E,-PUSHOUTS AND E;;:-TENSORS

MICHAEL A. HILL AND TYLER LAWSON

ABSTRACT. We prove a general result that relates certain pushouts of Eg-
algebras to relative tensors over Ey_1-algebras. Specializations include a num-
ber of established results on classifying spaces, resolutions of modules, and
(co)homology theories for ring spectra. The main results apply when the cat-
egory in question has centralizers.

Among our applications, we show that certain quotients of the dual Steen-
rod algebra are realized as associative algebras over HF, n HIF, by attaching
single [Ej-algebra relation, generalizing previous work at the prime 2. We
also construct a filtered Eg-algebra structure on the sphere spectrum, and the
resulting spectral sequence for the stable homotopy groups of spheres has E1-
term isomorphic to a regrading of the E1-term of the May spectral sequence.

1. INTRODUCTION

For commutative monoids in any symmetric monoidal category, pushouts are
often straightforward to compute: the pushout of a diagram B «— A — R of
commutative monoids is equivalent to a relative tensor B ®4 R. Moreover, the
tensor product often passes nicely to a derived setting by replacing it with the
two-sided bar construction Bar(B, A, R) that calculates the homotopy pushout.
By contrast, computing pushouts and homotopy pushouts of associative monoids
is more involved, because there is no easy rewriting procedure to separate terms
involving B, R, and A. This becomes rapidly clear when attempting to apply
results like the Seifert—van Kampen theorem or compute pushouts in the category
of associative rings.

Homotopy-theoretically, associativity and commutativity are part of a very broad
range of levels of commutativity. An Eg-algebra has a unit, but no multiplication
that it is the unit for; an E;-algebra has a multiplication that is associative, up
to higher coherences; an Es-algebra has a multiplication with structure related to
the braid axioms; and this hierarchy proceeds through higher and higher stages
until Ey-algebras, which are associative and commutative up to higher coherences.
These first became prominent as part of a recognition principle for iterated loop
spaces [BV73; [May72], but now play an important role in higher algebra.

Computing pushouts of Eg-algebras is, by and large, a gigantic pain in the neck.

Our main result in this paper asserts that, in certain cases, homotopy pushouts
in Ej-algebras can be computed by a (derived) tensor product over an Ej1-algebra.

Theorem (6.3)). Suppose that C is a presentable Ei1-monoidal co-category with
monoidal structure ®, that B is an Eiy1-algebra in €, A — B is a map of Eg-
algebras in C, and that EA is an Eg1-algebra freely generated by A. Given R any
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Eg-algebra in the category LModp of left B-modules, the induced natural diagram
B®A®R "%, B®R

t@m| |m

B®R — B®ga R
is a homotopy pushout diagram in the category of Ei-algebras in LModpg.

Remark 1.1. We need to be able to discuss Ej-algebras, and their homotopy
pushouts, in the category of left modules over an Ej -algebra. To some degree,
this forces us to adopt a foundational setup that can handle such structure.

Throughout this paper we will use quasicategories as a model for oco-categories,
using |[Lur09] and [Lurl7| as references. However, let us informally unpack the
hypotheses of the main theorem. Asking that € is an co-category, up to equivalence,
is the same as asking to have spaces of maps between objects. Presentability of
C asks that € has homotopy limits and colimits, and that € is generated under
homotopy colimits by a set of well-behaved objects. Being a monoidal co-category
asks that we have an essentially associative tensor product ® on € that is compatible
with mapping spaces; being monoidal presentable means that the operation X ® Y
has to preserve homotopy colimits in each variable X and Y separately. For this
tensor product to be an Ej;-monoidal structure, it also has to come equipped
with a large amount of coherence information expressing the degree to which ® is
commutative.

The benefit of starting with these types of hypotheses is that they are weak
enough to apply in a very wide variety of circumstances, such as the categories
of spaces, spaces over a fixed Ej1-space, spectra, modules over a structured ring
spectrum, graded or filtered versions of the same, and many others.

1.1. Actions. This particular endeavor will pass through a number of technical
results. Before we embark, we would like to spend some time mapping out the
underlying structure of the proof.

The first observation is that, by base change, the general case of our main theo-
rem will follow from the case where the algebra B is the enveloping algebra EA, so
it suffices to show that there is a homotopy pushout diagram

FAR AR "L EAQR

of Eg-algebras in LModg 4.

The next reduction is to the associative case. The Dunn additivity theorem
implies that Ejyi-algebras are equivalent to [E;-algebras in the category of Eg-
algebras [Dun8§|. The main result will follow if we can find a sufficiently general
result covering the case kK = 0: one whose hypotheses will apply when € is a category
of Eg-algebras. Unfortunately, even if € is monoidal presentable, the category of
Eg-algebras in € is typically not. Even in ordinary algebra, for example, taking
the tensor product A ® B of two associative algebras typically does not preserve
colimits of associative algebras in each variable.

This leads us to understanding module structures over “free” algebras. If we
have a monoidal category € and we have an Eg-algebra 1 — X, we can consider
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the enveloping algebra EX, an E;-algebra generated by it. In many circumstances,
we can give a simpler description of left EX-modules. Such simpler descriptions are
automatic if M has an endomorphism object End(M), because then unital maps
X — End(M) are equivalent to algebra maps EX — End(M) by the universal
property of EX.

Unfortunately, in categories of Eg-algebras these endomorphism objects rarely
exist, but there is a closely related concept called the centralizer [Lurl7, §5.3.1].
In Section [5| we will show that, when € has centralizers, the category of left EX-
modules is equivalent to a category of objects with an action of X.

Theorem . Suppose that C is a monoidal co-category with pullbacks, that M
is left-tensored over C, and that M has centralizers in C.

If X is an Eg-algebra in C and EX is an enveloping algebra for X, then there is
an equivalence of w0-categories LModgx (M) — LAct x (M) between left EX -modules
in M and objects with a unital left action map \: X @ M — M.

With this in mind, to show that we have a homotopy pushout in the category of
left EX modules, it suffices to show that it is a homotopy pushout in the category
LActx of objects with an action of X. To do this, we need to be able to compute
the space of maps between two objects with action maps. Section [4] is devoted to
understanding this, and to proving the following result.

Proposition (4.9). Suppose that the forgetful functor LActx (M) — M has a left
adjoint L. Then there exists a natural transformation A\: L(XQ®M) — L(M), such
that for any object M with left action A\py: X @ M — M, the diagram

LIX®@M) — LM

is a homotopy pushout in LActx (M).

These results are proved with the aid of some results on computing centralizers,
and mapping spaces between sections, using the twisted arrow category (Lemma
and Theorem |3.8)); these may be of some independent utility.

