. For a pointed space X, the n-fold loop space ΩnX has al-
gebraic operations parametrized by certain configuration spaces En(k), which
assemble into an En-operad ; moreover, there is a converse theorem due to
Boardman–Vogt and May that provides a recognition principle for what struc-
ture on Y is needed to express it as an iterated loop space. As n grows, these
spaces possess more and more commutativity, reflected algebraically in ex-
tra Dyer–Lashof operations on the homology H∗Y that are analogous to the
Steenrod operations.

In recent years there is an expanding library of examples of ring spectra
that only admit, or only naturally admit, these intermediate levels of structure
between associativity and commutativity. Our goal in this chapter is to give
an outline of the modern theory of highly structured ring spectra, particularly
En ring spectra, and to give a toolkit for their study. One of the things that
we would like to emphasize is how to usefully work in this setting, and so we
will discuss useful tools that are imparted by En ring structures, such as oper-
ations on them that unify the study of Steenrod and Dyer–Lashof operations.
We will also introduce the next stage of structure in the form of secondary
operations. Throughout, we will make use of these operations to show that
structured ring spectra are heavily constrained, and that many examples do
not admit this structure; we will in particular discuss our proof in [48] that
the 2-primary Brown–Peterson spectrum does not admit the structure of an
E∞ ring spectrum, answering an old question of May [61]. At the close we will
discuss some ongoing directions of study.
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1.3 Operads and algebras

Throughout this section, we will let C be a fixed symmetric monoidal topolog-
ical category. For us, this means that C is enriched in the category S of spaces,
that there is a functor ⊗ : C × C → C of enriched categories, and that the
underlying functor of ordinary categories is extended to a symmetric monoidal
structure. We will write MapC(X,Y ) for the mapping space between two ob-
jects, and HomC(X,Y ) for the underlying set. Associated to C there is the
(ordinary) homotopy category hC, with morphisms [X,Y ] = π0 MapC(X,Y ).

1.3.1 Operads

Associated to any object X ∈ C there is an endomorphism operad EndC(X).
The k’th term is

MapC(X⊗k, X),

with an operad structure given by composition of functors. For any operad
O, this allows us to discuss O-algebra structures on the objects of C, maps of
O-algebras, and further structure.

If O is the associative operad Assoc, then O-algebras are monoid objects
in the symmetric monoidal structure on C. If O is the commutative operad
Comm, then O-algebras are strictly commutative monoids in C. However,
these operads are highly rigid and do not take any space-level structure into
account. Mapping spaces allow us to encode many different levels of structure.

Example 1.3.1. There is a sequence of operads A1 → A2 → A3 → . . .
built out of the Stasheff associahedra [91]. An A2-algebra has a unital binary
multiplication; an A3-algebra has a chosen homotopy expressing associativity,
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and has Massey products; an A4-algebra has a homotopy expressing a juggling
formula for Massey products; and so on. Moreover, each operad is simply
built from the previous: extension from an An−1-structure to an An-structure
roughly asks to extend a certain map Sn−3×Xn → X to a map Dn−2×Xn →
X expressing an n-fold coherence law for the multiplication [3]. This gives An
a perturbative property: if X → Y is a homotopy equivalence, then An-algebra
structures on one space can be transferred to the other.

Example 1.3.2. The colimit of the An-operads is called A∞, and it is equiv-
alent to the associative operad. It satisfies a rectification property. In a well-
behaved category like the category S of spaces or the category Sp of spectra,
any A∞-algebra is equivalent in the homotopy category of A∞-algebras to an
associative object.

Example 1.3.3. There is a sequence of operads E1 → E2 → E3 → . . . , where
the space En(k) is homotopy equivalent to the configuration space of ordered
k-tuples of points in Rn. These have various models, such as the little cubes
or little discs operads. The E1-operad is equivalent to the associative operad,
and the E∞-operad is equivalent to the commutative operad. We refer to an
algebra over any operad equivalent to En as an En-algebra. These play an
important role in the recognition principle [64, 17]: given an En-algebra X
we can construct an n-fold classifying space BnX; and if the binary multipli-
cation makes π0(X) into a group then X ' ΩnBnX. The relation between
En-algebra structures and iteration of the functor Ω is closely related to an
additivity result of Dunn [26], who showed that En+1-algebras are equivalent
to E1-algebras in the category of En-algebras.

Example 1.3.4. Associated to a topological monoid M , there is an operad
OM whose only nonempty space is OM (1) = M . An algebra over this operad
is precisely an object with M -action. This operad is usually not perturbative.
However, M can be resolved by a cellular topological monoid M̃ → M such
that O

M̃
-algebras are perturbative and can be rectified to OM -algebras. This

construction is a recasting of Cooke’s obstruction theory for lifting homotopy
actions of a group G to honest actions [25]; stronger versions of this were
developed by Dwyer–Kan and Badzioch [27, 4].

Example 1.3.5. There is a free-forgetful adjunction between operads and
symmetric sequences. Given any sequence of spaces Zn with Σn-actions, we
can construct an operad Free(Z) such that a Free(Z)-algebra structure is the
same as a collection of Σn-equivariant maps Zn → MapC(A⊗n, A).

If, further, Z1 is equipped with a chosen point e, we can construct an
operad Free(Z, e) such that a Free(Z, e)-algebra structure is the same as a
Free(Z)-algebra structure such that e acts as the identity: Free(Z, e) is a
pushout of a diagram Free(Z)← Free({e})→ Free(∅) of operads.

Example 1.3.6. In the previous example, let Z2 be S1 with the antipodal
action of Σ2 and let all other Zn be empty, freely generating an operad Q1 that
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we call the cup-1 operad. A Q1-algebra is an object A with a Σ2-equivariant
map S1 → MapC(A⊗2, A). The Σ2-equivariant cell decomposition of S1 allows
us to describe Q1-algebras as objects with a binary multiplication m and
a chosen homotopy from the multiplication m to the multiplication in the
opposite order m◦σ. In particular, any homotopy-commutative multiplication
lifts to a Q1-algebra structure.

In the category Sp of spectra, one of the main applications of En-algebras is
that they have well-behaved categories of modules, whose homotopy categories
are triangulated categories.

Theorem 1.3.7 (Mandell [59]). An E1-algebra R in Sp has a category of
left modules LModR. An E2-algebra structure on R makes the homotopy cat-
egories of left modules and right modules equivalent, and gives the homotopy
category of left modules a monoidal structure ⊗R. An E3-algebra structure
on R extends this monoidal structure to a braided monoidal structure. An E4-
algebra structure on R makes this braided monoidal structure into a symmetric
monoidal structure.

Theorem 1.3.8. An E1-algebra R in Sp has a monoidal category of bimod-
ules. An E∞-algebra R in Sp has a symmetric monoidal category of left mod-
ules.

1.3.2 Monads

If C is not just enriched, but is tensored over spaces, an O-algebra structure on
X is expressible in terms internal to C. An O-algebra structure is equivalent
to having action maps

γk : O(k)⊗X⊗k → X

that are invariant under the action of Σk and respect composition in the
operad O. If C has colimits, we can define extended power constructions

Symk
O(X) =

(
O(k)⊗Σk X

⊗k) ,
and an associated free O-algebra functor

FreeO(X) =
∐
k≥0

Symk
O(X).

An O-algebra structure on X is then determined by a single map FreeO(X)→
X. To say more, we need C to be compatible with enriched colimits in the
sense of [43, §3].

Definition 1.3.9. A symmetric monoidal category C is compatible with en-
riched colimits if the monoidal structure on C preserves enriched colimits in
each variable separately.
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Compatibility with enriched colimits is necessary to give composite action
maps

O(k)⊗

(
k⊗
i=1

O(ni)⊗X⊗ni
)
→ X⊗Σni

and make them assemble into a monad structure FreeO ◦FreeO → FreeO on
this free functor. In this case, O-algebras are equivalent to FreeO-algebras,
and Symk

O and FreeO are enriched functors.
When these functors are enriched functors, they also give rise to a monad

on the homotopy category hC. We refer to algebras over it as homotopy O-
algebras. This is strictly stronger than being an O-algebra in the homotopy
category; the latter asks for compatible maps π0O(n)→ [A⊗n, A], whereas the
former asks for compatible elements in [O(n)⊗Σn A

⊗n, A] that use O before
passing to homotopy. In the case of the En-operads, such a structure in the
homotopy category is what is classically known as an Hn-algebra [21].

This type of structure can be slightly rigidified using pushouts of free alge-
bras. For any operad O with identity e ∈ O(1), we can construct a homotopy
coequalizer diagram

Free(Free(O, e), e)⇒ Free(O, e)→ Oh

in the category of operads. An object A has an Oh-algebra structure if and
only if there are Σk-equivariant maps O(k)→ MapC(A⊗k, A) so that the as-
sociativity diagram homotopy commutes and so that e acts by the identity.
In particular, A has an Oh-algebra structure if and only if it has a homotopy
O-algebra structure; the Oh-structure has a chosen homotopy for the associa-
tivity of composition. For example, there is an operad parametrizing objects
with a unital binary multiplication, a chosen associativity homotopy, and a
chosen commutativity homotopy.

1.3.3 Connective algebras

In the category of spectra, the Eilenberg–Mac Lane spectra HA are charac-
terized by a useful mapping property. We refer to a spectrum as connective if
it is (−1)-connected. For any connective spectrum X, the natural map

MapSp(X,HA)→ HomAb(π0X,A)

is a weak equivalence.
This has a number of strong consequences. For example, we get an equiva-

lence of endomorphism operads EndSp(HA)→ EndAb(A), obtained by taking
π0:

EndSp(HA)k = Map(HA⊗k, HA) ' EndAb(A)k = Hom(A⊗k, A).

Thus, an action of an operad O on HA is equivalent to an action of π0O on
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A, and this equivalence is natural. This technique also generalizes, using the
equivalences

Hom(Hπ0R
⊗n, Hπ0R)

∼−→ Map(R⊗n, Hπ0R).

Proposition 1.3.10. Suppose R is a connective spectrum and O is an operad
acting on R. Then the map R → Hπ0(R) can be given, in a functorial way,
the structure of a map of O-algebras.

Example 1.3.11. If A is given the structure of a commutative ring, HA
inherits an essentially unique structure of an E∞-algebra. If R is a connective
and homotopy commutative ring spectrum, then it can be equipped with an
action of the cup-1 operad Q1 from 1.3.6. Any ring homomorphism π0R→ A
lifts to a map of Q1-algebras R→ HA.

1.3.4 Example algebras

Example 1.3.12. There exist models for the category of spectra so that the
function spectrum

F (Σ∞+ X,A) = AX

is a lax monoidal functor Sop × Sp → Sp, with the homotopy groups of AX

being the unreduced A-cohomology groups of X. The diagonal ∆ makes any
space X into a commutative monoid in Sop. If A is an O-algebra in Sp, then
AX then becomes an O-algebra.

Example 1.3.13. For any spectrum E, composition of functions naturally
gives the endomorphism algebra spectrum End(E) = F (E,E) the structure
of an A∞-algebra, and E is a left module over End(E). The homotopy groups
of End(E) are sometimes called the E-Steenrod algebra and they parametrize
operations on E-cohomology.

Example 1.3.14. The suspension spectrum functor

X 7→ Σ∞+ X = S[X]

is strong symmetric monoidal. As a result, it takes O-algebras to O-algebras.
For example, any topological groupG has an associated spherical group algebra
S[G].

Example 1.3.15. For any pointed space X, the n-fold loop space ΩnX is an
En-algebra in spaces, and S[ΩnX] is an En-algebra. For any spectrum Y the
space Ω∞Y is an E∞-algebra in spaces, and S[Ω∞Y ] is an E∞-algebra.

Example 1.3.16. The Thom spectra MO and MU have E∞ ring structures
[65]. At any prime p, MU decomposes into a sum of shifts of the Brown–
Peterson spectrum BP , which has the structure of an E4-ring spectrum [11].
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Example 1.3.17. The smash product being symmetric monoidal implies that
it is also a strong symmetric monoidal functor Sp× Sp→ Sp. If A and B are
O-algebras then so is A⊗B.

Example 1.3.18. For a map Q→ R of E∞ ring spectra, there is an adjunc-
tion

ModQ �ModR

between the extension of scalars functor M 7→ R ⊗Q M and the forgetful
functor. The left adjoint is strong symmetric monoidal and the right adjoint
is lax symmetric monoidal, and hence both functors preserve O-algebras.

This allows us to narrow our focus. For example, if E has an E∞-
algebra structure and we are interested in understanding operations on the
E-homology of O-algebras, we can restrict our attention to those operations
on the homotopy groups of O-algebras in ModE rather than considering all
possible operations on the E-homology.

1.3.5 Multicategories

A multicategory (or colored operad) encodes the structure of a category where
functions have multiple input objects. They serve as a useful way to encode
many multilinear structures in stable homotopy theory: multiplications, mod-
ule structures, graded rings, and coherent structures on categories. In this
section we will give a quick introduction to them, and will return in §1.7.

Definition 1.3.19. A multicategory M consists of the following data:

1. a collection Ob(M) of objects;

2. a set MulM(x1, . . . ,xd; y) of multimorphisms for any objects xi and y of
M, or more generally a set MulM({xs}s∈S ; y) for any finite set S and
objects xs, y;

3. composition operations

◦ : MulM({yt}t∈T ; z)×
∏
t∈T

MulM({xs}s∈f−1(t); yt)→ MulM({xs}s∈S ; z)

for any map f : S → T of finite sets and objects xs, yt, and z of M; and

4. identity morphisms idX ∈ MulM(x; x) for any object x.

These are required to satisfy two conditions:

1. unitality: idy ◦ g = g ◦ (idxs) = g for any g ∈ MulM({xs}s∈S ; Y); and

2. associativity: h ◦ (gu ◦ (ft)) = (h ◦ (gu)) ◦ ft for any S → T → U of finite
sets.
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The underlying ordinary category of M is the category with the same objects
as M and HomM(x,y) = MulM(x; y).

If the sets of multimorphisms are given topologies so that composition is
continuous, we refer to M as a topological multicategory.

A (topological) multifunctor F : M → N is a map F : Ob(M) → Ob(N)
on the level of objects, together with (continuous) maps

MulM(x1, . . . ,xd; y)→ MulM(Fx1, . . . , Fxd;Fy)

that preserve identity morphisms and composition.

Example 1.3.20. An operad is equivalent to a single-object multicategory.
For any object x in a multicategory M, the full sub-multicategory spanned
by x is an operad called the endomorphism operad of x.

Example 1.3.21. A symmetric monoidal topological category M can be re-
garded as a multicategory by defining

MulM(X1, . . . , Xd;Y ) = MapM(X1 ⊗ · · · ⊗Xd, Y ).

This recovers the definition of the endomorphism operad of an object X.

The notion of an algebra over a multicategory will extend the notion of an
algebra over an operad.

Definition 1.3.22. For (topological) multicategories M and C, the category
AlgM(C) of M-algebras in C is the category of (topological) multifunctors
M→ C and natural transformations.

For any object x ∈ M, the evaluation functor evx : AlgM(C) → C sends
an algebra A to the value A(x).

Example 1.3.23. The multicategory Mod parametrizing “ring-module
pairs” has two objects, a and m, and

MulMod(x1, . . . ,xd; y) =


∗ if y = a and all xi are a,

∗ if y = m and exactly one xi is m,

∅ otherwise.

A multifunctor Mod → C is equivalent to a pair (A,M) of a commutative
monoid A of C and an object M with an action of A.