1.2. Applications to stable homotopy. Because of the broad range of cases
where this result holds, it specializes to several topics of classical and more modern
interest. Applied algebraically, this result recovers the Koszul resolution of a mod-
ule over a tensor algebra. Applied to the category of pointed spaces, it recovers
information about the James construction on a space. Applied to categories of
of ring spectra, it recovers features important to Basterra and Mandell’s study of
homology and cohomology theories for Ej ring spectra. We will discuss several of
these examples in Section [§] However, our principal interest is in stable homotopy
theory.

As one specific application, we can build on a description of the mod-p Eilenberg—
Mac Lane spectra HF, as a Thom spectrum, due to Hopkins and Mahowald, to
obtain the following alternative description.

Theorem (8.1). Fiz a prime p, and consider the pair of Es-algebra maps
Freeg, (S°) = S
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from the free Ez-algebra on SO, classifying 0 and p respectively. Then the (derived)
smash product is the Eilenberg-Mac Lane spectrum HIF,:

HF,~S A S
Freeg, (S°)

This allows us to construct the following unusual filtration on the sphere spec-
trum. It is constructed by deliberately pushing the element p € 7((S) into filtration
1 in a category of filtered Es-algebras; this is inspired by techniques used by Baker
[Bak14] and Szymik [Szy14].

Theorem . For any prime p, there exists a lift of the sphere spectrum
to an Es-algebra in filtered spectra, giving rise to a spectral sequence of graded-
commutative rings with abutment m,S, .

For p =2, the Ei-term is a polynomial algebra

Fa[bhi ],

where b; ; are defined for i > 1,5 = 0, with total degree and filtration given by the
bidegree (2019 — 27 —1,2iTi~1),
For p odd, the Ei-term is

Fp [Uz] ® A[bz’,j] ® Fp[bi,j]a

where the bidegree of v; is (2p' — 2,p") for i =0, of b;; is (2p*+ — 2p7 — 1,p'*7)
fori=1,j>0, and of b; ; is (2p"TI T —2pI T — 2 piTItY) for i > 1,5 > 0.

This F;-term is isomorphic to a regrading of the Fj-term of the May spectral
sequence, but converges directly to stable homotopy rather than the Adams Fo-
term. The spectral sequence also has quite different behavior (see Remark .

Our second application generalizes a result from [BHL+21] to odd primes: taking
quotients by “central” classes in an Eg-algebra also kills Ej 1-operations. It allows
us to prove the following result, analyzing associative quotients of the dual Steenrod
algebra. The case of p = 2, where killing a generator in an E;-fashion precisely
eliminated the free Eo-algebra on it, was a mystery that helped us identify the main
result of this paper.

Theorem . Let p be an odd prime and A = HF, A~ HF, be the commutative
ring spectrum whose coefficient ring is the dual Steenrod algebra

.A* = A[To,Tl,...] ®Fp|:§1,£2,...].

Then the free quotient A//T, in the category of associative A-algebras has coefficient
ring given by the quotient

‘A*/(fn-&-l;fn-ﬁv s Ty Tn4ly - - - )7
and AJ/T, has coefficient ring given by the quotient

A*/(En+1,gn+2, o 777_’1’7,777—77,4»17 “ e )

This result relies implicitly on calculations of the Dyer—Lashof operations by
Steinberger [BMMSS86].



Er-PUSHOUTS AND Ej:-TENSORS 5

1.3. Acknowledgements. The authors would like to thank Clark Barwick, Rosona
Eldred, Rune Haugseng, Piotr Pstragowski, and Dylan Wilson for discussions re-
lated to this material. We also owe a significant debt to Jacob Lurie, who directed
us to Eg-centers and suggested that Proposition should be true.

This results in this paper originated in a joint project with Agnes Beaudry,
Xiaolin Danny Shi, and Mingcong Zeng, and would not have been possible without
their support.

2. FUNCTOR CATEGORIES

Our goal in this section is to collect together preliminary results about functor
co-categories, with a particular emphasis on computing mapping spaces.

Reminder 2.1. Recall that for an co-category €, we have the arrow category Ar(C) =
Fun(Al,€), and we have the twisted arrow category Tw(C). In both cases, the
objects are maps in €. Morphisms f — g in Ar(C) are commutative diagrams

x -1,y

|

Z — w,
while morphisms f — g in Tw(C) are commutative diagrams

x 1.y

[

ZT>W.

given by precomposition and postcomposition with morphisms in €. The source
and target determine forgetful maps Ar(€) — € x € and Tw(C) — € x C.

Proposition 2.2. Given functors o, 8: K — €, in the functor co-category Fun(K, C)
we have

MapFun(K,(?) (O[, ﬁ) = PO?_)H; Map@(a(i)v ﬁ(]))
Here the homotopy limit is taken over f in the twisted arrow category Tw(K).

Proof. This is shown by Glasman [Glal6, Lemma 2.3] (and, later, Gepner—Haugseng—
Nikolaus [GHN17, Proposition 5.1]), where it is equivalently described as an end

e K
f Mape(a(i), 4(i)- 0

Corollary 2.3. Suppose that we have maps f: Xg — X1 and g: Yo — Y7 in C,
viewed as objects in Ar(C). Then there is a homotopy pullback diagram of function
spaces:

Map ey (f, 9) —— Mape(Xo, Yo)

! !

Mape(Xl, Yl) —_— Mape(Xo,Yl)
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Proof. This follows by identifying the twisted arrow category of Al = {0 — 1},
which is an ordinary discrete category, with the 3-object poset

(0—0)

|

1—-1) — (0—>1)
parametrizing cospans. O

Lemma 2.4. Suppose that p: C — K is a fibration of co-categories and o, 5: K —
C are sections. Then there is an equivalence

MapFunK(K,C) <a7 5) = }10111_1’:1] Map@(a(i)7 ﬁ(.j))f

Here the limit is taken over f: i — j in the twisted arrow category Tw(K), and
Mape(X,Y)s denotes the homotopy fiber of Mape(X,Y) — Mapy (pX,pY) over

f-
Proof. Under the identification of Proposition the identity natural transforma-
tion idx — idg in the functor category Fun(K, K) is represented by the element

{idg} ~ holim{f} < holim Map (¢, 5).

fri—g iy

The section category is a (homotopy) fiber product:

Fung(K,C) = Fun(K,C) x  {idg}

Fun(K,K)

Therefore, because mapping spaces in this pullback co-category are (homotopy)
fiber products of function spaces and these commute with homotopy limits, the
space Mapp,,, . (k,e) (@, ) is the homotopy fiber product

potin, (Mape(a(0,5G) | % (7))

fii=g Map g (i.5)

By definition, this is the homotopy limit of Mape(a(i), 8(j))f- O

Corollary 2.5. Suppose that p: C — K is a coCartesian fibration of co-categories,
allowing any map f: i — j in K to be lifted to a functor fi: C; — C; from the
fiber over i to the fiber over j. Then for any sections o, : K — € there is an
equivalence

MapFunK(K,e) (OZ, ﬁ) = )}}O?_)H; Map@j (f!a(i)7 B(]))

Proof. The functor f is defined so that there is a map 7,: * — fi(x) over f with
a universal property: for any y in €, the diagram

(_)O T
Map@(f!xay) *7'> Map@(xay)

l l

Map g (4, py) O Map g (7, py)

is a homotopy pullback [Lur09, Proposition 2.4.4.3]. In particular, for any y € Cj,
taking the fiber over {id;} € Map, (j, j) = Mapg (4, py) shows that the map

Mape (fiz,y) — Mape(2,y)
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is an equivalence. We then substitute this into Lemma [2.4] a

The next lemma is typically part of the equivalence between co-categories and
complete Segal spaces; it is included for reference.

Lemma 2.6. A functor f: C — D between oo-categories is an equivalence if the
induced maps €~ — D= and Ar(C)™ — Ar(D)™ of mazimal subgroupoids are weak
equivalences of Kan complezes.

Proof. We need to show that such a functor f is fully faithful and essentially surjec-
tive in the sense of [Lur09, §1.2.10]: it induces homotopy equivalences Mape (X,Y) —
Mape(fX, fY) and every object in D is equivalent to one in the image. The isomor-
phism 7y (C~) — mo(D™) shows that f induces a bijection on homotopy equivalence
classes of objects: in particular, it is essentially surjective. To show full faithfulness,
for any objects X and Y of € there is a natural homotopy pullback diagram

Mape(X,Y) —— Ar(C)™

| |

(XY} — @~ x €=,

and similarly for D. Therefore, f induces homotopy equivalences Mape(X,Y) —
Mapy (fX, fY), which shows full faithfulness. O

3. CENTRALIZERS AND CENTERS

In categories where there are no “endomorphism” objects, such as the category
of groups, the center of an object M plays a very similar role. We will begin by
recalling the definitions from [Lurl7, §5.3.1].

Reminder 3.1. A final object in an oco-category € is an object Z such that, for any
X, the mapping space Mape (X, Z) is contractible.

Definition 3.2 (|Lurl7, Definition 5.3.1.2]). Suppose that € is monoidal and that
M is left-tensored over C. A centralizer of a morphism f: M — N in M is a final
object in the oco-category

(C1) X (Mygar)) Magar/n)-

Here the functor €y, — Myga, is given by tensoring with M.
More explicitly, it is a final object 3(f) in € in a category of Eg-algebras Z in C
with a chosen (coherently) commuting diagram

/Z M
n®id \

1M 7 N.

Centralizers are functorial, in the following sense.

Lemma 3.3. Suppose that C is monoidal, that M is left-tensored over C, and that
morphisms f in M have centralizers 3(f) in €. Then there exists an essentially
unique functor

3: Tw(M) — Algg, (€)

extending this definition.
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Proof. The diagram of co-categories

e]1/ - M]l@M/ - M]l@M//N

is functorial in f: 1T® M — N € Tw(M), and therefore so is the fiber product
category. Since centralizers exist, each of these categories has a final object 3(f).
By |Lur09, Proposition 2.4.4.9] this can be made into a functorial assignment of

final object, which we can compose with the projection to Cy, to get a functor
3: Tw(M) — Cy,. O

Reminder 3.4. If M is left-tensored over C, there is a category LMod(M) [Lurl7,
Definition 4.2.1.13] that can be identified with an oo-category of pairs (4, M) of an
algebra A in C and a left A-module M in M. This decomposition corresponds to
a pair of forgetful functors U: LMod(M) — M and V : LMod(M) — Algg (C).
Both of these are categorical fibrations |[Lur09} §2.2.5]; this allows us to compute
homotopical pullbacks as ordinary pullbacks.

Definition 3.5 (|Lurl7, Definition 5.3.1.6]). Suppose that € is monoidal and that
M is left-tensored over C. A center of an object M of M is a final object in the
oo-category

LMod(M) xa {M}.

More explicitly, it is a final object 3(M) in € in a category of Eq-algebras A with
a chosen A-module structure on M.

Remark 3.6. Unlike the centralizers in Lemma |3.3] centers do not enjoy a very
general notion of functoriality.

Centers and centralizers are closely connected: a center 3(M) of an object M
is equivalent to a centralizer 3(idys) of the identity morphism of M by [Lurl7,
Proposition 5.3.1.8]. Our first goal will be to expand on these definitions in terms
of mapping spaces.

Proposition 3.7. Suppose that we have an Eg-algebra Z in C and a diagram
ZQM

7 N

1®M

in M. Then this diagram makes Z into a centralizer 3(f) if and only if, for any
Eo-algebra A in C, the diagram

MapEO (A, Z) —_— Mapm(A®M, N)

| l

{f} ———— Mapy(1® M, N)
is a homotopy pullback diagram.
Proof. As stated, a centralizer of f is a final object in the co-category

C1/ XMygnry Mign//N-
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An object A4 in this consists of amap n4: 1T — A, an action map A 4: AQM — N,
and a homotopy making the diagram
AR M
UIV &
1M 7 N

coherently commutative. Given two objects (n4,A4) and (g, Ap) in this category,
we would like to compute the mapping space between them in this fiber product
oo-category. The mapping space between their images in €y, is Mapg, (4, B), the
mapping space between their images in Mygy;/ is the homotopy fiber over np ® 1
of

(—)ona®1
Mapy (A® M,B® M) ———— Map(1® M, B® M),
and the mapping space between their images in Mygs//n is the homotopy fiber of
Mapy(A® M, BQ& M) — Mapy((A® M, N) X rap, (10rm,5) Mapy (1@ M, B& M)

over (Aa,np ® 1). This allows us to describe the mapping spaces in this fiber
product as computed by a homotopy pullback diagram:

Map((n4;Aa), (18, AB)) Mapg, (4, B)

J |

Aa} —————— Mapy (A® M, N) Xngap, x@m,n) {f}

In order for (nz,Az) to be a final object in this category, the pullback space
Map((na,Aa), (nz, Az)) must always be contractible. This is equivalent to knowing
that the map

Mapg, (A4, Z) — Mapy (A ® M, N) Xnfap, (1@Mm,8) {f}

is a homotopy equivalence over the path component of any A 4. However, all path
components appear as some Aa: a point of Mapy(A® M, N) Xnap, . 1om,n) 1/}
is equivalent to a choice of A4 making (na,Aa) into an object of this category.
Therefore, Z is a centralizer if and only if the diagram

| !