Example 1.3.24. A commutative monoid Γ can be regarded as a symmetric
monoidal category with no non-identity morphisms, and in the associated
multicategory we have

MulΓ(g1, . . . , gd; g) =

{
∗ if

∑
gs = g,

∅ otherwise.

A multifunctor Γ→ C determines objects Xg of C, a map from the unit to X0,
and multiplication maps Xg1 ⊗ · · · ⊗Xgd → Xg1+···+gd : these multiplications
are collectively unital, symmetric, and associative. We refer to such an object
as a Γ-graded commutative monoid.
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Example 1.3.25. The addition of natural numbers makes the partially or-
dered set (N,≥) into a symmetric monoidal category. In the associated mul-
ticategory we have

MulN(n1, . . . , nd;m) =

{
∗ if

∑
ni ≥ m,

∅ otherwise.

A multifunctor Γ→ C determines a sequence of objects

· · · → X2 → X1 → X0

of C and multiplication maps Xn1 ⊗ · · · ⊗ Xnd → Xn1+···+nd : these multi-
plications are collectively unital, symmetric, and associative, as well as being
compatible with the inverse system. We refer to such an object strongly filtered
commutative monoid in C.

Remark 1.3.26. If M1 and M2 are multicategories, there is a product mul-
ticategory M1 ×M2, obtained by taking products of objects and products of
multimorphism spaces. Products allow us to extend the above constructions.
For example, taking the product of an operad O with the multicategories of
the previous examples, we construct multicategories that parametrize: pairs
(A,M) of an O-algebra and an O-module; Γ-graded O-algebras; and strongly
filtered O-algebras.

Example 1.3.27. Let M be the multicategory whose objects are integers,
and define MulM(m1, . . . ,md;n) to be the set of natural transformations

θ : Hm1(X)× · · · ×Hmd(X)→ Hn(X)

of contravariant functors on the category S of spaces; composition is composi-
tion of natural transformations. The category M is a category of multivariate
cohomology operations. Any fixed space X determines an evaluation multi-
functor evX : M → Sets, sending n to Hn(X); any homotopy class of map
X → Y of spaces determines a natural transformation of multifunctors in the
opposite direction. Stated concisely, this is a functor

hSop → AlgM(Sets)

that takes a space to an encoding of its cohomology groups and cohomology
operations.

More generally, a category D with a chosen set of functors D→ Sets deter-
mines a multicategory M spanned by them: we can define Mul(F1, . . . , Fd;G)
to be the set of natural transformations

∏
Fi → G, so long as there is always a

set (rather than a proper class) of natural transformations. If we view a functor
F as assigning an invariant to each object of D, a multimorphism

∏
Fi → G

is a natural operation of several variables on such invariants. Evaluation on
objects of D takes the form of a functor

D→ AlgM(Sets),
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encoding both the invariants assigned by these functors and the natural op-
erations on them. These are examples of multi-sorted algebraic theory in the
sense of Bergner [14], closely related to the work of [18, 89]. We will return to
the discussion of this structure in §1.4.4.

Just as with ordinary operads, there are often free-forgetful adjunctions
between objects of C and algebras over a multicategory.

Proposition 1.3.28. Suppose that M is a small topological multicategory and
that C is a symmetric monoidal topological category with compatible colimits
in the sense of Definition 1.3.9.

1. For objects x and y of M, there are extended power functors

Symk
M,x→y : Cx → Cy,

given by

Symk
M,x→y(X) = MulM(x,x, . . . ,x︸ ︷︷ ︸

k

; y)⊗Σk X
⊗k.

2. The evaluation functor evx : AlgM(C)→ C has a left adjoint

FreeM,x : C→ AlgM(C).

The value of FreeM,x(X) on any object y of M is

evy(FreeM,x(X)) =
∐
k≥0

Symk
M,x→y(X).

Remark 1.3.29. These generalize the constructions of extended powers and
free algebras from §1.3.2. If M has a single object x, encoding an operad O,
then Symk

M,x→x = Symk
O and FreeM,x encodes FreeO.

Example 1.3.30. The free Z-graded commutative monoid on an object X
in degree n 6= 0 is equal to the symmetric product Symk(X) in degree kn for
k ≥ 0. All other gradings are the initial object.

Example 1.3.31. The free strongly filtered commutative monoid on an object
X1 in degree 1 is a filtered object of the form

· · · →
∐
k≥2

SymkX1 →
∐
k≥1

SymkX1 →
∐
k≥0

SymkX1.

If we have a strongly filtered commutative algebra · · · → X2 → X1 → X0,
then this gives action maps SymkX1 → Xk. More generally, there are action
maps SymkXn → Xkn that are compatible in n.
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1.4 Operations

In this section we will fix a spectrum E, viewed as a coefficient object.

1.4.1 E-homology and E-modules

We can study O-algebras through their E-homology.

Definition 1.4.1. Given a spectrum E, an E-homology operation for O-
algebras is a natural transformation of functors θ : Em(−) → Em+d(−) of
functors on the homotopy category of O-algebras.

Such operations can be difficult to classify in general. However, if E has a
commutative ring structure then we can do more. In this case, any O-algebra
A has an E-homology object E ⊗A which is an O-algebra in ModE , and any
space X has an E-cohomology object EX which is an E∞-algebra object in
ModE . By definition, we have

Em(A) = [Sm, E ⊗A]Sp

and
Em(X) = [S−m, EX ]Sp.

Therefore, we can construct natural operations on the E-homology of O-
algebras or the E-cohomology of spaces by finding natural operations on the
homotopy groups of O-algebras in ModE .

Example 1.4.2. If X is an O-algebra in spaces, then E[X] = E ⊗ Σ∞+ X is
an O-algebra in ModE .

1.4.2 Multiplicative operations

In this section we will construct our first operations on the homotopy groups
of O-algebras over a fixed commutative ring spectrum E.

The functor π∗ from the homotopy category of spectra to graded abelian
groups is lax symmetric monoidal under the Koszul sign rule. The induced
functor π∗ from AlgO(Sp) or AlgO(ModE) to graded abelian groups naturally
takes values in the category of graded abelian groups, or graded E∗-modules,
with an action of the operad π0O in sets.

Example 1.4.3. In the case of an En-operad, π0O is isomorphic to the as-
sociative operad when n = 1 and the commutative operad when n ≥ 2. The
E-homology groups of an En-algebra in Sp form a graded E∗-algebra. If n ≥ 2,
this algebra is graded-commutative.

By applying E∗ to the action maps in the operad, we stronger information.
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Proposition 1.4.4. The homology groups E∗O(k) form an operad E∗O in
graded E∗-modules, and the functor π∗ from AlgO(ModE) to graded abelian
groups has a natural lift to the category of graded E∗O-modules.

Example 1.4.5. The homotopy groups of En-algebras have a natural bilinear
Browder bracket

[−,−] : πq(A)⊗ πr(A)→ πq+(n−1)+r(A).

This satisfies the following formulas.

Antisymmetry: [α, β] = −(−1)(|α|+n−1)(|β|+n−1)[β, α].

Leibniz rule: [α, βγ] = [α, β]γ + (−1)|β|(|α|+n−1)α[β, γ].

Graded Jacobi identity:

0 = (−1)(|α|+n−1)(|γ|+n−1)[α, [β, γ]]

+ (−1)(|β|+n−1)(|α|+n−1)[β, [γ, α]]

+ (−1)(|γ|+n−1)(|β|+n−1)[γ, [α, β]].

In the case of E1-algebras, this reduces to the ordinary bracket

[α, β] = αβ − (−1)|α||β|βα

in the graded ring π∗(A).
The Browder bracket is defined, just as it was defined in homology [24],

using the image of the generating class λ ∈ πn−1En(2) ∼= πn−1S
n−1 coming

from the little cubes operad. The antisymmetry and Jacobi identities are ob-
tained by verifying identities in the graded operad π∗(Σ

∞
+ En). For example, if

σ is the 2-cycle in Σ2 we have

λ ◦ σ = (−1)nλ,

and if τ is a 3-cycle in Σ3 we have

λ ◦ (1⊗ λ) ◦ (1 + τ + τ2) = 0.

However, the signs indicate that there is some care to be taken. In particular,
the Browder bracket of elements α ∈ πq(A) and β ∈ πr(A) is defined to be
the following composite:

Sq ⊗ Sn−1 ⊗ Sr → A⊗ Σ∞+ En(2)⊗A
→ Σ∞+ En(2)⊗A⊗A
→ A

This order is chosen because it is more consistent with writing the Browder
bracket as an inline binary operation [x, y] than with writing it as an operator
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λ(x, y) on the left. The subscript on the range πq+(n−1)+r(A) reflects this
choice (cf. [74]). This gives us the definition

[α, β] = (−1)(n−1)|α|γ(λ⊗ α⊗ β),

where γ is the action map of the operad π∗(Σ
∞
+ En) on π∗A. Both the verifi-

cation of the identities on λ in the stable homotopy groups of configuration
spaces, and the verification of the consequent antisymmetry, Leibniz, and Ja-
cobi identities, are reasonable but error-prone exercises from this point; com-
pare [23].

1.4.3 Representability

We will ultimately be interested in natural operations on homotopy and ho-
mology groups. However, it is handy to use a more general definition that re-
places Sm by a general object. This accounts for the possibility of operations
of several variables, and can also help reduce difficulties involving naturality
in the input Sm.

Definition 1.4.6. For spectra M and X, we define the M -indexed homotopy
of X to be

πM (X) = [M,X]Sp ∼= [E ⊗M,X]ModE .

For spectra M , X, and E we define the M -indexed E-homology of X to
be

EM (X) = πM (E ⊗X).

If M is Sm, we instead use the more standard notation πm(−) for πSm(−) or
Em(−) for ESm(−).

Definition 1.4.7. Let E be a commutative ring spectrum. A homotopy op-
eration for O-algebras over E is a natural transformation

θ : πM → πN

of functors on the homotopy category of AlgO(ModE). When O and E are
understood, we just refer to such natural transformations as homotopy oper-
ations.

We refer to the resulting operation EM (−)→ EN (−) on the E-homology
groups of O-algebras as the induced E-homology operation.

As in Example 1.3.27, we can assemble operations with varying numbers
of inputs into an algebraic structure.

Definition 1.4.8. Fix an operad O and a commutative ring spectrum E.
The multicategory OpEO of operations for O-algebras in ModE has, as objects,
spectra N . For any M1, . . . ,Md and N , the group of multimorphisms

OpEO(M1, . . . ,Md;N)
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is the group of natural transformations
∏
πMi

→ πN of functors
hAlgO(ModE) → Sets. If E or O are understood, we drop them from the
notation.

In the unary case, we write OpEO(M ;N) for the set of homotopy operations
πM → πN for O-algebras in ModE .

The free-forgetful adjunction between spectra and O-algebras in ModE
allows us to exhibit the functor πM as representable.

Proposition 1.4.9. Suppose that E is a commutative ring spectrum, O is
an operad with associated free algebra monad FreeO. Then there is a natural
isomorphism

πM (A) ∼= [E ⊗ FreeO(M), A]AlgO(ModE)

for A in the homotopy category of AlgO(ModE). In particular, the object
E ⊗ FreeO(M) is a representing object for the functor πM .

Proof. The forgetful functor AlgO(ModE)→ Sp can be expressed as a com-
posite AlgO(ModE) → AlgO(Sp) → Sp, and as such has a composite left
adjoint M 7→ FreeO(M) 7→ E ⊗ FreeO(M); this adjunction passes to the
homotopy category. Therefore, applying this adjunction we find

πM (A) ∼= [FreeO(M), A]AlgO(Sp)

∼= [E ⊗ FreeO(M), A]AlgO(ModE)

as desired.

Remark 1.4.10. It is possible to index more generally. Given an E-module L,
we also have functors πEL (−) = [L,−]ModE ; the freeO-algebra FreeO(L) in the
category of E-modules is then a representing object for πEL in AlgO(ModE).
We recover the above case by setting L = E ⊗M .

The Yoneda lemma now gives the following.

Corollary 1.4.11. Let F be a functor from hAlgO(ModE) to the category
of sets. Natural transformations of functors πM → F are in bijective corre-
spondence with F (E ⊗ FreeO(M)).

In particular, there is an isomorphism

OpEO(M1, . . . ,Md;N) ∼= EN (FreeO(⊕Mi))

from the group of natural transformations
∏
πMi

→ πN to the E-homology
group of the free algebra.

The canonical decomposition of §1.3.2 for the monad FreeO into extended
powers gives us a canonical decomposition of operations.
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Definition 1.4.12. For k ≥ 0, the group of operations of weight k is the
subgroup

OpEO(M1, . . . ,Md;N)〈k〉 = EN (Symk
O(⊕Mi))

of OpEO(M1, . . . ,Md;N) ∼= EN (FreeO(⊕Mi)).
A power operation of weight k is a unary operation of weight k: an element

of the subgroup
OpEO(M,N)〈k〉 ∼= EN (Symk

O(M))

of OpEO(M,N).

Remark 1.4.13. Composition multiplies weight. Furthermore, if the object
N is dualizable, the group of all operations is a direct sum: every operation
decomposes canonically as a sum of operations of varying weights.

1.4.4 Structure on operations

Even when restricted to ordinary homotopy groups, these operations between
the homotopy groups of O-algebras in ModE form a rather rich algebraic
structure [14], whose characteristics should be discussed; we learned most of
this from Rezk [78, 77]. Recall

Op(m1, . . . ,md;n) = OpEO(m1, . . . ,md;n) ∼= πn(E ⊗ FreeO(⊕Smi)).

Here are some characteristics of this algebraic theory.

1. We think of the elements in these groups as operators, in the sense that
they can act. Given α ∈ Op(m1, . . . ,md;n), an O-algebra R in ModE and
xi ∈ πmiR, we can apply α to get a natural element

α ∝ (x1, . . . , xd) ∈ πnR.

This action is associative with respect to composition, but only distributes
over addition on the left.

2. For each 1 ≤ k ≤ d, there is a fundamental generator ιk ∈
Op(m1, . . . ,md;mk) that acts by projecting:

ιk ∝ (x1, . . . , xd) = xk.

3. These operators can compose: given α ∈ Op(m1, . . . ,md;n) and βi ∈
Op(`1, . . . , `c;mi), there is a composite operator

α ∝ (β1, . . . , βd) ∈ Op(`1, . . . , `c;n).

Composition is unital. It is also associative, both with itself and with
acting on elements. Again, it only distributes over addition on the left.

4. Composition respects weight: if α is in weight a and βi are in weights bi,
then α ∝ (βi) is in weight a · (

∑
bi).
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Example 1.4.14. Take E = HR for a commutative ring R and let O to be
the associative operad. Then the graded group

Op(m1, . . . ,md; ∗) = ⊕n Op(m1, . . . ,md;n) ∼= H∗(FreeO(⊕Smi ;R))

is the free associative graded R-algebra on the fundamental generators ι1 . . . ιd
with ιi in degree mi, and the composition operations are substitution. For ex-
ample, the element ι1 + ι2 ∈ Op(n, n;n) acts by the binary addition operation
in degree n; the elements ι1ι2 and ι2ι1 in Op(n1, n2;n1 +n2) represent binary
multiplication in either order; the element (ι1)2 ∈ Op(n; 2n) represents the
squaring operation; for r ∈ R the element rι1 ∈ Op(n;n) represents scalar
multiplication by r; combinations of these operations are represented by iden-
tities such as

ι21 ∝ (ι1 + ι2) = ι21 + ι1ι2 + ι2ι1 + ι22.

In this structure, each monomial has constant weight equal to its degree.