{f} ———— Mapy(L® M, N)
is a homotopy pullback for all Eq-algebras A. O

This characterization of centralizers in terms of mapping spaces allows us to
determine the structure of centralizers in diagram categories. Recall that if M is left-
tensored over €, then Fun (K, M) is left-tensored over Fun(K, €) using the pointwise
tensor product |[Lurl7, Remark 2.1.3.4]. The diagonal functor € — Fun(X,C) is
compatible with this pointwise tensor, making Fun(K, M) left-tensored over € as
well, with an object-by-object definition:

(A® F)(X) = A® (F(X))
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Theorem 3.8. Suppose that M is left-tensored over C and that M has centralizers.
For a natural transformation 0: K x A' — M between diagrams F,G: K — M,
the homotopy limit

holi )
Dol 3(0(,u))

(if it exists) is a centralizer 3(0) in Fun(K,M). Here u is the nonidentity morphism
in Al

Proof. For any fixed Eg-algebra A and v: M — N with image 0(v,u): F(M) —
G(N), the diagram

Mapg, (4, 3(0(7))) —— Mapy (A ® F(M), G(N))

| J

{0(7,u)} ————— Mapy (F(M),G(N))

is a homotopy pullback diagram in C by Proposition and is functorial in the
twisted arrow category Tw(K). Taking homotopy limits over Tw(K), Lemma
shows that we get a homotopy pullback diagram

hOlim'yeTw(K) Map]Eo (Av 3(9(7a u))) — MapFun(K,M) (A ® Fa G)

| |

{0} MapFun(K,M) (F,Q)

that is natural in A. If the homotopy limit holim ety (x) 3(0(7,u)) exists in C,
the above homotopy pullback diagram and Proposition then show that it is a
centralizer of # in the functor category. O

Corollary 3.9. For a map g: M — N in M, the center 32" (g) ~ 3470 (id, ),
where idg is viewed as a map in the arrow category Ar(M), is part of a homotopy
pullback diagram

3O (idg) —— 3(M)

| !

3(N) —— 3(9)-

The next result makes explicit that the center serves as an endomorphism object
among algebras acting on M: not only is 3(M) final among algebras acting on
M, but a map of algebras A — B over 3(M) is equivalent to a map of algebras
compatible with action on M.

Proposition 3.10. For an object M € M with center 3(M) in C, there is an
equivalence

AlgIEl (e)/S(M) >~ LMOd(M) Xv {M}
between the category of Ei-algebras A over 3(M) and the category of Eq-algebras
A together with an A-module structure on M.

Proof. As in Definition the center 3(M) is a final object in the category
LMOdM XM{M}
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The forgetful map LMod (M) xa {M} — Algg (C) is a right fibration by [Lurl7,
Corollary 4.7.1.42], which means that for any map B — C of algebras acting on M
there is a natural homotopy pullback diagram

MapLMod(M)xM{M}(Av B) — MapLMod(M)XM{M}(Aa C)

l l

MapAlgEl (&) (Aa B) E— 1v[apAlg]El () (A7 C)

by |[Lur09, Proposition 2.4.4.3]. Taking C = 3(M), the upper-right space is con-
tractible. Taking homotopy fibers of the horizontal maps, we find that the forgetful
functor induces an equivalence

MapLMod(M)xM{JV[}(A> B) — MapAlgEl(C)/3(A4) (A, B)
as desired. [l

4. ACTIONS

In this section, we will assume that C is a monoidal co-category and that M
is left-tensored over C. To be more precise about this, we will begin with some
background about how coherent left-tensorings are handled.

Reminder 4.1. There is an ordinary category LM® which is the universal example
of a symmetric monoidal category with an algebra a and a left a-module m |Lurl7,
Notation 4.2.1.6]. The objects of LM® are formal tuples of these objects, and the
maps are generated by a unit () — (a), an associative unital product (a,a) — (a),
and an associative unital left action (a,m) — (m). The oo-category LM® is the
nerve of LM®.

A monoidal category C with a category M left-tensored over it is encoded by
a symmetric monoidal functor ¥ from LM® to oo-categories; this sends a to a
monoidal oo-category ¥(a) = C and sends m to an oo-category ¥(m) = M with a
left action of €. This functor is equivalently encoded by a coCartesian fibration
C® — LM®, whose fiber over X is U(X).

Definition 4.2. Let 0: A2 — LM® represent the sequence of maps
(m) — (a,m) — (m).

Here the first map is induced by the unit of the algebra a, and the second map
represents the left action of a on m.

Reminder 4.3. We can now form the fiber product B = A? x ;@ C®. The functor
B — A? represents the restriction to a A2-shaped diagram of oo-categories and

functors
CxM

(]ly Y‘
M id M,

commuting up to natural isomorphism. We will now discuss categories of sections:
maps A2 — C® over LM®, or equivalently A2 — B over A2, Sections make it
possible to discuss a category whose objects are the following data:

(1) objects My, My, My in M and Y € C,

(2) maps (1, My) — (Y, M;), Y ® M7 — My, and My — Mo,
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(3) a coherence expressing commutativity of the resulting diagram

1®M0 e Y@Ml

L |

My ——— Ms.
Proposition 4.4. Given two sections

SM = (MO — (X,Ml) g Mz) and
sy = (No — (Y, N1) — Na)

in the functor category Fun e (A2 C®), the mapping space between them is a
homotopy pullback

Mappyy o (a2 e9) (50, SN) Map,y (M2, N2)

! J

Map]EO(X, Y) X MapAr(M)(MO — Ml,NQ — Nl) E— MapM(X@)Ml,Ng).

Given two sections

tM = ((X, Ml) <« MO — Mg) and
ty = ((Y,N1) < No — N2)

in the functor category Fun (A3, C®), the mapping space between them is the
homotopy pullback

Mappun, | o (a2.c0)(trN) Mapy (M2, N2)

! l

MapEo (X,Y) X MapAr(M)(MO — Ml,NO — Nl) —_— MapM(Mo,Ng).

Proof. By Corollary the mapping space between the sections sj; and sy in
Mappyy | o (A% €®) is the homotopy limit of the following commutative diagram,

indexed by the twisted arrow category of A2:

1\/[8{)3%(]\4'27 NQ)

|

Mape(X,Y) x Mapy (M, N1) —— Map, (X ® My, No)

| |

MapM(MO,NO) e Mape(]l,Y) X MapM(MO,Nl) —_— MapM(MO,NQ)

By first taking pullback of the two maps contained in the left side of the diagram,
we can re-express this homotopy limit as the desired pullback. The mapping space
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between sections ¢y, and ty in Fung e (A2, €®) is similarly computed by the ho-
motopy limit of the subdiagram

Map(?(Xa Y) X MapM(Mla Nl)

|

MapM(MO,NO) e Map@(]l,Y) X MapM(MO7N1) 1\/[3,1)3\/[(]\40,]\72)7

again computed by first taking homotopy pullback of the left portion of the diagram.
O

Corollary 4.5. For sections sy, sy over A2 orty, ty over Ag such that the maps
My — M; and Ng — N, are all equivalences, we have a homotopy pullback diagram

Map(sar, Sn) Map,, (Mo, No)

| |

Map Eo(X,Y) x Mapy, (Mo, No) —— Mapy (X ® Mo, No)

of function spaces in Fun ;e (A2, C®), and a natural equivalence
Map(tar, tn) — Mapg, (X,Y) x Mapy, (Mo, No).
of function spaces in Fun ;e (A2, C®).