Example 1.4.15. Take O to be an En-operad. Then, for any p and q, the
Browder bracket is a natural transformation πp × πq → πp+(n−1)+q, and it is
realized by an element [ι1, ι2] in Op(p, q; p+(n−1)+q) of weight two. Relations
between the product and the Browder bracket are expressed universally by
relations between compositions: for example, antisymmetry is expressed by
an identity

[ι1, ι2] = −(−1)(p+n−1)(q+n−1)[ι2, ι1].

Remark 1.4.16. Inside the collection of all unary operations, there is a sub-
group of additive operations: those operations f that satisfy

f ∝ (ι1 + ι2) = f ∝ ι1 + f ∝ ι2.

Composition of such operations is bilinear, and so the collection of objects
and additive operations form a category enriched in abelian groups. In some
cases, the additive operations can be used to determine the general structure
[78].

1.4.5 Power operations

We will begin to narrow our study of power operations and focus on unary
operations, of fixed weight, between integer gradings.

Definition 1.4.17. Fix an operad O and a commutative ring spectrum E.
The group of power operations of weight k on degree m for O-algebras in
ModE is the graded abelian group

PowE
O(m, k) = π∗(F (Sm, E ⊗ Symk

O(Sm))) ∼=
⊕
r∈Z

OpEO(m,m+ r)〈k〉.

If O or E are understood, we drop them from the notation.
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An element of Pow(m, k) in grading r represents a weight-k natural trans-
formation πm → πm+r on the homotopy category of O-algebras in ModE ,
and induces a natural transformation Em → Em+r on the homotopy cate-
gory of O-algebras. (While we index these group by integers, they depend
on a choice of representing object and in particular on an orientation of Sm;
making implicit identifications will result in sign issues.)

Remark 1.4.18. These operations, and the relations between them, are still
possessed by homotopy O-algebras in the sense of §1.3.2.

Remark 1.4.19. Suppose that Σk acts freely and properly discontinuously
on O(k). Let V ⊂ Rk be the subspace of elements which sum to 0, with
associated vector bundle ρ→ BΣk of dimension k − 1. For any m there is an
associated virtual bundle Rm ⊗ ρ. If we define

P (k) = O(k)/Σk,

then there is a virtual bundle mρ on P (k). The Thom spectrum P (k)mρ of
this virtual bundle is canonically equivalent to the spectrum Σ−mΣ∞+O(k)⊗Σk

(Sm)⊗k that appears in the definition of Pow(m, k).
This allows us to give a more concise expression

Pow(m, k) = E∗(P (k)mρ),

which is particularly useful in cases where we can apply a Thom isomorphism
for E-homology.

Example 1.4.20. Consider the case of operations of weight 2 for En-algebras.
The space P (2) = Cn(2)/Σ2 is homotopy equivalent to the real projective
space RPn−1, the line bundle ρ = σ is associated to the sign representation of
Σ2, and the Thom spectrum (RPn−1)mσ is commonly known as the stunted
projective space RPm+n−1

m which has a cell decomposition with one cell in
each dimension between m and m + n − 1. (When m ≥ 0 this is literally
the suspension spectrum of RPm+n−1/RPm−1.) Therefore, the operations of
weight 2 on degree m are parametrized by the E-homology group

OpEm(2) = E∗(RPm+n−1
m ).

Example 1.4.21. When E = HF2, we find H∗(RPm+n−1
m ) is F2 in degrees

m through (m+ n− 1), and so we obtain unique Dyer–Lashof operations Qr

for m ≤ r ≤ m+ n− 1 that send elements in πm to elements in πm+r.

Example 1.4.22. Consider the cup-1 operad Q1 defined in Example 1.3.6.
Then the weight-2 operations on the E-homology of Q1-algebras are
parametrized by E∗(RPm+1

m ). This stunted projective space is the Thom spec-
trum of m times the Möbius line bundle over S1.

For example, we can take E to be the sphere spectrum. If m = 2k there is
a splitting

RP2k+1
2k ' S2k ⊕ S2k+1.
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Chosen generators in π2k(S2k⊕S2k+1) and π2k+1(S2k⊕S2k+1) give operations
that increase degree by 2k and 2k + 1, respectively. A choice of splitting
S2k+1 → RP2k+1

2k determines an operation Sq1 : π2k(−) → π4k+1(−) called
the cup-1 square. It satisfies 2 Sq1(a) = [a, a].

In the case that we have an E∞ ring spectrum, this has been studied in
[21, §V] and [13], and can be chosen in such a way that it satisfies the following
addition and multiplication identities on even-degree homotopy elements:

2 Sq1(a) = 0

Sq1(a+ b) = Sq1(a) + Sq1(b) + ( |a|2 + 1)abη

Sq1(ab) = a2 Sq1(b) + Sq1(a)b2 + |ab|
4 a2b2η.

For example, Sq1(n) =
(
n
2

)
η for n ∈ Z. In the absence of higher commutativity,

these identities should have correction terms involving the Browder bracket.

1.4.6 Stability

In this section we will consider compatibility relations between operations on
different homotopy degrees.

Recall from §1.3.2 that the monad FreeO decomposed into the homoge-
neous functors defined by

Symk
O(X) = Σ∞+O(k)⊗Σk X

⊗k.

In particular, these functors are continuous: they induce functions

Map(X,Y )→ Map(Symk
O(X),Symk

O(Y ))

between mapping spaces, and for k > 0 they have the property that they are
pointed : Symk

O(∗) = ∗ and hence the functor Symk
O induces continuous maps

of pointed mapping spaces.

Definition 1.4.23. For any spectrumM , any pointed space Z, and any k > 0,
the assembly map

Symk
O(M)⊗ Σ∞Z → Symk

O(M ⊗ Σ∞Z)

is adjoint to the composite map of pointed spaces

Z → MapSp(S0,Σ∞Z)

→ MapSp(M,M ⊗ Σ∞Z)

→ MapSp(Symk
O(M),Symk

O(M ⊗ Σ∞Z)).

The suspension map

σn : Pow(m, k)→ Pow(m+ n, k)
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is induced by the composite map of function spectra

F (Sm, E ⊗ Symk
O(Sm))→ F (Sm ⊗ Sn, E ⊗ Symk

O(Sm)⊗ Sn)

→ F (Sm ⊗ Sn, E ⊗ Symk
O(Sm ⊗ Sn)).

Remark 1.4.24. The operation σ = σ1 has a concrete meaning: it is designed
for compatibility with the Mayer–Vietoris sequence. To illustrate this, first
recall that for a homotopy commutative diagram

A //

��

B

��

C // D

of spectra, we have natural maps A→ P ← Σ−1D where P is the homotopy
pullback.

Now suppose that we are given a diagram of O-algebras as above which
is a homotopy pullback, inducing a boundary map ∂ : Σ−1D → P ' A.
Given maps θ : N → E ⊗ Symk

O(M) and α : ΣM → D, we can map in a
trivial homotopy pullback diagram to the above, then apply action maps and
naturality of the connecting homomorphisms. We get a commuting diagram:

N
θ

//

∼
��

E ⊗ Symk
OM

∂α
//

��

A

∼
��

Σ−1ΣN // P ′ // P

Σ−1ΣN

∼

OO

σθ
// Σ−1E ⊗ Symk

O(ΣM)

OO

Σ−1α

// Σ−1D

∂

OO

Therefore, for an operation θ : [M,−] → [N,−] for O-algebras in ModE , we
find that

∂ ◦ σθ ∼ θ ◦ ∂.

This description makes implicit choices about the orientation of the circle
that appears in the operation Ω when taking homotopy pullbacks, and this
can result in sign headaches.

Proposition 1.4.25. For k, r > 0, the suspension σr : Pow(m, k) →
Pow(m+ r, k) is the map

E∗(P (k)mρ)→ E∗(P (k)(m+r)ρ)

on E-homology induced by the inclusion of virtual bundles mρ→ mρ⊕ rρ.
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Proof. The assembly map Symk
O(Sm)⊗ Sn → Symk

O(Sm+n) is the map

(Σ∞+O(k)⊗Σk S
mρ)⊗ Sn → (Σ∞+O(k)⊗Σk S

(m+n)ρ),

which is the map
P (k)mρ ⊗ Sr → P (k)(m+r)ρ

induced by the direct sum inclusion mρ⊕r → (mρ⊕r)⊕rρ of virtual bundles.
The map σr is obtained by desuspending both sides (m + r) times, which
gives the map induced by the direct sum inclusion mρ → mρ ⊕ rρ of virtual
bundles.

Example 1.4.26. The Dyer–Lashof operations for En-algebras are explicitly
unstable. For example, in weight two the n-fold suspension maps RPm+n−1

m →
RP(m+n)+n−1

m+n are trivial, and so the map OpEm(2)→ OpEm+n(2) is trivial. This
recovers the well-known fact that all Dyer–Lashof operations for En-algebras
map to zero under n-fold suspension.

By contrast, the Dyer–Lashof operations for E∞-algebras are stable: the
maps H∗RP∞m → H∗RP∞m+1 are surjections, and so the quadratic operations
all lift to elements in the homotopy of

lim
m

(H ⊗ RP∞m ).

By [33, 16.1], this is the desuspended Tate spectrum (Σ−1H)tΣ2 .

Remark 1.4.27. More generally, the fully stable operations of prime weight
p on the homotopy of E∞ E-algebras are detected by the p-localized Tate
spectrum

(Σ−1E(p))
tΣp .

See [21, II.5.3] and [31].

1.4.7 Pro-representability

Suppose that E = colimEα is an expression of E as a filtered colimit of finite
spectra. Then there is an identification

EmA = colim
α

[Sm, Eα ⊗A] = colim
α

[Sm ⊗DEα, A],

where D is the Spanier–Whitehead dual. We cannot move the colimit inside,
but we can view {Sm⊗DEα} as a pro-object in the category of spectra. This
makes the functor Em representable by embedding the category of spectra
into the category of pro-spectra.

For algebras over an operad O, we can go even further and find that

Em(A) = [{FreeO(Sm ⊗DEα)}, A]pro-O
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is now a representable functor in the homotopy category of pro-O-algebras,
and in this category we can determine all the natural operations Em → En:

Natpro-O(Em(−), En(−)) = [{FreeO(Sn ⊗DEα)}, {FreeO(Sm ⊗DEβ)}]pro-O

= π0 lim
β

colim
α

MapO(FreeO(Sn ⊗DEα),FreeO(Sm ⊗DEβ))

= π0 lim
β

colim
α

MapSp(Sn ⊗DEα,FreeO(Sm ⊗DEβ))

= π0 lim
β

MapSp(Sn, E ⊗ FreeO(Sm ⊗DEβ))

= πn lim
β
E ⊗ (FreeO(Sm ⊗DEβ)).

The algebra of natural transformations has natural maps in from the group

[Sm ⊗ E,Sn ⊗ E]

of cohomology operations (and these maps are isomorphisms if O is trivial),
and it has a natural map to the limit

lim
β
En(FreeO(Sn ⊗DEβ)).

This map to the limit is an isomorphism if no higher derived functors intrude.
We can think of this as the algebra of continuous operations on E-homology.

1.5 Classical operations

1.5.1 En Dyer–Lashof operations at p = 2

We will now specialize to the case of ordinary mod-2 homology. When we do
so, we have Thom isomorphisms for many bundles and we have explicit com-
putations of the homology of configuration spaces due to Cohen [24]. Similar
results with more complicated identities hold at odd primes.

Proposition 1.5.1. Let H = HF2 be the mod-2 Eilenberg–Mac Lane spec-
trum. Then the group OpHm(2) of weight-2 operations for En-algebras has ex-
actly one nonzero operation in each degree between m and m+ n− 1, and no
others.

Proof. By Remark 1.4.19, this is a calculation H∗(RPn+m−1
m ) of the mod-2

homology of stunted projective spaces.

Theorem 1.5.2 ([21, III.3.1, III.3.2, III.3.3]). Let H = HF2 be the mod-2
Eilenberg–Mac Lane spectrum. Then En-algebras in ModH have Dyer–Lashof
operations

Qi : πm → π2m+i

for 0 ≤ i ≤ n− 1. These satisfy the following formulas.
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Additivity: Qr(x+ y) = Qr(x) +Qr(y) for r < n− 1.

Squaring: Q0x = x2.

Unit: Qj1 = 0 for j > 0.

Cartan formula: Qr(xy) =
∑
p+q=r Qp(x)Qq(y) for r < n− 1.

Adem relations: QrQs(x) =
∑(

j−s−1
2j−r−s

)
Qr+2s−2jQj(x) for r > s.

Stability: σQ0 = 0, and σQr = Qr−1 for r > 0.

Extension: If an En-algebra structure extends to an En+1-algebra
structure, the operations Qr for En+1-algebras coincide with the
operations Qr for En-algebras.

There is also a bilinear Browder bracket

[−,−] : πr ⊗ πs → πr+(n−1)+s

satisfying the following formulas.

Antisymmetry: [x, y] = [y, x] and [x, x] = 0.

Unit: [x, 1] = 0.

Leibniz rule: [x, yz] = [x, y]z + y[x, z].

Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Dyer–Lashof vanishing: [x,Qry] = 0 for r < n− 1.

Top additivity: Qn−1(x+ y) = Qn−1x+Qn−1y + [x, y].

Top Cartan formula: Qn−1(xy) =
∑
p+q=n−1Qp(x)Qq(y)+x[x, y]y.

Adjoint identity: [x,Qn−1y] = [y, [y, x]].

Extension: If an En-algebra structure extends to an En+1-algebra
structure, the bracket is identically zero.

E1-bracket: [x, y] = xy + yx if n = 1.

Remark 1.5.3. There are two common indexing conventions for the Dyer–
Lashof operations. This lower-indexing convention is designed to emphasize
the range where the operations are defined, and is especially useful for En-
algebras. The upper-indexing convention defines Qsx = Qs−|x|x so that Qs

is always a natural transformation πm → πs+m, with the understanding that
Qsx = 0 for s < |x|.

Example 1.5.4. Suppose that X is an n-fold loop space, so that H[X] is
an En-algebra in left H-modules. Then we recover the classical Dyer–Lashof
operations

Qr : Hn(X)→ H2n+r(X)

in the homology of iterated loop spaces.
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Theorem 1.5.5 ([21, IX.2.1], [24, III.3.1]). For any spectrum X and any 1 ≤
n ≤ ∞, H∗(FreeEn(X)) is the free object QEn(H∗X) in the category of graded
F2-algebras with Dyer–Lashof operations and Browder bracket satisfying the
identities of Theorem 1.5.2.

Remark 1.5.6. This theorem is the analogue of the calculation of the coho-
mology of Eilenberg–Mac Lane spaces as free algebras in a category of algebras
with Steenrod operations. As such, it means that we have a complete theory
of homotopy operations for En-algebras over H.

Example 1.5.7. In the case n <∞ we can give a straightforward description
of QEnV if V has a basis with a single generator e. In this case, the antisym-
metry, unit, and Dyer–Lashof vanishing axioms can be used to show that the
free algebra has trivial Browder bracket, and so the free algebra QEn(V ) is a
graded polynomial algebra

F2[QJe]

as we range over generators QJe = (Q1)j1(Q2)j2 . . . (Qn−1)jn−1e.

1.5.2 E∞ Dyer–Lashof operations at p = 2

When n = ∞, the results of the previous section become significantly sim-
pler, and it is worth expressing using the upper indexing for Dyer–Lashof
operations.

Theorem 1.5.8 ([21, III.1.1]). Let H = HF2 be the mod-2 Eilenberg–Mac
Lane spectrum. Then E∞-algebras in ModH have Dyer–Lashof operations

Qr : πm → πm+r

for r ∈ Z. These satisfy the following formulas.

Additivity: Qr(x+ y) = Qr(x) +Qr(y).

Instability: Qrx = 0 if r < |x|.
Squaring: Qrx = x2 if r = |x|.
Unit: Qr1 = 0 for r 6= 0.

Cartan formula: Qr(xy) =
∑
p+q=r Q

p(x)Qq(y).

Adem relations: QrQs =
∑(

i−s−1
2i−r

)
Qs+r−iQi for r > 2s.

Stability: σQr = Qr.

Example 1.5.9. For any space X, HX is an E∞-algebra in the category of
left H-modules, and hence it has Dyer–Lashof operations

Qi : Hn(X)→ Hn−i(X).

It turns out that these are precisely the Steenrod operations:

Sqi = Q−i.



En ring spectra and Dyer–Lashof operations 25

From this point of view, the identity Q0x = x is not obvious. In fact, Mandell
has shown that this identity is characteristic of algebras that come from spaces:
the functor X 7→ (HFp)X from spaces to E∞-algebras over the Eilenberg–Mac
Lane spectrum HFp is fully faithful, and the essential image is detected in
terms of the coefficient ring being generated by classes that are annihilated
by the analogue at arbitrary primes of the identity (Q0 − 1) [58].

Example 1.5.10. In the case n =∞ there is always a straightforward basis
for the free algebra. If {ei} is a basis of a graded vector space V over F2, then
the free algebra QE∞(V ) is a graded polynomial algebra

F2[QJei]

as we range over generators QJei = Qj1 . . . Qjpei such that ji ≤ 2ji+1 and
j1 − j2 − · · · − jp > |ei|.

1.5.3 Iterated loop spaces

The following is an unpointed group-completion theorem for En-spaces.

Theorem 1.5.11 ([24, III.3.3]). For any space X and any 1 ≤ n ≤ ∞, the
map X → ΩnΣnX+ induces a map FreeEn(X)→ ΩnΣnX+, and the resulting
ring map

QEn(H∗X) = H∗(FreeEn(X))→ H∗(Ω
nΣnX+)

is a localization which inverts the images of π0(X).

Remark 1.5.12. A pointed version of the group-completion theorem, involv-
ing ΩnΣnX, is much more standard and implies this one. This theorem holds
for ΩnΣn if we replace FreeEn with a version that takes the basepoint to a

unit and we replace QEn(H∗X) with either QEn(H̃∗X) a reduced version Q̃En
that sends a chosen element to the unit. However, we wanted to give a version
that de-emphasizes implicit basepoints for comparison with §1.8.2.

Proposition 1.5.13. Suppose Y is a pointed space. Then the suspension map

σ : H̃∗(Ω
nY )→ H̃∗+1(Ωn−1Y ),

induced by the map ΣΩnY → Ωn−1Y , is compatible with the Dyer–Lashof
operations and the Browder bracket:

σ(Qrx) = Qr(σx)

σ[x, y] = [σx, σy]

In particular, in the bar spectral sequence

TorH∗Ω
nY

∗∗ (F2,F2)⇒ H∗Ω
n−1Y,

the operations on the image H̃∗Ω
nY � TorH∗Ω

nY
1 (F2,F2) are representatives

for the operations on H∗Ω
n−1Y .
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This provides some degree of conceptual interpretation for the bracket and
the Dyer–Lashof operations. Since H∗Ω

2Y is commutative, the Tor-algebra is
also commutative even though it is converging to the possibly noncommuta-
tive ring H∗ΩY , and so the noncommutativity is tracked by multiplicative
extensions in the spectral sequence [74]. The Browder bracket in H∗Ω

nY ex-
ists to remember that, after n− 1 deloopings, there are commutators xy± yx
in H∗ΩY .

Similarly, elements in positive filtration in the Tor-algebra of a commu-
tative ring always satisfy x2 = 0, even though this may not be the case in
H∗Ω

n−1Y . The element Q0x is x2; the elements Q1x,Q2x, . . . , Qn−1x deter-
mine the line of succession for the property of being x2 as the delooping process
is iterated.

Remark 1.5.14. The group-completion theorem allows us to relate the ho-
mology of a delooping to certain nonabelian derived functors [69]. Similar spec-
tral sequences computing En-homology of chain complexes have been studied
by Richter and Ziegenhagen [79].

Associated to the n-fold loop space ΩnY of an (n − 1)-connected space,
which is an En-algebra (or an infinite loop space Ω∞Y associated to a con-
nective spectrum), we can construct three augmented simplicial objects:

· · ·FreeEn FreeEn FreeEn ΩnY V FreeEn FreeEn ΩnY ⇒ FreeEn ΩnY → ΩnY

· · ·ΩnΣn+ FreeEn FreeEn ΩnY V ΩnΣn+ FreeEn ΩnY ⇒ ΩnΣn+ΩnY → ΩnY

· · ·Σn+ FreeEn FreeEn ΩnY V Σn+ FreeEn ΩnY ⇒ Σn+ΩnY → Y

These are, respectively, two-sided bar constructions: B(FreeEn ,FreeEn ,Ω
nY ),

B(ΩnΣn+,FreeEn ,Ω
nY ), and B(Σn+,FreeEn ,Ω

nY ).
The first augmented bar construction B(FreeEn ,FreeEn ,Ω

nY ) has an extra
degeneracy, and so its geometric realization is homotopy equivalent to ΩnY
as En-spaces. Therefore, it is a group-complete En-space.

There is a natural map

B(FreeEn ,FreeEn ,Ω
nY )→ B(ΩnΣn+,FreeEn ,Ω

nY )

which is, levelwise, a group-completion map [30, Appendix Q], [67], and in-
duces a group-completion map on geometric realization. However, the source
is already group-complete, and so this map is an equivalence on geometric
realizations. Thus, the augmentation |B(ΩnΣn+,FreeEn ,Ω

nY )| → ΩnY is an
equivalence.

The bar constructionB(Σn+,FreeEn ,Ω
nY ) is a simplicial diagram of (n−1)-

connected pointed spaces, and so by a theorem of May [64] we can commute
Ωn across geometric realization. The natural augmentation

Ωn|B(Σn+,FreeEn ,Ω
nY )| → |B(ΩnΣn+,FreeEn ,Ω

nY )| → ΩnY

is an equivalence. By assumption, Y is (n − 1)-connected and so
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|B(Σn+,FreeEn ,Ω
nY )| → Y is also an equivalence. Therefore, the simplicial

object B(Σn+,FreeEn ,Ω
nY ) can be used to compute H∗Y .

Let A = H∗(Ω
nY ). The reduced homology of B(Σn+,FreeEn ,Ω

nY ) is

· · ·ΣnQEnQEnAV ΣnQEnA⇒ ΣnA,

which is a bar complex ΣnB(Q,QEn , A) computing nonabelian derived func-
tors. These are specifically the derived functors of an indecomposables functor
Q, which takes an augmented QEn -algebra A → F2 and returns the quotient
of the augmentation ideal by all products, brackets, and Dyer–Lashof oper-
ations. The result is a Miller spectral sequence that begins with nonabelian
derived functors of Q on H∗(Ω

nY ) and converges to H̃∗Y .

1.5.4 Classical groups

The Dyer–Lashof operations on the homology of the spaces BO and BU , and
hence on the homology of the Thom spectra MO and MU , was determined
by work of Kochman [44]; here we will state a form due to Priddy [75].

Theorem 1.5.15. The ring H∗MO ∼= H∗BO is a polynomial algebra on
classes ai in degree i. The Dyer–Lashof operations are determined by the iden-
tities of formal series

∑
j

Qjak =

( ∞∑
n=k

k∑
u=0

(
n− k + u− 1

u

)
an+uak−u

)( ∞∑
n=0

an

)−1

,

where a0 = 1 by convention. In particular, Qnak ≡
(
n−1
k

)
an+k mod decompos-

able elements.
The ring H∗MU ∼= H∗BU is a polynomial algebra on classes bi in degree

2i, The Dyer–Lashof operations are determined by the identities of formal
series

∑
j

Qjbk =

( ∞∑
n=k

k∑
u=0

(
n− k + u− 1

u

)
bn+ubk−u

)( ∞∑
n=0

bn

)−1

,

where b0 = 1 by convention. In particular, Q2nbk ≡
(
n−1
k

)
bn+k mod decom-

posable elements, and Q2n+1bk = 0.

Remark 1.5.16. Implicit in this calculation is the fact that the Thom iso-
morphisms H∗MO ∼= H∗BO and H∗MU ∼= H∗BU preserve Dyer–Lashof
operations. Lewis showed that, for an En-map f : X → BGL1(S), the Thom
isomorphism H∗X ∼= H∗Mf lifts to an equivalence of En ring spectra

H[X]→ H ⊗Mf

called the Thom diagonal [50, 7.4]. As a result, the Thom isomorphism is
automatically compatible with Dyer–Lashof operations for H-algebras.
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Example 1.5.17. We have explicit calculations of the first few Dyer–Lashof
operations in H∗MO:

Q2a1 = a2
1

Q4a1 = a3 + a1a2 + a3
1

Q6a1 = a4
1

Q8a1 = a5 + a1a4 + a2a3 + a2
1a3 + a1a

2
2 + a3

1a2 + a5
1

Q6a2 = a5 + a1a4 + a2a3 + a1a
2
2

These same formulas hold for the bi in H∗MU .

1.5.5 The Nishida relations and the dual Steenrod algebra

Recall that, if R is an En-algebra in Sp, H ⊗ R is an En-algebra in ModH
whose homotopy groups are the homology groups of R. As a result, there are
two types of operations on H∗R:

• The En-algebra structure givesH∗(R) Dyer–Lashof operationsQ0, . . . , Qn−1

and a Browder bracket.

• The property of being homology gives H∗(R) Steenrod operations
Pd : HmR → Hm−dR. To make these dual to the Steenrod operations
Sqd in cohomology, Pd(x) is defined as a composite

Sm−d
Σ−dx−−−→ (Σ−dH)⊗R χSqd−−−→ H ⊗R.

This implicitly reverses multiplication order: for example, the Adem rela-
tion Sq3 = Sq1Sq2 becomes P3 = P2P1.

The Nishida relations express how these structures interact.

Theorem 1.5.18 ([21, III.1.1, III.3.2]). Suppose that R is an En-algebra in
Sp. Then the Steenrod operations in homology satisfy relations as follows.

Cartan formula: Pr(xy) =
∑
p+q=r Pp(x)Pq(y).

Browder Cartan formula: Pr[x, y] =
∑
p+q=r[Ppx, Pqy].

Nishida relations: PrQ
s =

∑(
s−r
r−2i

)
Qs−r+iPi if s < n− 1.

Top Nishida relation:

PrQ
n−1(x) =

∑(
n− 1− r
r − 2i

)
Qn−1−r+iPi +

∑
p+q=r,p<q

[Ppx, Pqx].
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Remark 1.5.19. By contrast with the Adem relations, the Nishida relations
behave very differently if we use lower indexing. We find

PrQs(x) =
∑(

|x|+ s− r
r − 2i

)
Qs−r+2iPi(x).

In particular, the lower-indexed Nishida relations depend on the degree of x
[22].

Remark 1.5.20. If we use the pro-representability of homology as in §1.4.7,
we can obtain a combined algebraic object that encodes both the Qr and the
Pd together with the Nishida relations.

1.5.6 Eilenberg–Mac Lane objects

If the homology H∗R is easily described a module over the Steenrod algebra,
the Nishida relations can completely determine the Dyer–Lashof operations.
This was applied by Steinberger to compute the Dyer–Lashof operations in the
dual Steenrod algebra explicitly. (Conversely, Baker showed that the Nishida
relations themselves are completely determined by the Dyer–Lashof operation
structure of the dual Steenrod algebra [5].)

Theorem 1.5.21 ([21, III.2.2, III.2.4]). Let A∗ be the dual Steenrod algebra

F2[ξ1, ξ2, . . . ]

where |ξi| = 2i − 1, with conjugate generators ξi (here ξi is denoted by ζi in
[71]). Then the Dyer–Lashof operations on the generators are determined by
the following formulas.

1. There is an identity of formal series

(1 + ξ1 +Q1ξ1 +Q2ξ1 +Q3ξ1 + . . . ) = (1 + ξ1 + ξ2 + ξ3 + . . . )−1.

2. For any i, we have

Qsξi =

{
Qs+2i−2ξ1 if s ≡ 0,−1 mod 2i,

0 otherwise.

3. In particular, Q2i−2ξ1 = ξi, and Q1ξi = ξi+1.

Remark 1.5.22. This allows us to say that the dual Steenrod algebra can
be re-expressed as follows:

A∗ ∼= F2[x,Q1x, (Q1)2x, . . . ]

This is the same as the homology of Ω2S3: both are identified with the ho-
mology of the free E2-algebra on a generator x = ξ1 in degree 1. Mahowald
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showed that it was possible to realize this isomorphism of graded algebras: he
constructed a Thom spectrum over Ω2S3 such that the Thom isomorphism
realizes the isomorphism A∗ ∼= H∗Ω

2S3 [56]. This has a rather remarkable
interpretation: there exists a construction of the Eilenberg–Mac Lane spec-
trum H as the free E2-algebra R such that the unit map S→ R has a chosen
nullhomotopy of the image of 2. This result has been extended to odd primes
by Blumberg–Cohen–Schlichtkrull [15].

Proposition 1.5.23. Let Hk be the Eilenberg–Mac Lane spectrum for an
algebra k over F2. Then there is an isomorphism

H∗HF ∼= A∗ ⊗ k

of graded rings, and under this identification the Dyer–Lashof operation Qr

on H∗Hk is given by Qr ⊗ ϕ, where ϕ is the Frobenius on k.

Proof. For any H-module N , the action H⊗N → N induces an isomorphism
H∗H ⊗ π∗N → H∗N . We already know Q0(1 ⊗ α) = 1 ⊗ α2, and so by the
Cartan formula it suffices to show that Qs(1⊗ α) = 0 for s > 0.

We now proceed inductively by applying the Nishida relations. If we know
Qt(1⊗ α) = 0 for 0 < t < s, we find that for all r > 0 we have

PrQ
s(1⊗ α) =

∑(
s− r
r − 2i

)
Qs−r+iPi(1⊗ α)

=

(
s− r
r

)
Qs−r(1⊗ α).

By the inductive hypothesis, this vanishes unless s = r, but in the case s = r
the binomial coefficient vanishes. However, the only elements inH∗Hk that are
acted on trivially by all the Steenrod operations are the elements in the image
of π∗Hk, and those are concentrated in degree zero. Thus Qs(1⊗ α) = 0.

Remark 1.5.24. The same proof can be used to show that the Browder
bracket is trivial on H∗Hk.

Example 1.5.25. The composite map MU → MO → H, on homology, is
given in terms of the generators of Theorem 1.5.15 by b1 7→ a2

1 7→ ξ2
1 and

b2 7→ 0. The image of H∗MU in A∗ is F2[ξ2
1 , ξ

2
2 , . . . ], the homology of the

Brown–Peterson spectrum BP .
In H∗MU , Example 1.5.17 implies we have the identities

Q6b2 = b5 + b1b4 + b2b3 + b1b
2
2 = Q8b1 + b21Q

4(b1).