Definition 4.6. For an Ej-algebra X in € and an object M in M, a left action of
X isamap A\pr: X ® M — M with a commutative diagram

XQ@M

Y

19 M _ M.

Our ultimate goal is to relate actions of X to module structures over an algebra
freely generated by X; this will occur when the category M has centralizers in
C. To prepare for this, the remainder of this section is devoted to understanding
categories of objects with action, and in particular spaces of maps between such
objects.

Definition 4.7. The categories LActx (M), of objects with left action by X, and
LAct(M), of pairs of an Eg-algebra and an object it acts on, are the co-categories
defined by the following pullback squares:

LActx (M) ———— LAct(M) ———— Fun, (A2, C9)
{X} x M —— Algg, (M) x M —— Fungye (A3, C®).

Here the rightmost-bottom functor Algg (M) x M — Fun e (A, €) sends (X, M)
to the diagram

XM
n®1

1®M M.
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Proposition 4.8. Suppose that C is a monoidal co-category and that M is left-
tensored over C.

The functor LAct(M) — Fun e (A2, C®) is fully faithful, with essential image
consisting of those sections sy = (My — (X, M1) — Ms) such that My — M; are
equivalences.

If X is an Eg-algebra in C and M and N are objects in LActx (M), the natural
diagram

Mapy,ace () (M, N) ——— Mapy,(M, N)

| |

Mapy (M, N) ——— Mapy (X ® M, N)

is a homotopy pullback diagram. Here the top and left-hand maps are forgetful,
while the bottom map is f — An o (1® f) and the right-hand map is f — f oA

Proof. Corollary [4.5shows that the map Algg, (C) x M — Fun e (Af, €®) is fully
faithful, with essential image consisting of those sections such that My — M; and
My — M, are equivalences. The pullback map LAct(M) — Fun e (A2, C®) is
therefore fully faithful, with mapping spaces computed as above.

To compute mapping spaces in LActx (M) for X a fixed Eq-algebra, we have to
take the fiber product over Algg (C) with {X}. For objects M and N with action
by X, we form the homotopy fiber product

MapLAct(M)((Xa M>7 (X7 N)) XMapAlgEO(e)(X,X) {idX}

which is the desired pullback diagram by Corollary [£.5 O

Proposition 4.9. Suppose that the forgetful functor U: LActx (M) — M has a
left adjoint L. Then there exists a natural transformation \: L(X ® P) — L(P),
such that for any object M € LActx (M) with left action A\py: X @ UM — UM,

the diagram

L(XQUM) —2— LUM

L(/\M)l }

LUM ——— UM
is a homotopy pushout in LAct x (M).
Proof. The action of X on L(P) determines a composite
X®P - X ®L(P) — L(P)

in M, whose adjoint is a natural map A\: L(X ® P) — L(P). This has the property
that for any map M — N in LActx (M), the composite

LIX®UM)2 LUM) > N

is adjoint to the map X @ UM — X @ UN 2 UN.
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The adjunction means that, by Proposition [£.8] there is a natural homotopy
pullback diagram

6>l<
Mapp e (M, N) ———— Mapy xoi,, (LUM, N)

*l b*

Mapy pci (LUM, N) m Mapy pety (L(X @ UM), N).

Since N is an arbitrary object in LActy, this implies that there is a corresponding
homotopy pushout diagram for M. ([

Proposition 4.10. For an object M € M with center 3(M), there is an equivalence
Alg]EO(G)/3(M) ~ LACt(M) XM {M}

between the category of Eg-algebras over 3(M) and the category of Eqg-algebras act-
ing on M.

Proof. For algebras A and B acting on M, there is a homotopy pullback diagram
MapLAct(M) ((Aa M)7 (B7 M)) — MapM(M7 M)

| J

MapAlgEO((‘Z)(A’ B) X MapM(M7 M) B MapM(A®M7 M)

by Corollary Taking the fiber product over Map, (1M, M) with the canonical
equivalence 1 ® M — M, we get a homotopy pullback

Mapy gy xnc (1} (A, B) ——————— {idu}

! J

MapAlgEO(e)(A, B) ——— MapM@M/(A ® M, M).

This is natural in B, and the right-hand vertical map is independent of B. Natural-
ity of this diagram in B then shows that, for any map B — C' in LAct(M) x M{M },
we get a homotopy pullback diagram

Mapp, act(n0) x o (113 (As B) — MaDpace () x o a3 (45 C)

l l

MapAlgEO (©) (A7 B) E— MapAlgEO (©) (A7 C) :

Taking C = 3(M), a final object in the category of Eg-algebras with a unital action
on M by definition, makes the upper-right corner contractible. Therefore, we find
that the forgetful functor induces an equivalence

Mapp ace(ve) < ac (A B) = Mapayg, (e) 5, (4 B)
as desired. [
Remark 4.11. The above proof shows that, up to equivalence, the forgetful functor

LAct(M) xo {M} — Algg, (M) is a right fibration, which is classified by 3(M)
when it exists.
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5. ACTIONS BY FREE ALGEBRAS AND CENTERS

Definition 5.1. Suppose that X is an Eg-algebra in a monoidal co-category €. An
enveloping algebra for X is an Ei-algebra EX with a map X — EX of Eg-algebras
such that, for any E;-algebra in €, the composite

Mapyjg, (¢)(EX; A) = Mapyg, (¢)(EX, A) = Mapyg, (e)(X; A)
is an equivalence.

Proposition 5.2. Suppose that C is a monoidal co-category and that M is left-
tensored over C. Let A be an Ei-algebra in C and f: X — A a map of Eq-algebras.
Consider the commutative diagram

LMod (M) —— LAct4(M) —— LActx (M)

If M has centralizers, then for any M € M, the induced map on fibers over {M} is
equivalent to the map of spaces

Mapyjg, (e)(A; 3(M)) = Mapy, (e) (X, 3(M))
induced by forgetting to Eg-algebras and precomposing with f.