By contrast, in the dual Steenrod algebra we have the identity 0 = Q8(ξ2
1) +

ξ4
1Q

4(ξ2
1). Even though the map H∗MU → H∗BP splits as a map of algebras,

and the target is closed under the Dyer–Lashof operations, we have

Q8b1 + b21Q
4(b1) = Q6(b1) + b21Q2(b1) 6= 0



En ring spectra and Dyer–Lashof operations 31

but its image is zero. This implies that the map H∗MU → H∗BP does not
have a splitting that respects the Dyer–Lashof operations for E7-algebras. As
a result, there exists no map BP → MU(2) of E7-algebras. This result, and
its analogue at odd primes, is due to Hu–Kriz–May [40].

1.5.7 Nonexistence results

The tremendous amount of structure present in the homology of a ring spec-
trum allows us to produce a rather large number of nonexistence results. The
following is a generalization of the classical result that the mod-2 Moore spec-
trum does not admit a multiplication due to the existence of a nontrivial
Steenrod operation Sq2 in its cohomology; we learned this line of argument
from Charles Rezk.

Proposition 1.5.26. Suppose that R is a homotopy associative ring spectrum
containing an element u in nonzero degree such that Pk(u) vanishes either in
the range k > |u| or in the range 0 < k < |u|. Then either P|u|(u) is nilpotent
or H∗R is nonzero in infinitely many degrees.

Proof. We find, by the Cartan formula, that

Pd|u|(u
d) = (P|u|u)d.

Therefore, either the elements ud are nonzero for all d or the element P|u|u is
nilpotent.

Corollary 1.5.27. Suppose that R is a connective homotopy associative ring
spectrum such that H0(R) = π0(R)/2 has no nilpotent elements. If any
nonzero element in H0(R) is in the image of the Steenrod operations, then
H∗R must be nonzero in infinitely many degrees.

Corollary 1.5.28. Suppose that R is a homotopy associative ring spectrum
and that some Hopf invariant element 2, η, ν, or σ maps to zero under the
unit map S→ R. Then either H∗R = 0 or H∗R is infinite-dimensional.

Proof. Writing h for Hopf invariant element in degree 2k−1 with trivial image,
the unit S→ R extends to a map f : C(h)→ R from the mapping cone. The
homology of C(h) has a basis of elements 1 and v with one nontrivial Steenrod
operation acting via P2kv = 1, and u = f∗(v) has the desired properties.

Recall from §1.3.3 that, for R connective, a map π0R→ A of commutative
rings automatically extends to a map R → HA compatible with the multi-
plicative structure that exists on R; e.g., if R is homotopy commutative then
the map R → HA has the structure of a map of Q1-algebras. This has the
following consequence.



32 Tyler Lawson

Proposition 1.5.29. Suppose that R is a connective ring spectrum with a
ring homomorphism π0R → k where k is an F2-algebra (equivalently, a map
H0R → k). Then there is a map R → Hk which induces a homology map
H∗R→ A∗ ⊗ k with the following properties.

1. The map H∗R → A∗ ⊗ k is a map of rings which is surjective in degree
zero.

2. If R is homotopy commutative, then there is an operation Q1 on H∗R that
is compatible with the operation Q1 on A∗ ⊗ k.

3. If R has an En-algebra structure, the map R→ Hk is a map of En-algebras
and so H∗R → A∗ ⊗ k is compatible with the Dyer–Lashof operations
Q0, . . . , Qn−1.

In particular, the image of H∗R in A∗ ⊗ k is a subalgebra B∗ ⊂ A∗ closed
under multiplication and some number of Dyer–Lashof operations.

Example 1.5.30. For n > 0 there are connective Morava K-theories k(n),
with coefficient ring F2[vn], that have homology

F2[ξ1, . . . , ξn, ξ
2

n+1, ξn+2, . . . ]

as a subalgebra of the dual Steenrod algebra. This subring is not closed under
the Dyer–Lashof operation Q1 unless n = 0, and so the connective Morava
K-theories are not homotopy–commutative. (By convention we often define
the connective Morava K-theory k(0) to be HZ2, which is commutative.)

Similarly, for n > 0 the integral connective Morava K-theories kZ(n), with
coefficient ring Z2[vn], have homology

F2[ξ
2

1, ξ2, . . . , ξn, ξ
2

n+1, ξn+2, . . . ]

as a subalgebra of the dual Steenrod algebra. This subring is not closed un-
der the Dyer–Lashof operation Q1 unless n = 1, and so the only possible
homotopy-commutative integral Morava K-theory is kZ(1)—the connective
complex K-theory spectrum.

There are obstruction-theoretic proofs which show that all of these have
A∞ structures [3, 49].

Example 1.5.31. The Dyer–Lashof operations satisfy Q2(ξ
2

i ) = ξ
2

i+1, and so

the smallest possible subring of A∗ that contains ξ2
1 = ξ

2

1 and is closed under

Q2 is an infinite polynomial algebra F2[ξ
2

i ] = F2[ξ2
i ]. If R is a connective ring

spectrum with a quotient map π0R→ F such that the Hopf element η ∈ π1(S)
maps to zero in π∗R, then there is a commutative diagram

C(η) //

��

R

��

HZ/2 // HF.
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We conclude that ξ2
1 is in the image of the map H∗R→ H∗HF.

The spectra X(n) appearing in the nilpotence and periodicity theorems of
Devinatz–Hopkins–Smith fit into a sequence

X(1)→ X(2)→ X(3)→ . . .

of Thom spectra on the spaces ΩSU(n). They have E2-ring structures, and
each ring H∗X(n) is a polynomial algebra F2[x1, . . . , xn−1] on finitely many
generators. For n = 2 the map H∗X(2) → A∗ is the map F2[ξ2

1 ] → A∗, and
this implies that each X(n) has ξ2

1 in the image of its homology. As H∗X(n)
is finitely generated as an algebra, its image in the dual Steenrod algebra is
too small to be closed under the operation Q2. This excludes the possibility
that X(n) has an E3-structure.

1.5.8 Ring spaces

Associated to an E∞ ring spectrum E, there is a sequence of infinite loop
spaces {En}n∈Z in an Ω-spectrum representing E. These spaces are extremely
strongly structured: they inherit both additive structure from the spectrum
structure on E, and multiplicative structure from the E∞ ring structure. In
the case of the sphere spectrum, these operations were investigated in-depth
in relationship to surgery theory [68, 55, 63]. Ravenel and Wilson discussed
the structure coming from a ring spectrum E extensively in [76], encoding
it in the structure of a Hopf ring, and the interaction between additive and
multiplicative operations is developed in-depth in [24, §II]. These structures
are very tightly wound.

1. Because the En are spaces, the diagonals En → En × En gives rise to a
coproduct

∆: H∗(En)→ H∗(En)⊗H∗(En),

For an element x we write
∑
x′ ⊗ x′′ for its coproduct. The path compo-

nents En = π0En also give rise to elements [α] ∈ H0En.

2. The homology groups H∗En have Steenrod operations Pr.

3. The suspension maps ΣEn → En+1 in the spectrum structure give stabi-
lization maps

Hm(En)→ Hm+1(En+1).

4. The infinite loop space structure on En gives H∗En an additive Pontrjagin
product

#: H∗(En)⊗H∗(En)→ H∗(En)

making it into a Hopf algebra, and it has additive Dyer–Lashof operations

Qr : Hm(En)→ Hm+r(En).
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5. If E has a ring spectrum structure, the multiplication E ⊗ E → E gives
multiplicative Pontrjagin products

◦ : H∗(En)⊗H∗(Em)→ H∗(En+m).

These are appropriately unital, associative, or graded-commutative if E
has these properties.

6. If E has an E∞ ring spectrum structure, there are multiplicative Dyer–
Lashof operations

Q̃r : Hm(E0)→ Hm+r(E0)

on the homology of the 0’th space. In general, we cannot say more. If
E has further structure—an Hd

∞-structure—there are also multiplicative
Dyer–Lashof operations outside degree zero [48, §4.1].

These are subject to a large number of identities discussed in [76, 1.12,
1.14], [24, II.1.5, II.1.6, II.2.5], and [46, 1.5]. Here are the most fundamental
identities:

Distributive rule: (x# y) ◦ z =
∑

(x ◦ z′) # (y ◦ z′′)
Projection formula: x ◦Qsy =

∑
Qs+k(Pkx ◦ y)

Mixed Cartan formula:

Q̃n(x# y) =
∑

p+q+r=n

Q̃p(x′) #Qq(x′′ ◦ y′) # Q̃r(y′′)

Mixed Adem relations:

Q̃rQsx =
∑

i+j+k+l=r+s

(
r − i− 2l − 1

j + s− i− l

)
QiQ̃jx′ #QkQ̃lx′′

Example 1.5.32. There is an identity

Q1[a] # [−2a] = η · a

which allows us to determine information about the multiplication-by-η map
π0R→ π1R→ H1Ω∞R from the additive Dyer–Lashof structure. Similarly Q̃1

determines information about its multiplicative version ηm : π0(R)→ π1(R).
For example, the mixed Cartan formula implies that

ηm(x+ y) = ηm(x) + ηm(y) + η · xy

in H1(R). In particular, Q̃1[n] =
(
n
2

)
η # [n2] for n ∈ Z (cf. Example 1.3.11).
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1.6 Higher-order structure

1.6.1 Secondary composites

Secondary operations, at their core, arise when there are relations between

relations. Suppose that we are a sequence X0
f−→ X1

g−→ X2
h−→ X3 of maps

such that the double composites are nullhomotopic. Then hgf is nullhomo-
topic for two reasons. Choosing nullhomotopies of gf and hg, we can glue the
nullhomotopies together to determine a loop in the space of maps X →W : a
value of the associated secondary operation. Because we must make choices of
nullhomotopy, there is some natural indeterminacy in this construction, and
so it typically takes a set of values 〈h, g, f〉. To construct secondary opera-
tions, we minimally need to work in a category C with mapping spaces; we
also need canonical basepoints of the spaces MapC(Xi, Xj) for j ≥ i+ 2 that
are preserved under composition [48, §2].

Example 1.6.1. Suppose that A is a subspace of X and α ∈ Hn(X,A) is
a cohomology element that restricts to zero in Hn(X). Then the long exact
sequence in cohomology implies that we can lift α to an element in Hn−1(A),
but there are multiple choices of lift. This can be represented by a sequence
of maps

A→ X → X/A→ K(Z, n)

where the double composites are nullhomotopic; the secondary operation is
then a map A→ ΩK(Z, n) = K(Z, n− 1).

Secondary operations enrich the homotopy category hC with extra struc-
ture.

1. Every test object T ∈ C represents a functor [T,−] = π0 MapC(T,−) on
hC, and if T has an augmentation T → 0 to an initial object then this
functor has a canonical null element. If the values of [T,−] differ on X and
Y , X and Y cannot be equivalent in hC.

2. Every map of test objects Θ: S → T determines an operation: a natu-
ral transformation of functors θ : [T,−] → [S,−] on hC. If S and T are
augmented and the map Θ is compatible with the augmentations, then θ
preserves the null element. If θ has different behaviour for X and Y , X
and Y cannot be equivalent.

3. Given an augmented map Φ: R → S and a map Θ: S → T such that
the double composite ΘΦ: R → T is trivial, we get an identity ϕθ =
0 of associated operations. There is an associated secondary operation
〈−,Θ,Φ〉. It is only defined on those elements α ∈ [T,X] with θ(α) = 0; it
takes values in π1 MapC(R,X); it is only well-defined up to indeterminacy.
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4. We can also associate information to maps in the same way. Suppose
we have an augmented map Θ: S → T of test objects representing an
operation θ. Given any map f : X → Y , there is an associated functional
operation 〈f,−,Θ〉. It is only defined on those elements α ∈ [T,X] such
that f(α) = 0 and θ(α) = 0; it takes values in π1 MapC(S, Y ); it is only
well-defined up to indeterminacy.

Applying this to the test objects Sn in the category of pointed spaces, we
get Toda’s bracket construction that enriches the homotopy groups of spaces
with secondary composites. Applying this to the test objects K(A,n) in the
opposite of the category of spaces, we get Adams’ secondary operations that
enrich the cohomology groups of spaces with secondary cohomology opera-
tions.

1.6.2 Secondary operations for algebras

We recall from §1.4.3 that, for a spectrum M and an O-algebra in ModE , we
have

πM (A) = [M,A]Sp ∼= [E ⊗ FreeO(M), A]AlgO(ModE).

Using free algebras as our test objects, we already used this representability of
homotopy groups to classify the natural operations on the homotopy groups
of O-algebras in ModE . The space of maps now means that we can construct
secondary operations.

Proposition 1.6.2. Suppose that we have zero-preserving operations
θ : πM → πN and ϕ : πN → πP on the homotopy category of O-algebras
in ModE, and that there is a relation ϕ◦θ = 0. Then there exists a secondary
operation

〈−,Θ,Φ〉 : πM (A) ⊃ ker θ → πP+1(A)/Im(σϕ),

where σ(ϕ) is a suspended operation (see §1.4.6).

Such a secondary operation is constructed from a sequence

E ⊗ FreeO(P )
Φ−→ E ⊗ FreeO(N)

Θ−→ E ⊗ FreeO(M)→ A

where the double composites are null; the nullhomotopy of Θ◦Φ is chosen once
and for all, while the second nullhomotopy is allowed to vary. This produces
elements in

π1 MapAlgO(ModE)(E ⊗ FreeO(P ), A) ∼= π1 MapSp(P,A) ∼= [ΣP,A].

Example 1.6.3. Every Adem relation between Dyer–Lashof operations
produces a secondary Dyer–Lashof operation. For example, the relation
Q2n+2Qn +Q2n+1Qn+1 = 0 produces a natural transformation

πm(A) ⊃ ker(Qn, Qn+1)→ πm+2n+3(A)/Im(Q2n+2, Q2n+1)

on the homotopy of H-algebras.
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Example 1.6.4. Relations involving operations other than composition and
addition can also produce secondary operations, and the canonical examples
of these are Massey products. An A2-algebra R has a binary multiplication
operation R⊗R→ R, and if R is an A3-algebra it has a chosen associativity
homotopy. As a result, if we have elements x, y, and z in π∗R such that
xy = yz = 0, then we can glue together two nullhomotopies of xyz to obtain
a bracket 〈x, y, z〉 that specializes to definitions of Massey products or Toda
brackets.

In trying to express nonlinear relations as secondary operations, however,
we rapidly find that we want to move into a relative situation. A Massey
product is defined on the kernel of the map πp×πq×πr → πp+q×πq+r sending
(x, y, z) to (xy, yz). However, the relation x(yz) = (xy)z is not expressible
solely as some operation on xy and yz: we need to remember x and z as well,
but we do not want to enforce that they are zero.

We find that the needed expression is homotopy commutativity of the
following diagram:

FreeA3(Sp ⊕ Sp+q+r ⊕ Sr) Φ
//

��

FreeA3(Sp ⊕ Sp+q ⊕ Sq+r ⊕ Sr)

Θ

��

FreeA3
(Sp ⊕ Sr) // FreeA3

(Sp ⊕ Sq ⊕ Sr)

The right-hand map classifies the operation θ(x, y, z) = (x, xy, yz, z), and the
top map classifies the operation ϕ(x, u, v, z) = (x, xv−uz, z). The bottom-left
object is not the initial object in the category of A3-algebras, so we enforce
this by switching to the category C of A3-algebras under FreeA3

(Sp ⊕ Sr).
In this category, we genuinely have augmented objects with a nullhomotopic
double composite

FreeC(Sp+q+r)→ FreeC(Sp+q ⊕ Sq+r)→ FreeC(Sq)

that defines a Massey product.

1.6.3 Juggling

Secondary operations are part of the homotopy theory of C, and there is
typically no method to determine secondary operations purely in terms of
the homotopy category. However, there are many composition-theoretic tools
that use one secondary operation to determine information about another:
typically, one starts with a 4-fold composite

X
f−→ Y

g−→ Z
h−→ U

k−→ V,

with some assortment of double-composites being nullhomotopic, and relates
various associated secondary operations. This process is called juggling, and
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learning to juggle secondary operations is one of the main steps in applying
them. For instance, one of the main juggling formulas—the Peterson–Stein
formula—asserts that the sets 〈k, h, g〉f and k〈h, g, f〉 are inverse in π1 when
both sides make sense.

Example 1.6.5. The Adem relations Q2n+1Qn and Q4n+3Q2n+1 give rise
to a secondary operation 〈Qn,Q2n+1,Q4n+3〉, an element of π7n+5+m(H ⊗
FreeE∞(Sm)) representing an operation that increases degree by 7n+ 5. The
juggling formula says that, for any element α ∈ πm(A) with Qn(A) = 0, we
have

Q4n+3〈α,Qn,Q2n+1〉 = 〈Qn,Q2n+1,Q4n+3〉(α).

In other words, this secondary composite of operations gives a universal for-
mula for how to apply Q4n+3 to this secondary operation.

1.6.4 Application to the Brown–Peterson spectrum

In this section we will give a brief account of the main result of [48], which uses
secondary operatons to show that the 2-primary Brown–Peterson spectrum
BP does not admit the structure of an E12 ring spectrum. These results have
been generalized by Senger to show that, at the prime p, BP does not have
an E2p2+4 ring structure [87].

As in §1.3.3, if the Brown–Peterson spectrum has an En-algebra structure
then the map

BP → HZ(2) → H

can be given the structure of a map of En-algebras. On homology, this would
then induce a monomorphism

F2[ξ2
1 , ξ

2
2 , . . . ]→ F2[ξ1, ξ2, . . . ]

of algebras equipped with En Dyer–Lashof operations and secondary Dyer–
Lashof operations. The dual Steenrod algebra, on the right, has operations
that are completely forced. Therefore, if we can calculate enough to show
that the subalgebra H∗BP is not closed under secondary operations for En-
algebras, we arrive at an obstruction to giving BP the structure of En ring
spectrum.

The calculation of secondary operations in H∗H is accomplished with judi-
cious use of juggling formulas, ultimately reducing questions about secondary
operations to questions about primary ones.

• There is a pushout diagram of E∞ ring spectra

H ⊗MU
i

//

��

H ⊗H

j

��

H // H ⊗MU H.
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This makes H ⊗MU into an augmented H-algebra, and gives a nullho-
motopy of the composite H ⊗MU → H ⊗H → H ⊗MU H. The elements
α in H∗MU that map to zero in H∗H are then candidates for secondary
operations: we can construct 〈j, i, α〉 in the MU -dual Steenrod algebra
π∗(H ⊗MU H).

• These elements are concretely detected: they have explicit representatives
on the 1-line of a two-sided bar spectral sequence

TorH∗MU (H∗H,F2)⇒ π∗(H ⊗MU H).

• If we can determine primary operations θ(〈i, j, α〉) in the MU -dual Steen-
rod algebra, the juggling formulas of §1.6.3 tell us about functional oper-
ations 〈j, α,Θ〉 in the ordinary dual Steenrod algebra.

• Steinberger’s calculations of primary operations ϕ in the dual Steenrod
algebra then allow us to determine the values of ϕ〈j, α,Θ〉, and juggling
formulas again allow us to determine information about secondary opera-
tions 〈α,Θ,Φ〉 in the dual Steenrod algebra.

This method, then, reduces us to carrying out some key computations.
We must determine primary operations in the MU -dual Steenrod algebra.

Some of these, by work of Tilson [94], are determined by Kochman’s calcula-
tions from Theorem 1.5.15: the Künneth spectral sequence

Torπ∗MU (F2,F2)⇒ π∗(H ⊗MU H)

calculating the MU -dual Steenrod algebra is compatible with Dyer–Lashof
operations. However, there are remaining extension problems in the Tor, and
these turn out to be precisely what we are interested in when juggling.

The MU -dual Steenrod algebra is an exterior algebra, whose generators
correspond to the indecomposables in π∗MU . The extension problems in the
Tor spectral sequence arise because some generators in π∗MU have nontrivial
image in H∗MU and are detected by Tor1, while others have trivial image in
H∗MU and are detected by Tor0. The solution is to find an algebra R mapping
to MU that does not have this problem. If we can find one so that the map
π∗R → π∗MU is surjective, the map from the R-dual Steenrod algebra to
the MU -dual Steenrod algebra is surjective. If the generators of π∗R have
nontrivial image in H∗R, then the spectral sequence

TorH∗R(H∗H,F2)⇒ π∗(H ⊗R H)

detects all needed classes with Tor1 and hence eliminates the extension prob-
lem.

For this purpose, we used the spherical group algebra S[SL1(MU)]. The
Dyer–Lashof operations in H∗SL1(MU) are derived from the multiplicative

Dyer–Lashof operations Q̃n in Ω∞MU . This is a lengthy calculation of power
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operations in the Hopf ring, and it is ultimately determined by calculations
of Johnson–Noel of power operations in the formal group theory of MU [41].

Finally, we must determine a candidate secondary operation in H∗H to
which we can apply this procedure—there are many candidate operations and
many dead ends. The secondary operation is rather large: it was found using
a calculation in Goerss–Hopkins obstruction theory that is detailed at length
in [47].

1.7 Coherent structures

In §1.3 we discussed algebras over an operad in a general topological category,
or more generally algebras over a multicategory M, including extended power
and free algebra functors. The definitions we used made heavy use of a strict
symmetric monoidal structure on the category of spectra.

In this section we will discuss the coherent viewpoint on these construc-
tions that makes use of the machinery of Lurie [54], and with the goal of
connecting different strata in the literature. To begin, we should point some
of the problems that this discussion is meant to solve.

We would like to demonstrate that our constructions are model-
independent. There are several different symmetric monoidal categories of
spectra [28, 39, 83] with several different model structures, and there is a
nontrivial amount of work involved in showing that an equivalence between
two different categories of spectra gives an equivalence between categories of
algebras [85]. These issues are compounded when we attempt to relate notions
of commutative algebras in different categories, even if they have equivalent
homotopy theory [95].

We would also like to allow weaker structure than a symmetric monoidal
structure. For example, given a fixed En-algebra R we will use this to discuss
the classification of power operations on En-algebras under R. Our natural
home for this discussion will be the category of En R-modules (as in Exam-
ple 1.6.4).

1.7.1 Structured categories

As discussed in §1.1, classical symmetric monoidal categories are analogues of
commutative monoids with the difference that they require natural isomor-
phisms to express associativity, commutativity, and the like. We can express
this structure using simplicial operads. For any categories C and D, there is a
groupoid Fun(C,D)' of functors and natural isomorphisms. Taking the nerve,
we get a simplicially enriched category Cat, and it makes sense to ask whether
C has the structure of an algebra over a simplicial operad O.
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Example 1.7.1. A symmetric monoidal category can be expressed as an
algebra over the Barratt–Eccles operad [6].

Example 1.7.2. In classical category theory, a braided monoidal category in
the sense of [42] can be encoded by a sequence of maps

NPn → Fun(Cn,C)

from the nerves of the pure braid groups to the categories of functors Cn → C.
The required compatibilities between these maps can be concisely expressed
by noting that these nerves assemble into an E2-operad, and that a braided
monoidal category is an algebra over this operad.

We would like to discuss En-analogues of these structures in the context
of categories with morphism spaces. We will give some definitions in this
section, on the point-set level, with the purpose of interpolating the older and
newer definitions. We would like to say that an O-monoidal category is an
algebra over the operad O in Cat, but this requires us to be clever enough
to have a well-behaved definition of a space of functors between two enriched
categories; the failure of enriched categories to have a well-behaved enriched
functor category is a principal motivation for the use of quasicategories.

Until further notice, all categories and multicategories are assumed to be
enriched in spaces and all functors are functors of enriched categories.

Definition 1.7.3. Suppose that p : C → M is a multifunctor, and write Cx

for the category p−1(x). Given objects Xi ∈ Cxi and a map

α : A→ MulM(x1, . . . ,xd; y)

of spaces, an α-twisted product is an object Y ∈ Cy and a map A →
MulC(X1, . . . , Xd;Y ) such that, for any Z ∈ C with p(Z) = z, the diagram

MapC(Y, Z) //

��

Map(A,MulC(X1, . . . , Xd;Z))

��

MapM(y, z) // Map(A,MulM(x1, . . . ,xd; z))

is a pullback. If it exists, we denote it by Anα (X1, . . . , Xd).

Definition 1.7.4. An weakly M-monoidal category is a multifunctor p : C→
M that has α-twisted product for any inclusion

α : {f} ⊂ MulM(x1, . . . ,xd; y).

A strongly M-monoidal category is a category that has α-twisted products for
all α.
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Remark 1.7.5. In particular, for any point f ∈ MulM(x1, . . . ,xd; y), this
universal property can be used to produce a functor

{f}n (−) : Cx1
× · · · × Cxd → Cy,

and these are compatible with composition (up to natural isomorphism). A
weakly M-monoidal category determines, up to natural equivalence, a multi-
functor M→ Cat.

Example 1.7.6. Every multicategory C has a multifunctor to the one-object
multicategory Comm associated to the commutative operad. The multicate-
gory is Comm-monoidal if and only if multimorphisms (X1, . . . , Xd)→ Y are
always representable by an object X1 ⊗ · · · ⊗Xd, which is precisely when C
comes from a symmetric monoidal category. It is strongly Comm-monoidal
only if it is also tensored over spaces in a way compatible with the monoidal
structure as in Definition 1.3.9.

Example 1.7.7. Associated to a monoidal category C we can build a mul-
ticategory: multimorphisms (X1, . . . , Xd) → Y are pairs of a permutation
σ ∈ Σd and a map f : Xσ(1) ⊗ · · · ⊗Xσ(d) → Y . There is a multifunctor from
this category to the multicategory Assoc corresponding to the associative op-
erad: it sends all objects to the unique object, and sends each multimorphism
(σ, f) as above to the permutation σ. Conversely, an Assoc-monoidal category
comes from a monoidal category.

Example 1.7.8. Suppose that A is a commutative ring and B is an A-algebra.
Then there is a multicategory C as follows.

1. An object of C is either an A-module or a right B-module.

2. The set MulC(M1, . . . ,Md;N) of multimorphisms is
HomA(M1 ⊗A · · · ⊗AMd, N) if N and all Mi are A-modules,

HomB(M1 ⊗A · · · ⊗AMd, N) if N and exactly one Mi are B-modules,

∅ otherwise.

This comes equipped with a functor from C to the multicategory Mod from
Example 1.3.23 that parametrizes ring-module pairs: any A-module is sent
to a and any B-module is sent to m. This makes C into a Mod-monoidal
category, expressing the fact that ModA has a tensor product and that objects
of RModB can be tensored with objects of ModA. This makes RModB left-
tensored over ModA.

Example 1.7.9. Fiberwise homotopy theory studies the category S/B of
spaces over B. Let O be an operad and B be a space with the structure
of an O-algebra. Then S/B has the structure of a strongly O-monoidal cate-
gory in the following way. For spaces X1, . . . , Xd and Y over B, the space of
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multimorphisms is the pullback

Mul/B(X1, . . . , Xd;Y ) //

��

Map(X1 × · · · ×Xd, Y )

��

O(d) // Map(Bd, B) // Map(X1 × · · · ×Xd, B).

That is, a multimorphism consists of a point f ∈ O(d) and a commutative
diagram

X1 × · · · ×Xd
//

��

Y

��

Bd
f

// B.

With this definition, it is straightforward to verify that for α : A→ O(d), the
α-twisted product Anα (X1, . . . , Xd) is the following space over B:

A×X1 × · · · ×Xd → O(d)×Bd → B.

In general, this should not be expected to be part of a symmetric monoidal
structure on the category of spaces over B, even up to equivalence.

Example 1.7.10. Let L be the category of universes: an object is a countably
infinite dimensional inner product space U . These objects have an associated
multicategory: the space MulL(U1, . . . , Ud;V ) of multimorphisms is the (con-
tractible) space of linear isometric embeddings U1 ⊕ · · · ⊕ Ud ↪→V . Over L,
there is a category SpL of indexed spectra. An object is a pair (U,X) of a uni-
verse U and a spectrum X (in the Lewis–May–Steinberger sense [50]) indexed
on U ; a multimorphism ((U1, X1), . . . , (Ud, Xd))→ (V, Y ) is a pair of a linear
isometric embedding i : U1 ⊕ · · · ⊕Ud → V and a map i∗(X1 ∧ · · · ∧Xd)→ Y
of spectra indexed on V .

This does not describe the topology on the multimorphisms in this cat-
egory. Given a map A → L(U1, . . . , Ud;V ) and spectra Xi indexed on Ui,
there is a twisted half-smash product An (X1, . . . , Xd) indexed on V [50, §VI],
equivalent to the smash product A+ ∧X1 ∧ · · · ∧Xd. There exists a topology
on the multimorphisms so that a continuous map in from A is equivalent to
a map A → L(U1, . . . , Ud;V ) and a map A n (X1, . . . , Xd) → Y . By design,
then, the projection SpL → L makes the category of indexed spectra strongly
L-monoidal.

Example 1.7.11. Fix an En-algebra A in Sp, and consider the category of
En-algebras R with a factorization A→ R→ A of the identity map. This has
an associated stable category, serving as the natural target for Goodwillie’s
calculus of functors: the category of En A-modules [29]. This category should
also not be expected to have a symmetric monoidal structure, but the tensor
product over R does give it the structure of an En-monoidal category. For
example, for an associative algebra A in Sp, the tensor product over A gives
the category of A-bimodules a monoidal structure.
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1.7.2 Multi-object algebras

Just as we cannot make sense of a commutative monoid in a nonsymmet-
ric monoidal category, we need relationships between an operad O and any
multiplicative structure on a category C before O can act on objects.

Definition 1.7.12. Suppose p : C → N and M → N are multifunctors. An
M-algebra in C is a lift in the diagram

C

p

��

M

>>

// N

of multifunctors. We write AlgM/N(C) for this category of M-algebras.

Example 1.7.13. If C and M are arbitrary multicategories, then using the
unique maps from C and M to the terminal multicategory Comm we re-
cover the definition of AlgM(C), the category of M-algebras in C from Defi-
nition 1.3.22.

Example 1.7.14. Let the space B be an algebra over an operad O and
consider the fiberwise category S/B of spaces over B with the strongly O-
monoidal structure from Example 1.7.9. An O-algebra in S/B is an O-algebra
X with a map of O-algebras X → B.

Example 1.7.15. Consider the category of indexed spectra SpL from Ex-
ample 1.7.10. The fact that the external smash product (X1 ∧ · · · ∧ Xn) is
naturally indexed on the direct sum of the associated universes obstructed
making the category of spectra indexed on any individual universe Sp strictly
symmetric monoidal, and so we cannot ask about commutative monoids in
SpL—but the structure available is still enough to do multiplicative homo-
topy theory. An L-algebra in SpL recovers the classical definition of an E∞
ring spectrum from [65]. Similarly we can define O-algebras for any operad O
with an augmentation to L [50, VII.2.1].

Proposition 1.7.16. Suppose that C is strongly N-monoidal and that M→ N
is a map of multicategories. In addition, suppose that C has enriched colimits
and that formation of α-twisted products preserves enriched colimits in each
variable.