Proof. The horizontal functors in this diagram are the composites
LMOd(M) XAlglEl ) {A} d LACt(M) XAlgEO(@) {A} ad LACt(M) XAlgmo(@) {X}

Taking fiber products with {M} over M, by Propositions and and we get
the diagram
Alg]El (e)/B(M) XAlgEl(e){A} - Alg]Eo(e)/3(M) XAlgEO(G){A} - Alg]Eo(e)/B(M) XAlgMO(G){X}'

However, fibers of overcategories are mapping spaces, and so this is equivalent to
the sequence of maps

Mapyig, (e)(4,3(M)) = Mapyyg, (e)(A; 3(M)) = Mapy,, (e)(X,3(M)),
as desired. [l

Theorem 5.3. Suppose that C is a monoidal co-category with pullbacks, that M is
left-tensored over C, and that M has centralizers in C.
If X is an Eg-algebra in C and EX is an enveloping algebra for X, then the
forgetful functor
LMOd]EX (M) — LACtX (M)

is an equivalence of co-categories.

Proof. By Proposition there is a forgetful map LModgx (M) — LActx (M)
whose fiber over any {M} is the equivalence

Mapyjg, (e)(EX; 3(M)) = Mapy,, (e)(X,3(M))

of spaces. The map on maximal subgroupoids LModgx (M)™ — LActx (M)™ is
then a map of spaces over M~ that is an equivalence on the fiber over any object
{M}, and therefore a weak equivalence.
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Applying the same result to the arrow category Ar(M) = Fun(A!, M), which
has centralizers in € by Theorem we find that there is an equivalence

Ar(LModgx (M))™ — Ar(LActx (0M))=.
By Lemma the map LModgx (M) — LActx (M) is then an equivalence. O
Theorem 5.4. Suppose that C is a monoidal co-category with pullbacks, that M is
left-tensored over C, and that M has centralizers in C.

Suppose X is an Eg-algebra in C and EX is an enveloping algebra for X. For
M any left EX -module, the induced natural diagram

EXQX®M ‘2L EXQM

1@ |m

EXQM ————— M
is a homotopy pushout diagram in LModgx (M).
Proof. There is a natural equivalence
Mapy vods x () (EX @Y, N) =~ Mapy (Y, V)

by [Lurl7, Corollary 4.2.4.8]: the functor EX ® (—) is left adjoint to the forgetful
functor. The result then follows by Proposition [1.9] O

6. ALGEBRAS AND OPERATIONS

In this section, we will discuss how the previous results can be applied in cat-
egories of O-algebras for O an operad. In particular, we will exploit the Dunn
additivity theorem in the form for co-categories proved in [Lurl7, Theorem 5.1.2.2],
which implies that

AlgEHm (€)= AngEn (Alg]Em (©)).
Reminder 6.1. The Boardman—Vogt tensor product of operads [BV73] has a version
for oo-operads. Given two co-operads P and Q, there is a tensor product P ® Q

[Lurl7, Proposition 2.2.5.6], whose defining property is that P ® Q-algebras are the
same as P-algebras in the category of Q-algebras:

Algp(Alg(C)) ~ Alng@Q(e)
In the following we will be considering the case where P is an E;-operad.

Proposition 6.2. Suppose that O is a coherent co-operad, € is a presentable E1®0-
monoidal co-category, B is an E; ® O-algebra in €, A — B is a map of Eg ® O-
algebras in C, and that EA is an enveloping E1 ® O-algebra for A. Given R any
O-algebra in LModp, the induced natural diagram

BRA®QR "', B®R

t@m| |m

B®QR —— BQsa R

is a homotopy pushout diagram in the category of O-algebras in LModp.
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Proof. Let € and M be the category Algq(C), which is monoidal [Lurl7, Example
3.2.4.4] and has centralizers |[Lurl7, Theorem 5.3.1.14]. In this category, A is an
Ep-algebra, EA is an enveloping E;-algebra for A, and R is a left EA-module. The
hypotheses of Theorem [5.4] apply, and we get a homotopy pushout diagram

FAR AR "L EAQR

1@m | |m

EA®R —— R

of O-algebras in LModg 4.

The forgetful functor Alge(LModp) — Algg(LModga) preserves and detects
homotopy limits because the composite forgetful functors to € do, so the left adjoint
B ®ga (—) preserves homotopy colimits. Applying this to the above homotopy
pushout diagram gives the desired result. (I

Specializing to the case of an Eg-operad, the Dunn additivity theorem implies
the following.

Theorem 6.3. Suppose that C is a presentable Ej1-monoidal co-category, that B
is an Egy1-algebra in €, A — B is a map of Ei-algebras in C, and that EA is an
enveloping Ei1-algebra for A. Given R any Eg-algebra in LModpg, the induced
natural diagram

BRAQR ", B®R

1@m| |m

BR®R —+— BQga
is a homotopy pushout diagram in the category of Ex-algebras in LModg.

Remark 6.4. When R = 1 is the monoidal unit and € is symmetric monoidal
presentable, this result is an immediate consequence of [Lurl7), Proposition 5.2.2.12,
Corollary 5.3.1.16].

7. SPECIAL CASES

7.1. Associative algebras. Our first examples are when k£ = 0.

Proposition 7.1. Suppose that C is stable presentable symmetric monoidal, and
let TY be the free associative algebra on Y. Then for any left TY -module M, there
is a cofiber sequence

TYRY QM - TYROM — M
of left TY -modules.

For V a flat module over a commutative ring k and N a left module over the
tensor algebra T (V') whose underlying k-module is flat, this generalizes the standard
Koszul resolution

0->TV)@% VRN —->T(V)®x N - N — 0.
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Proof. Let X be 1@Y, the free Ep-algebra on Y, so that EX ~ TY. For any left
TY-module M, Theorem implies that there is a homotopy pushout diagram

TY® (1Y) M —— TY ® M

| !

TYOM — M

of left TY-modules. By observing that the upper-left decomposes into a sum (TY ®
M)® (TY ® Y ® M), with first factor mapping by an equivalence to both corners,
we find that we can re-express as the desired cofiber sequence. O

7.2. Commutative algebras. We note that when & = o0, Theorem [6.3] recovers
a known description of homotopy pushouts of E., rings.

Proposition 7.2. Suppose that C is symmetric monoidal presentable. For a di-
agram B — A — R of Ey-algebras in C, the homotopy pushout is equivalent to
B®a R.

Proof. When k = oo, the enveloping algebra EA is always equivalent to A, Eo-
algebras in left B-modules are the same as E-algebras with a map from B, and
the coproduct is the tensor product. Therefore, this reduces us to observing that the
homotopy pushout of B < A — R is always equivalent to the homotopy pushout
of BUR<«— BUAUR — BUR. (]

7.3. Augmented cases. The most straightforward general situation, which elim-
inates worries about left module structures, is when B is the monoidal unit 1.