1. For objects x and y of M, there are extended power functors

Symk
M,x→y : Cx → Cy,

given by

Symk
M,x→y(X) = MulM(x,x, . . . ,x︸ ︷︷ ︸

k

; y) n (X,X, . . . ,X)/Σk.
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2. The evaluation functor evx : AlgM(C)→ Cx has a left adjoint

FreeM,x : Cx → AlgM(C).

The value of FreeM,x(X) on any object y of M is

evy(FreeM,x(X)) =
∐
k≥0

Symk
M,x→y(X).

Example 1.7.17. Let B be a space with an action of an operad O, and let
X a space over B. Then the extended powers are

Symk
O(X) =

(
O(k)×Σk X

k → O(k)×Σk B
k → B

)
.

Example 1.7.18. Suppose that Γ is a commutative monoid and that X is a Γ-
graded E∞ ring spectrum, as in Example 1.3.24. Then there are action maps
SymkXg → Xkg. These give rise to Dyer–Lashof operations Qi : H∗Xg →
H∗+i(X2g).

Example 1.7.19. Suppose that · · · → X2 → X1 → X0 is a strongly fil-
tered E∞ ring spectrum, as in Example 1.3.25. Then there are action maps
SymkXn → Xkn that are compatible. These give rise to power operations
Qi : H∗Xn → H∗+iX2n that are compatible as n varies, and there are in-
duced power operations on the associated spectral sequence.

Example 1.7.20. Given a spectrum X indexed on a universe U as in Exam-
ple 1.7.10, the extended powers are modeled by twisted half-smash products:

Symk
U→U (X) ' EΣk nΣk (X∧k)

This recovers the machinery that was put to effective use in the 1970s and
1980s for studying E∞ ring spectra and H∞-ring spectra, before the develop-
ment of strictly monoidal categories of spectra.

1.7.3 ∞-operads

The point-set discussion of the previous sections provides a library of exam-
ples. As the basis for a theory it relies on the existence of rigid models and
preservation of colimits.

Example 1.7.21. Consider the fiberwise category of spaces over a fixed base
space B. This category has a symmetric monoidal fiber product X ×B Y .
The fiber product typically needs fibrant input to represent the homotopy
fiber product; the fiber product typically does not produce cofibrant output.
This makes it difficult to use the standard machinery to study algebras and
modules in this category. These problems have received significant attention
in the setting of parametrized stable homotopy theory [62, 52, 53].
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Example 1.7.22. The category of nonnegatively graded chain complexes over
a commutative ring R is equivalent to the category of simplicial R-modules via
the Dold–Kan correspondence. This correspondence is lax symmetric monoidal
in one direction, but only lax monoidal in the other. Moreover, while both sides
have morphism spaces, the Dold–Kan correspondence only preserves these up
to weak equivalence, even for fibrant-cofibrant objects.

Example 1.7.23. In the standard models of equivariant stable homotopy
theory the notion of strict G-commutativity is equivalent to one encoded by
equivariant operads rather than ordinary ones [57, 36, 16]. This means that an
E∞-algebra A (in the sense of an ordinary E∞ operad) may not have a strictly
commutative model [66, 35], and this makes it more difficult to construct a
symmetric monoidal model for the category of A-modules.

The framework of ∞-operads [54] (or, alternatively, that of dendroidal
sets [72]) is one method to express coherent multiplicative structures. Here
are some of the salient points.

• This generalization takes place in the theory of ∞-categories (specifically
quasicategories), equivalent to the study of categories enriched in spaces.
Every category enriched in spaces gives rise to an ∞-category; every ∞-
category has morphism spaces between its objects.

• In this framework, for ∞-categories C and D there is a space Fun(C,D)
encoding the structure of functors and natural equivalences.

• In an∞-category, homotopy limits and colimits are intrinsic notions rather
than arising from a particular construction. Many common constructions
produce presentable ∞-categories, which have all homotopy limits and
colimits.

• Multicategories generalize to so-called ∞-operads. These have an under-
lying ∞-category, and there are spaces of multimorphisms to an object
from a tuple of objects. Every topological multicategory gives rise to an
∞-operad; every ∞-operad can be realized by a topological multicate-
gory. The precise definitions are similar in spirit to Segal’s encoding of
E∞-spaces [86].

• An ∞-operad O has an associated notion of an O-monoidal ∞-category.
An O-monoidal ∞-category is expressed in terms of maps C → O of ∞-
operads with properties analogous to that from Definition 1.7.4, with the
main difference that spaces of morphisms are respected. An O-monoidal
∞-category is also equivalent to a functor from O to a category of cat-
egories: each object x of O has an associated category Cx, and one can
associate a map

MulO(x1, . . . ,xd; y)→ Fun(Cx1
, . . . ,Cxd ;Cy)

of spaces.
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• We can discuss algebras and modules in terms of sections, just as in Defi-
nition 1.7.12.

All of this structure is systematically invariant under equivalence. Equiva-
lent∞-operads give rise to equivalent notions of an O-algebra structure on C;
∞-categories equivalent to C have equivalent notions of O-algebra structures
to those on C; equivalent O-monoidal∞-categories have equivalent categories
of M-algebras for any map M→ O of ∞-operads.

Example 1.7.24. An En-operad has an associated ∞-operad O, and as a
result we can define an En-monoidal ∞-category C to be an O-monoidal ∞-
category. When n = 1, 2, or ∞ we can recover monoidal, braided monoidal,
and symmetric monoidal structures.

1.7.4 Modules

Mandell’s theorem (1.3.7), which is about structure on the homotopy category
of left modules over an En-algebra, is a reflection of higher structure on the
category of left modules itself.

Theorem 1.7.25 ([54, 5.1.2.6, 5.1.2.8]). Suppose that C is an Ek-monoidal
∞-category which has geometric realization of simplicial objects, and such
that the tensor product preserves such geometric realizations in each variable
separately. Then the category of left modules over an Ek-algebra A is Ek−1-
monoidal, and has all colimits that exist in C.

As previously discussed, the category of left modules over an associative
algebra R is not made monoidal under the tensor product over R, but the
category of bimodules is. The generalization of this result to En-algebras is
the following.

Theorem 1.7.26 ([54, 3.4.4.2]). Suppose C is an En-monoidal presentable
∞-category such that the monoidal structure preserves homotopy colimits in
each variable separately. Then for any En-algebra R in C, there is a category
ModEnR (C) of En R-modules. This is a presentable En-monoidal ∞-category
whose underlying monoidal operation is the tensor product over R.

In particular, if C is a presentable ∞-category with a symmetric monoidal
structure that preserves colimits in each variable, and R is an En-algebra in
C, the category of En R-modules in C has an En-monoidal structure that
preserves colimits in each variable.

Roughly, an En R-module M has multiplication operations R⊗k⊗M →M
parametrized by (k+1)-tuples of points of configuration space, where one point
is marked by M and the rest by R. This has the more precise description of
En-modules as left modules.

Theorem 1.7.27 ([54, 5.5.4.16], [29]). Suppose that C is a symmetric
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monoidal∞-category and that the monoidal product preserves colimits in each
variable separately. For an En-algebra R in C, the factorization homology∫
Dn\0R has the structure of an E1-algebra, and the category of En R-modules

is equivalent to the category of left modules over
∫
Dn\0R.

Remark 1.7.28. In the category of spectra, this could be regarded as a con-
sequence of the Schwede–Shipley theorem [84] or its generalizations. There
is a free-forgetful adjunction between En R-modules and Sp, and the image
FreeEn-R(S) of the sphere spectrum under the left adjoint is a compact genera-
tor for the category of En R-modules. Therefore, En R-modules are equivalent
to the category of modules over the endomorphism ring

FEn-R(FreeEn-R(S),FreeEn-R(S)) ' FreeEn-R(S).

This theorem, then, is an identification of the free En R-module.

Example 1.7.29. When n = 1, the category of E1 R-modules is the category
of left modules over R⊗Rop. When n = 2, the category of E2-R-modules is the
category of left modules over the topological Hochschild homology THH(R).

1.7.5 Coherent powers

In the classical case, we described an O-algebra structure on A in terms of
action maps

Symk
O(A) = O(k)⊗Σk A

⊗k → A

from extended power constructions to A, and gave a formula

FreeO(X) =
∐
k≥0

Symk
O(A)

for the free O-algebra on an object in the case where the monoidal structure is
compatible with enriched colimits; we also discussed the multi-object analogue
in §1.7.2. The analogous constructions for ∞-operads are carried out in [54,
§3.1.3], and we will sketch these results here.

Fix an ∞-operad O. For any objects x1, . . . ,xd,y of O, we can construct
a space

MulO(x1, . . . ,xd; y)

of multimorphisms in O; if the xi are equal, this further can be given a natural
action of the symmetric group.

Let C be an O-monoidal∞-category C. In particular, C encodes categories
Cx parametrized by the objects x of O, and functors f : Cx1

×· · ·×Cxd → Cy

parametrized by the multimorphisms f : (x1, . . . ,xd)→ y of O. Suppose that
the categories Cx have homotopy colimits and the functors preserve homotopy
colimits in each variable. Then there exist extended power functors

Symk
O,x→y : Cx → Cy,
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whose value on X ∈ Cu is a homotopy colimit(
hocolim

α∈MulO(x,...,x;y)
α(X ⊕ · · · ⊕X)

)
hΣk

.

These extended powers have the property that an O-algebra A has natural
maps Symk

O,x→y(A(x))→ A(y). Moreover, there is a free-forgetful adjunction
between O-algebras and Cx, and the free object FreeO,x(X) on X ∈ CU has
the property that its value on y is exhibited as the coproduct

evy(FreeO,x(X)) '
∐
k≥0

Symk
O,x→y(X).

Remark 1.7.30. Composing with the diagonal Cx →
∏

Cx gives a Σk-
equivariant map

MulO(x, . . . ,x︸ ︷︷ ︸
k

; y)→ Fun(Cx × · · · × Cx,Cy)→ Fun(Cx,Cy)

that factors through the homotopy orbit space

P (k) = MulO(x, . . . ,x; y)hΣk .

This space P (k) then serves as a parameter space for tensor-power functors
Cx → Cy.

In the case of an ordinary single-object∞-operad O such as an En-operad,
we can rephrase in terms of P (k). Such an ∞-operad O is equivalent to an
ordinary operad in spaces and an O-monoidal ∞-category is equivalent to an
∞-category C with a map O → End(C). We recover a formula

FreeO(X) '
∐
k≥0

hocolim
α∈P (k)

α(X, . . . ,X)

for the free algebra on X. When X = Sm, this is the Thom spectrum∐
k≥0

P (k)mρ,

closely related to Remark 1.4.19.
When O is an En-operad, the space P (k) is equivalent to the space

Cn(k)/Σk, a model for the space of unordered configurations of k points in
Rn. When n = ∞ the space P (k) is a model for BΣk, and we find that the
we recover the ordinary homotopy symmetric power:

Symk
E∞(X) ' (X⊗k)hΣk .

Example 1.7.31. Fix a space B and consider the fiberwise category S/B .

The homotopy fiber product X ×hB Y gives this the structure of a symmetric
monoidal∞-category, breaking up independently over the components of B. If
B is path-connected, then the extended power and free functors on (X → B)
are those obtained by applying the extended power and free functors to the
fiber.
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Example 1.7.32. Given an En R-module M , the free En R-algebra on an
En R-module M is ∐

k≥0

hocolim
α∈Cn(k)/Σk

M⊗αk,

where each point α of configuration space determines a functor M⊗αk '
M ⊗R · · · ⊗RM .

More can be said under the identification between En-modules and mod-
ules over factorization homology. If M is the free En R-module on Sm, then
we obtain an identification of the free En-algebra under R on Sm:

R qEn FreeEn(Sm) '
∐
k≥0

(∫
Rk\{p1,...,pk}

R

)
⊗Σk S

mρk .

Remark 1.7.33. The interaction between connective objects and their Post-
nikov truncations from §1.3.3 generalizes to the case where we have an O-
monoidal ∞-category C with a compatible t-structure in the sense of [54,
2.2.1.3]. This means that the categories Cx indexed by the objects x of O all
have t-structures, and the functors induced by the morphisms in O are all ad-
ditive with respect to connectivity. Then [54, 2.2.1.8] implies that connective
O-algebras have Postnikov towers: the collection of truncation functors τ≤n is
compatible with the O-monoidal structure on C≥0.

1.8 Further invariants

1.8.1 Units and Picard spaces

Definition 1.8.1. For an En-monoidal ∞-category C with unit I, the Picard
space Pic(C) is the full subgroupoid of C spanned by the invertible objects:
objects X for which there exists an object Y such that Y ⊗X ' X ⊗ Y ' I.

Remark 1.8.2. The classical Picard group of the homotopy category hC is
the set π0 Pic(C) of path components.

In particular, Pic(C) is closed under the En-monoidal structure on C, giv-
ing it a canonical En-space structure. Moreover, by construction π0 Pic(C) =
(π0C)× is a group, and so Pic(C) is an n-fold loop space. The loop space
Ω Pic(C) is the space of homotopy self-equivalences of the unit I; in the case
of the category LModR of left modules, it is homotopy equivalent to the unit
group GL1(R) of R.

Proposition 1.8.3 ([2, §7]). If R is an En ring spectrum, then the space
GL1(R) of homotopy self-equivalences of the left module R has an n-fold de-
looping. If n ≥ 2, the space Pic(R) = Pic(LModR) has an (n− 1)-fold deloop-
ing.
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1.8.2 Topological André–Quillen cohomology

Topological André-Quillen homology and cohomology are invariants of ring
spectra developed by Kriz and Basterra [45, 8]. For a fixed map of E∞ ring
spectra A → B, we can define a topological André–Quillen homology object
TAQ(A → R → B) for any object R in the category of E∞ rings between A
and B. This is characterized by the following properties [9]:

1. It naturally takes values in the category of B-modules.

2. It takes homotopy colimits of E∞ ring spectra between A and B to ho-
motopy colimits of B-modules.

3. There is a natural map B ⊗A (R/A)→ TAQ(A→ R→ B).

4. For a left A-module X with a map X → B, the composite natural map

B ⊗A X → B ⊗A FreeAE∞(X)→ TAQ(A→ FreeAE∞(X)→ B)

of B-modules is an equivalence.

5. Under the above equivalence, the natural map

TAQ(A→ FreeAE∞ FreeAE∞(X)→ B)→ TAQ(A→ FreeAE∞(X)→ B)

is equivalent to the map

B ⊗A FreeAE∞(X)→ B ⊗A X

that collapses B ⊗A (q Symk(X)) to the factor with k = 1.

Topological André-Quillen homology measures how difficult it is to build
R as an A-algebra: any description of R as an iterated pushout along maps
of free of E∞-algebras, starting from A, determines a description of the topo-
logical André–Quillen cohomology of R as an iterated pushout of B-modules.
Basterra showed that TAQ-cohomology groups

TAQn(R;M) = [TAQ(S→ R→ R),ΣnM ]ModR

plays the role for Postnikov towers of E∞ ring spectra that ordinary cohomol-
ogy does for spectra.

From this point of view, TAQ also has natural generalizations to TAQO

for algebras over an arbitrary operad [9, 34], although there may be a choice
of target category that takes more work to describe. In particular, for En-
algebras these are related to an iterated bar construction [10].

Topological André–Quillen homology also enjoys the following properties,
proved in [8, 9].
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Base-change: For a map B → C, we have a natural equivalence

C ⊗B TAQ(A→ R→ B) ' TAQ(A→ R→ C).

In particular, if we define ΩR/A = TAQ(A→ R→ R), then

TAQ(A→ R→ B) = B ⊗R ΩR/A.

Transitivity: For a composite A → R → S → B, there is a natural
cofiber sequence

TAQ(A→ R→ B)→ TAQ(A→ S → B)→ TAQ(R→ S → B).

In particular, for A→ R→ S we have cofiber sequences

S ⊗R ΩR/A → ΩS/A → ΩS/R.

Representability: Suppose that there is a functor h∗ from the cat-
egory of pairs (R → S) of E∞ ring spectra between A and B to
the category of graded abelian groups. Suppose that this is a co-
homology theory on the category of E∞ ring spectra between A
and B: it satisfies homotopy invariance, has a long exact sequence,
satisfies excision for homotopy pushouts of pairs, and takes co-
products to products. Then there is a B-module M with a natural
isomorphism

hn(S,R) ∼= TAQn(S,R;M)

= [TAQ(R→ S → B),ΣnM ]ModB

of abelian groups.

For any E∞ ring spectrum B, algebras mapping to B have TAQ-homology
TAQ(S → R → B), valued in the category of B-modules. The square-zero
algebras

B ⊕M

are representing objects for TAQ-cohomology TAQ∗(R;M).
Representability allows us to construct and classify operations in TAQ-

cohomology by B-algebra maps between such square-zero extensions.

Proposition 1.8.4. Any element in [Σ Sym2M,N ]ModB has a naturally as-
sociated map B⊕M → B⊕N of augmented commutative B-algebras and hence
gives rise to a natural TAQ-cohomology operation TAQ(−;M)→ TAQ(−;N)
for commutative algebras mapping to B.

Proof. By viewing B as concentrated in grading 0 and M as concentrated
in grading 1, we can give a Z-graded construction (as in Example 1.3.24) of
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B ⊕M as an iterated sequence of pushouts along maps of free algebras. The
first such pushout is

FreeBE∞(M)← FreeBE∞(Sym2M)→ B

Further pushouts only alter gradings 3 and higher.
We now view B ⊕ N as graded by putting N in grading 2. We find that

homotopy classes of maps of graded algebras B ⊕M → B ⊕N are equivalent
to maps Σ Sym2M → N .

Example 1.8.5. Letting M = B ⊗ Sm, we have

Σ Sym2(M) ' B ⊗ Σm+1RP∞m .

Therefore, we get a map from the B-cohomology Bn(Σm+1RP∞m ) of
stunted projective spaces to the group of natural cohomology operations
TAQm(−;B)→ TAQn(−;B).

Remark 1.8.6. The fact that elements in the B-homology of stunted
projective spaces produce homotopy operations while elements in their B-
cohomology produce TAQ-cohomology operations with a shift is a reflection
of Koszul duality.

Example 1.8.7. Letting M = (B⊗Sq)⊕ (B⊗Sr), and using the projection

Σ Sym2(B ⊗ (Sq ⊕ Sr)) ' Σ Sym2(B ⊗ Sq)⊕ Σ Sym2(B ⊗ Sr)⊕ Σ(B ⊗ Sq ⊗ Sr)
→ B ⊗ Sq+1+r,

we get a binary operation

[−,−] : TAQq(−;B)× TAQr(−;B)→ TAQq+1+r(−;B)

that (up to a normalization factor) we call the TAQ-bracket.

Example 1.8.8. If B = HF2, then there are TAQ-cohomology operations

Ra : TAQm(−;HF2)→ TAQm+a(−;HF2)

for a ≥ m+ 1, and a bracket

TAQq(−;HF2)× TAQr(−;HF2)→ TAQq+1+r(−;HF2).

In this form, the operation Ra+1 is Koszul dual to Qa, in the sense that non-
trivial values of Ra+1 in TAQ-cohomology detect relations on the operator Qa

in homology. Similarly, the bracket in TAQ is Koszul dual to the multiplica-
tion.



54 Tyler Lawson

The operations were constructed by to Basterra–Mandell [11]. In further
unpublished work, they showed that these operations (and their odd-primary
analogues) generate all the natural operations on TAQ-cohomology with val-
ues in HFp and determined the relations between them. In particular, the
operations Ra above satisfy the same Adem relations that the Steenrod oper-
ations Sqa do; the TAQ-bracket has the structure of a shifted restricted Lie
bracket, whose restriction is the bottommost defined operation Ra.

Basterra–Mandell’s proof uses a variant of the Miller spectral sequence
from [69]. We will close out this section with a sketch of how such spectral
sequences are constructed, parallel to the delooping spectral sequence from
Remark 1.5.14.

Proposition 1.8.9. Suppose that R is an E∞ ring spectrum with a chosen
map R→ HFp. Then there is a Miller spectral sequence

AQDL∗ (π∗(HFp ⊗R))⇒ TAQ∗(S→ R→ HFp),

where the left-hand side are the nonabelian derived functors of an indecom-
posables functor Q that sends an augmented graded-commutative Fp-algebra
with Dyer–Lashof operations to the quotient of the augmentation ideal by all
products and Dyer–Lashof operations.

Proof. We construct an augmented simplicial object:

· · ·FreeE∞ FreeE∞ FreeE∞ RV FreeE∞ FreeE∞ R⇒ FreeE∞ R→ R.

If U is the forgetful functor, from commutative ring spectra map-
ping to HFp to spectra mapping to HFp, this is the bar con-
struction B(FreeE∞ , U FreeE∞ , UR). The underlying simplicial spectrum
B(U FreeE∞ , U FreeE∞ , UR) has an extra degeneracy, so its geometric real-
ization is equivalent to R. Moreover, the forgetful functor from E∞ rings to
spectra preserves sifted homotopy colimits, and hence geometric realization
because the simplicial indexing category is sifted. Therefore, applying the ho-
motopy colimit preserving functor TAQ = TAQ(S → (−) → HFp) and the
natural equivalence TAQ ◦FreeE∞(R) ' HFp ⊗R, we get an equivalence

|B(HFp ⊗ (−), U FreeE∞ , UR)| ' TAQ(R).

However, this bar construction is a simplicial object of the form

· · ·HFp ⊗ FreeE∞ FreeE∞ RV HFp ⊗ FreeE∞ R⇒ HFp ⊗R.

Taking homotopy groups, we get a simplicial object

QE∞QE∞H∗RV QE∞H∗R⇒ H∗R.

Moreover, the structure maps make this the bar construction

B(Q,QE∞ , H∗R)
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that computes derived functors of Q on graded-commutative algebras with
Dyer–Lashof operations. Therefore, the spectral sequence associated to the
geometric realization computes TAQ∗(S → R → HFp) and has the desired
E2-term.

Remark 1.8.10. We can also apply cohomology rather than homology and
get a spectral sequence computing topological André–Quillen cohomology.

This leaves open a hard algebraic part of Basterra–Mandell’s work: actually
calculating these derived functors, and in particular finding relations amongst
the operations Ra and the bracket [−,−] that give a complete description of
TAQ-cohomology operations.

1.9 Further questions

We will close this paper with some problems that we think are useful directions
for future investigation.

Problem 1.9.1. Develop useful obstruction theories which can determine the
existence of or maps between En-algebras in a wide variety of contexts.

The obstruction theory due to Goerss–Hopkins [32] is the prototype for
these results. In unpublished work [88], Senger has given a development of
this theory for E∞-algebras where the obstructions occur in nonabelian Ext-
groups calculated in the category of graded-commutative rings with Dyer–
Lashof operations and Steenrod operations satisfying the Nishida relations,
and provided tools for calculating with them. This played a critical role in
[48, 47].

In closely related situations, the tools available remain rudimentary. For ex-
ample, there is essentially no workable obstruction theory for the construction
of commutative rings of any type in equivariant stable theory. Tools arising
from the Steenrod algebra have been essential in most of the deep results in
homotopy theory, such as the Segal conjecture [51] and the Sullivan conjecture
[70]. Without the analogues, there is a limit to how much structure can be
revealed.

Problem 1.9.2. Give a modern redevelopment of homology operations for
E∞ ring spaces and En ring spaces.

The observant reader may have noticed that, despite the rich structure
present, the principal material that we have referenced for E∞ ring spaces is
several decades old. Several major advances have happened in multiplicative
stable homotopy theory since then, and the author feels that there is still a
great deal to be mined. Having this material accessible to modern toolkits
would be extremely useful.
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For one example, the theory of E∞ ring spaces from the point of view
of symmetric spectra has been studied in detail by Sagave and Schlichtkrull
[82, 80, 81]. For another, the previous emphasis on E∞ ring spaces should be
tempered by the variety of examples that we now know only admit A∞ or En
ring structures.

Problem 1.9.3. Give a unified theory of graded Hopf algebras and Hopf rings,
capable of encoding some combination of non-integer gradings, power opera-
tions, group-completion theorems, and the interaction with the unit.

Ravenel–Wilson’s theory of Hopf rings is integer-graded. We now know
many examples—motivic homotopy theory, equivariant homotopy theory,
K(n)-local theory, modules over En ring spectra—that may have natural
gradings of a much wider variety than this, such as a Picard group. More-
over, multiplicative theory should involve much more structure: we should
have a sequence of spaces graded not just by a Picard group, but by the Pi-
card space that also encodes structure nontrivial higher interaction between
gradings and the unit group.

Problem 1.9.4. Give a precise general description of the Koszul duality rela-
tionship between homotopy operations and TAQ-cohomology operations. Give
a complete construction of the algebra of operations on TAQ-cohomology for
En-algebras with coefficients in Hk, for k a commutative ring. Give complete
descriptions of the TAQ-cohomology for a large library of Eilenberg–Mac Lane
spectra Hk and Morava’s forms of K-theory.

Because TAQ-cohomology governs the construction of ring spectra via
their Postnikov tower, essentially any information that we can provide about
these objects is extremely useful.

Problem 1.9.5. Determine an algebro-geometric expression for power oper-
ations and their relationship to the Steenrod operations. Do the same for the
operations which appear in the Hopf ring associated to an E∞ ring space.

At the prime 2, it has been known for some time that the action of the
Steenrod algebra can be concisely packaged as a coaction of the dual Steenrod
algebra, a Hopf algebra corresponding to the group scheme of automorphisms
of the additive formal group over F2. The Dyer–Lashof operations on infinite
loop spaces generate an algebra analogous to the Steenrod algebra, and its
dual was described by Madsen [55]; the result is closely related to Dickson
invariants. However, the full action of the Dyer–Lashof operations or the in-
teraction between the Dyer–Lashof algebra and the Steenrod algebra does not
yet have a geometric packaging.

Conjecture 1.9.6. For Lubin–Tate cohomology theories E and F of height n,
there is a natural algebraic structure parametrizing operations from continuous
E-homology to continuous F -homology for certain E∞ ring spectra, expressed
in terms of the algebraic geometry of isogenies of formal groups.
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This is complete: there is an obstruction theory for the construction of
and mapping between K(n)-local E∞ ring spectra whose algebraic input is
completed E-homology equipped with these operations.

In this paper we have not really touched on the extensive study of power
operations in chromatic homotopy theory (cf. [90, 7]). Given Lubin–Tate co-
homology theories E and F associated to formal groups of height n at the
prime p, we have both cohomology operations and power operations. In [38]
the algebra of cohomology operations is expressed in terms of isomorphisms of
formal groups. Extensive work of Ando, Strickland, and Rezk has shown that
power operations are expressed in terms of quotient operations for subgroups
of the formal groups. It has been known for multiple decades [93, §28] that
the natural home combining these two types of operations is the theory of
isogenies of formal groups. However, there are important details about formal
topologies which have never been resolved.1

Problem 1.9.7. Determine the natural instability relations for operations in
unstable elliptic cohomology and in unstable Lubin–Tate cohomology.

Strickland states that isogenies are a natural interpretation for unstable
cohomology operations in E-theory. However, isogenies encode the analogue
of the cohomological Steenrod operations, the multiplicative Dyer–Lashof op-
erations, and the Nishida relations between them. They do not encode any
analogue of the instability relation Sqn = Q−n that we see in the cohomology
of spaces.

In chromatic theory, our only accessible example so far is K-theory. For p-
completed K-theory, the cohomology operations are generated by the Adams
operations ψk for k ∈ Z×p . For torsion-free algebras, the power operations
are controlled by the operation ψp and its congruences [37, 78]. The unstable
operations in the K-theory of spaces, by contrast, arise from the algebra of
symmetric polynomials and are essentially governed by the ψn for n ∈ N; the
fact that the other ψk are determined by these enforces some form of conti-
nuity. This is also closely tied to the question of whether there are geometric
interpretations of some type for elliptic cohomology theories or Lubin–Tate
cohomology theories.2

Problem 1.9.8. Determine a useful way to encode secondary operation struc-
tures on E∞ or En rings.

In the case of secondary Steenrod operations, there is a useful formulation
due to Baues of an extension of the Steenrod algebra that can be used to
encode all of the secondary operation structure [12, 73]. No such systematic
descriptions are known for secondary Dyer–Lashof operations, especially since

1The reader should be advised that, even at height 1, there are difficult issues with
E-theory here involving left-derived functors of completion.

2One possible viewpoint is that we could interpret N as the monoid of endomorphisms
of the multiplicative monoid M1, which contains the unit group GL1.
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the Dyer–Lashof operations are expressed in a more complicated way than the
action of an algebra on a module.

Problem 1.9.9. Determine useful relationships between the homotopy types
of an En ring spectrum, the unit group GL1(R) and the Picard space Pic(R),
and the spaces BGLn(R).

This is closely tied to orientation theory, algebraic K-theory, and the study
of spaces involved in surgery theory.

Investigations in these directions due to Mathew–Stojanoska revealed that
there is a nontrivial relationship between the k-invariants for R and the unit
spectrum gl1(R) at the edge of the stable range at the prime 2 [60], and
forthcoming work of Hess has shown that this relation can be recovered from
the mixed Cartan formula. The odd-primary analogues of this are not yet
known.

Problem 1.9.10. Find an odd-primary formula for the mixed Adem relations
similar to the Kuhn–Tsuchiya formula.

There is a description of the mixed Adem relations [24], valid at any prime,
but it is difficult to apply in concrete examples. The 2-primary formula de-
scribed in §1.5.8 is much more direct; it was originally stated by Tsuchiya
and proven by Kuhn [46]. There is no known odd-primary analogue of this
formula.



Bibliography

[1] J. F. Adams. Stable homotopy and generalised homology. University of
Chicago Press, Chicago, Ill., 1974. Chicago Lectures in Mathematics.

[2] Matthew Ando, Andrew J. Blumberg, and David Gepner. Parametrized
spectra, multiplicative Thom spectra and the twisted Umkehr map.
Geom. Topol., 22(7):3761–3825, 2018.

[3] Vigleik Angeltveit. Topological Hochschild homology and cohomology of
A∞ ring spectra. Geom. Topol., 12(2):987–1032, 2008.

[4] Bernard Badzioch. Algebraic theories in homotopy theory. Ann. of Math.
(2), 155(3):895–913, 2002.

[5] Andrew Baker. Power operations and coactions in highly commutative
homology theories. Publ. Res. Inst. Math. Sci., 51(2):237–272, 2015.

[6] M. G. Barratt and Peter J. Eccles. Γ+-structures. I. A free group functor
for stable homotopy theory. Topology, 13:25–45, 1974.

[7] Tobias Barthel and Agnès Beaudry. Chromatic structures in stable ho-
motopy theory. arXiv e-prints, page arXiv:1901.09004, Jan 2019.
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