Corollary 7.3. Suppose that C is a presentable Ey1-monoidal oo-category with
unit 1, e: A — 1 is an augmented Eg-algebra in C, and that EA is an enveloping
Ei+1-algebra for A. Given R any Eg-algebra in C, the induced natural diagram

AQR —2L L R
R—— 1 RrA R
is a homotopy pushout diagram in the category of Ex-algebras in C.

When R is also the monoidal unit, this recovers the following description relating
“suspension” to bar constructions on enveloping algebras.

Corollary 7.4. Suppose that C is a presentable Ey1-monoidal c0-category with
unit 1, e: A — 1 is an augmented Eg-algebra in C, and that EA is an enveloping
Ej.1-algebra for A. Then the diagram

is a homotopy pushout diagram in the category of Ex-algebras in C.

Specializing again to the case where A is a free algebra, we get the following
result.
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Corollary 7.5. Suppose that W is augmented over the unit 1. Then there exists
an equivalence

Freeg, (hocolim(1 < W — 1)) ~ Bar(1, Freeg, ,, (W), 1).

Proof. The universal property of a free algebra identifies Freeg,,, (W) with the
enveloping algebra E(Freeg, (W)). O

A result like this plays an important role in Basterra and Mandell’s determination
of homology for E,-algebras via an iterated bar construction [BM11, Lemma 7.5],
and a generalization of this appears as [Lurl7, Corollary 5.2.2.13].

Another situation of particular interest to us, due to its connection to cell at-
tachment, is when R is the monoidal unit 1 and the algebra A is a free algebra.

Proposition 7.6. Suppose that C is a presentable Ei11 monoidal co-category, that
B is an Ej41-algebra in C, and that there is a diagram 1 < W — B in C. Then
there is a homotopy pushout diagram

B ® Freeg, (W) —™—— B

] J

B— B ®Free]3k+1(W) 1

of Ei-algebras in LModp.

The following result can be interpreted as showing that, if B is central in R,
any elements in B that become trivial in R also have their Ej_1-operations become
trivial, even if those operations are not defined on R.

Proposition 7.7. Suppose that C is a presentable Ey1-monoidal co-category, W
is an object of C, R is an Eg-algebra in C, and that there is a map of Ex-algebras
B — R that lifts to a map of Exy1-algebras from B to the center 3(R). If there is
a commutative diagram

.

w B
{1
1 —— R,
in C, then it extends to a commutative diagram

Freeg, ., (W) %

L

Proof. Using the adjunction between C and Eg-algebras we can extend the original
square from W to Freeg, (W), and then using the adjunction between Ey-algebras
in € and in LModp, we get a commutative diagram

B ® Freeg, (W) —/—

| |

B—



E,-PUSHOUTS AND E,;-TENSORS 21

of Ej-algebras in LModpg; the unit map B — R therefore factors through the
homotopy pushout. By the previous proposition, this is a factorization

B—-B ®Frccngk+1(W) 1—- R,
which proves that the map Freeg, , (W) — R factors through €. O

7.4. Classifying spaces. A connection to the theory of classifying spaces appears
when € = M is the category of spaces, with Cartesian product.

Example 7.8. An Eg-algebra in spaces is a pointed space, and for a well-pointed
space X the free E;-algebra on X is modeled by the free associative algebra: the
James construction J(X).

Taking B = R = =#, our main result then implies that there is a homotopy
pushout diagram

X —

|

x —— Bar(#, J(X), %)
of spaces. In other words, there is an equivalence
¥X ~ B(J(X))

between the classifying space of the James construction and the suspension of X.
Moreover, this arises from a well-known homotopy pushout diagram

J(X)x X — J(X)

l |

JX) —— =

of left modules over J(X). This extends to a general description of Bar(x, J(X), M)
as a homotopy pushout for any space M with a left action of J(X).

Ezxample 7.9. In the category of spaces, the easiest examples of Eg-algebras are
k-fold loop spaces. Because any map of Ej-algebras QY — B must factor through
the subspace B* of grouplike elements, the recognition principle for k-fold and
(k + 1)-fold loop spaces [May72| implies that the enveloping algebra E(QFY) is
QF1YY (assuming Y is (k — 1)-connected).

In these cases, the pushout diagrams in question are not new: they are gotten
by applying Q¥ to homotopy pushout diagrams of (k — 1)-connected spaces. Any
new utility is that these pushouts still hold in non-grouplike situations.

8. APPLICATIONS
We now specialize to applications in stable homotopy theory.

8.1. Es ring spectra.

Theorem 8.1. Fiz a prime p, and consider the pair of E3-algebra maps Freeg, (S°) =
S, classifying 0 and p respectively. Then the relative smash product is equivalent to
the Eilenberg-Mac Lane spectrum HF:

HF,~S A S
Freeg, (S°)
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Proof. A theorem of Mahowald at p = 2, and of Hopkins at odd primes, is that
the Eilenberg-Mac Lane spectrum HF), is the Thom spectrum of a stable (p-local)
spherical fibration over 253, This gives an alternative description of HF,, as the
universal example S//g,p of an Eq-algebra over S with a nullhomotopy of the element
p € 7o(S). This makes it the homotopy pushout of a diagram

Freeg, (S°) —2— S

| |

S —— HF,

of Ez-algebras, and hence a relative tensor over the free Ez-algebra by Corollary[7.4]
d

Reminder 8.2. For the purposes of this paper, a tower of spectra is a functor from
the poset N°P to spectra,

= Xy = Xh - X
whose underlying object is X¢ and whose associated graded is the graded spectrum
{Xn/Xn+1}nen. We will write Fi, X for the tower

which is free on X in filtration k; there is a natural map Fp X — Fjy1X.
The monoidal structure on N gives towers a symmetric monoidal co-category
structure under the Day convolution, where

(Xe AYS)y, = hocolimyi g5, X, A Yy,

and FyS° is the monoidal unit S. A filtered Ep-algebra is an Ej-algebra in the
category of towers of spectra. Both the underlying and associated graded functors
are strong symmetric monoidal, and so preserve Eg-algebras and (relative) smash
products.

Theorem 8.3. For any prime p, there exists a filtered Eo-algebra R whose under-
lying spectrum is S and whose associated graded is HF, A Freeg, (S°), with S° in
filtration 1 representing the image of p.

Proof. We will write Ps (x,,) for the free filtered Ez-algebra Freeg, (F;,S°) on a gen-
erator x, in filtration n, and IP’E;”: (yn) for the free graded Es-algebra on a generator
Yn in grading n.

There is a diagram of filtered Eg-algebras

S « P®3(z9) — P™ (y1),

where the left-hand map sends xg to p € (S and the right-hand map sends zq to
the image of y; in filtration zero. We define R to be the (derived) smash product
R=S A PB
P25 (20) (y1)

in the category of towers. Because it is a relative smash product of filtered Eg-
algebras, it has the structure of a filtered Es-algebra.

The map P2 (z) — P3(y;) is an equivalence on underlying spectra, and so the
underlying Es-algebra of R is the sphere spectrum S.

On associated graded, this becomes a diagram of graded Es-algebras

S «— Pg2(zo) — Py2(in).
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The left-hand map still sends Zg to the element p. The right-hand map now sends
Zo to 0 because y;, being of filtration 1, now has trivial image in degree zero of the
associated graded. Therefore, there is a factorization
Py (Zo) — S = Pyl (7n),
and the associated graded has an equivalence
@(R)~S n B> (S A §) ).
Pgr Zo lP’g‘:i( 0)

Theorem @ shows that this algebra S A S is the algebra HF, concentrated in
gr(wo)
grading zero, and so this becomes

gr(R) ~ HF, A Freeg,(y1)
as graded [Es-algebras. 0

Corollary 8.4. The filtered spectrum of Theorem [8.3 gives rise to a spectral se-
quence of graded-commutative algebras, whose abutment is m4S, .
For p =2, the E1-term is
FQ[bi,j]ﬂ
where b; ; are defined for i > 1,5 = 0, with total degree and filtration given by the
bidegree (2179 — 29 — 1,2¢49=1). For p odd, the Ey-term is
Fplo:] ® Albi;] @ Fp[bs ],

where the bidegree of v; is (2p* — 2,p*) for i = 0, of hij is (2p'T7 —2p) — 1,p"*7)
fori=1,7>0, and of b, ; is (2p1+3+1 2pitl — 2 pititly fori > 1,5 > 0.

Proof. The coefficient ring of the associated graded is the homology of a free Es-
algebra on the pointed space S!, with generator y; in bidegree (1,0). This is
completely determined in [CLM76, Theorem III.3.1] in terms of the Dyer—Lashof
operations. At p = 2, the Dyer—Lashof operation @); sends an element in bidegree
(r, s) to bidegree (2r + i,2s), while at odd primes the operations @); and 5Q; send
such an element to bidegree (pr+2i(p—1), ps) and (pr+2i(p—1)—1, ps) respectively.
(Here we take the convention that lower-indexed Dyer-Lashof operations satisfy
Qjr = Q1*1/2+7 at odd primes).
At p =2, if we define b; ; = ng)Qg_l)yl, then

ﬂ*gr(R) = FQ[hi,j ‘ 7 > ].,j > 0]

The element b, ; is in bidegree (2¢+7 — 27 — 1,2¢%~1) which can be shown by
induction.
At odd primes, if we define

= Q'
bij = Q1/25Q1 Y1
by = BQY Y BQy
then
Tagr(R) = Fplv; | i = 0)®@A[b;; |1 =>1,5 20l ®@Fy[b;; |i>1,57>0].

Here the bidegree of v; is (2p" — 2,p'), of b, ; is (2p"™7 — 2p7 — 1,p"™J), and of b; ;
is (2pi+j+1 _ 2pj+1 _ 27pi+j+1).
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These associated graded coefficient rings are then the F1-terms of the associated
spectral sequence. ([

Remark 8.5. While the underlying graded rings are abstractly isomorphic to the
FEi-term of the May spectral sequence, the filtration and the differentials are quite
different.

For example, in the 2-primary May spectral sequence, the element v € 73S is de-
tected by hj o and the element o € 77S is detected by hy 3. In the spectral sequence
of Corollary neither h; 2 nor hy 3 are permanent cycles; v is instead detected
by the corrected element b o + b1,1h2,0, while o is detected by b1 1h30 + bh2,1b2,0,
in strictly lower filtration than h; 3. As a possible point of view, the Hopf invariant
classes in the classical Adams spectral sequence arise from algebraic power opera-
tions that require geometric correction terms before they are genuinely represented
by stable homotopy elements. In this new spectral sequence, the correction terms
have lower filtration than the power operations themselves, and so are detected
first.

Remark 8.6. There is an alternative approach to the construction of this filtered
object R using Goodwillie calculus, which will appear in forthcoming joint work of
the second author with Eldred.

8.2. Dual Steenrod quotients. The following is a specialization of Proposi-
tion [7.6l

Proposition 8.7. Suppose that B — C' is a map of commutative ring spectra and
a € . (C) is an element. Then the quotient, in the category of Ei algebras in
LMod¢, has an equivalence:

Clla~C A B.
Eg

I-Tree]{:ngr L (S™)

Corollary 8.8. Suppose that C is an Ey, B-algebra and R is an Ey C-algebra. If
a € m,C maps to zero in R, then all of the B-algebra Eg1 Dyer-Lashof operations
on a go to zero in R.

This allows us to prove the following odd-primary analogue of [BHL+21, Theo-
rem 1.2].

Theorem 8.9. Let p be an odd prime and A = HIF, A HF,, be the commutative ring
spectrum whose coefficient ring is the dual Steenrod algebra. Then the associative
quotient AJ/T, has coefficient ring

As/(Ent1,Ent25 -3 Tos Tnt 15 -+ )
and AJ/Tn has coefficient ring
As/(Ens1,Ent2s s Tns Tngls - )-
Remark 8.10. The subring
Fplé1,.. -, &l @ Alr0, -+ -y Tn—1] < Ax
maps isomorphically onto both quotients.

Proof. The conjugation operation is realized by an automorphism of A as a com-
mutative ring spectrum, so it suffices to prove the case of 7,.
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Consider the left unit map HF, — A = HIF, A HF,, of commutative ring spectra.
Then Proposition (with k& = 1) shows that there is a formula for the free Eq-
quotient:

Ao~ A A HF,
Freeg, P(Sn)

In particular, there is a Kiinneth spectral sequence
Hy Freeg, (S™
Tor . 2 )(A*,Fp) = 7y (A// ).
By [CLM76, Theorem IIL.3.1], for odd p and n there is an isomorphism

Hy Freeg, (S™) = Ala, Q1/2(), Q) (0), ... 1@ F,[8Q12(a), BQ) (@), ... ]

(As in Corollary we take the convention that lower-indexed Dyer—Lashof oper-
ations satisfy Q;z = Q#1243 at odd primes).

Suppose o = T, 11. Using the Dyer—Lashof operations from the left unit, Q27 =
Tny1 and BQq o7y = €,41 by [BMMSS86, Theorem I11.2.3]. Therefore, the Ep-term
of the Kiinneth spectral sequence can be rewritten as

Tori\L‘T'mfnJrlwn]®Fp[fn+1,5n+2,m](A[i_o, f17 B ] ® Fp[gla 52’ o ], Fp)

However, the first Tor-factor is flat over the base ring. As a result, the Kiinneth
spectral sequence degenerates down to an isomorphism

Ta (A Tn) = A/ Ty Tng1s -+ ng1r Engz -0 ),
as desired. O
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