
Vanishing of some Galois cohomology groups for elliptic curves

Tyler Lawson∗ Christian Wuthrich

September 23, 2015

Abstract

Let E/Q be an elliptic curve and p be a prime number, and let G be the Galois group of the extension of
Q obtained by adjoining the coordinates of the p-torsion points on E. We determine all cases when the
Galois cohomology group H1

(
G,E[p]

)
does not vanish, and investigate the analogous question for E[pi]

when i > 1. We include an application to the verification of certain cases of the Birch and Swinnerton-
Dyer conjecture, and another application to the Grunwald–Wang problem for elliptic curves.

1 Introduction

Let E be an elliptic curve over Q and p a prime number. Denote by K the Galois extension of Q obtained
by adjoining the coordinates of the p-torsion points on E and let G be the Galois group of K/Q. The
Galois action on the p-torsion points E[p] identifies G with a subgroup of GL

(
E[p]

) ∼= GL2(Fp) via the
representation ρ : Gal

(
Q̄/Q

)
→ GL

(
E[p]

)
. A celebrated theorem of Serre [21] shows that G is equal to

the full group GL2(Fp) for all but finitely many primes p when the curve is fixed.
We are interested in the vanishing of the Galois cohomology group H1

(
G,E[p]

)
; see [22] or [19] for

the basic definitions of Galois cohomology. This specific cohomology group appears as an obstruction in
various contexts. For instance, Kolyvagin’s work uses the vanishing of this group in the case G is equal
to GL2(Fp) (see Proposition 9.1 in [14]). The following first theorem characterizes completely when this
cohomology group does not vanish, answering a question at [15].

Theorem 1. Fix a prime p. Let E/Q be an elliptic curve, K = Q(E[p]), and G the Galois group of
K/Q. Then H1

(
G,E[p]

)
is trivial except in the following cases:

• p = 3, there is a rational point of order 3 on E, and there are no other isogenies of degree 3 from
E that are defined over Q.

• p = 5 and the quadratic twist of E by D = 5 has a rational point of order 5, but no other isogenies
of degree 5 defined over Q.

• p = 11 and E is the curve labeled as 121c2 in Cremona’s tables [6], given by the global minimal
equation y2 + x y = x3 + x2 − 3632x+ 82757.

In each of these cases, H1
(
G,E[p]

)
has p elements.

Partial results on this question have appeared in various sources. For instance, Lemma 10 in [5] by
Coates shows that H1

(
G,E[p]

)
vanishes when E[p] is irreducible as a Galois module. Section 3 in [4]

also treats related questions.
The above result extends to elliptic curves E over more general number fields F if we assume that

F ∩ Q(µp) = Q, where Q(µp) is the field generated by p-th roots of unity. Rather than a single elliptic
curve for p > 5, one finds possibly infinitely many exceptions for p = 11 and p = 17, but only finitely
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many further exceptions for each p > 17 and none for all p such that p ≡ 1 (mod 3). See Theorem 11 for
a precise statement.

Next, we address the analogous question for E[pi] for i > 1, but assuming that p > 3.

Theorem 2. Fix a prime p > 3. Let E/Q be an elliptic curve, Ki = Q(E[pi]) the extension of Q
obtained by adjoining the coordinates of all pi-torsion points, and Gi the Galois group of Ki/Q. Then
H1
(
G2, E[p2]

)
is trivial if and only if H1

(
Gi, E[pi]

)
is trivial for all i > 2. This vanishing holds if and

only if (E, p) is not among the following cases:

• p = 5 or p = 7 and E contains a rational p-torsion point.

• p = 5 and there is an isogeny ϕ : E → E′ of degree 5 defined over Q and the quadratic twist by
D = 5 of E contains a rational 5-torsion point.

• p = 5 and there is an isogeny ϕ : E → E′ of degree 5 defined over Q but none of degree 25 and the
quadratic twist by D = 5 of E′ contains a rational 5-torsion point.

• p = 5 and E admits an isogeny E → E′ → E′′ of degree 25 defined over Q and E′ contains a
rational 5-torsion point.

• p = 11 and E is 121c1 or 121c2.

Again, we will also obtain some results that are valid over more general base fields F with F ∩Q(µp) =
Q, and some that are valid for p = 3. See Section 6.

This more general question has also been investigated before, and Cha has obtained results in this
direction in [3]. He proved the vanishing of H1

(
Gi, E[pi]

)
when p > 3, the curve has semi-stable reduction

at an unramified place above p, and E does not have a rational p-torsion point. He also describes when
this cohomology group vanishes for p = 3 under his assumptions. The method of proof is similar.

The results in Theorem 2 can be applied to the Grunwald–Wang problem for elliptic curves as for-
mulated by Dvornicich and Zannier in [9]. In Proposition 25, we give an example of an elliptic curve
E/Q with a point P ∈ E(Q) divisible by m = 9 in E(Q`) for almost all primes ` but not divisible by
9 in E(Q). Previously, the only known examples [10] were with m = 4. In Theorem 24, we also give a
simplified proof of the result in [20] that it is impossible to find such a point P when m = p2 and p > 3.

The paper is structured as follows. We begin with some background in Section 2, both establishing
notation and reducing to cases where the Galois group G does not contain a nontrivial homothety.
In Section 3 we prove a general form of Theorem 1. Section 4 establishes a vanishing result for H2. In
Section 5 we give an application to verifying cases of the Birch and Swinnerton-Dyer conjecture, correcting
an oversight in [13]. Our main results classifying the vanishing of H1(Gi, E[pi]) are then discussed in
Section 6, and some supplementary numerical computations for H1(G2, E[p2]) are included in Section 7.
Finally, in Section 8 we give the application to the Grunwald–Wang problem for elliptic curves.
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2 Preliminaries and notation

Throughout this paper E will be an elliptic curve defined over a number field F and p will be a prime
number. We will denote by K = F

(
E[p]

)
the number field obtained by adjoining the coordinates of the

p-torsion points to F . Let G be the Galois group of K/F . More generally, for i > 1 we let Ki = F
(
E[pi]

)
andGi = Gal(Ki/F ). The faithful actions ofGi on E[pi] give embeddingsGi ↪→ Aut(E[pi]) ∼= GL2(Z/pi),
and so we may regard them as subgroups.

We will also use the groups Hi = Gal(Ki+1/Ki) and Mi = Gal(Ki/K). We note that, as Hi is the
kernel of the map Gi+1 → Gi, it is identified with a subgroup of

ker
(

GL2(Z/pi+1)→ GL2(Z/pi)
)
∼= Mat2(Fp),

2



where the conjugation action of Gi+1 ⊂ GL2(Z/pi+1) is by the adjoint representation. Therefore, all
elements in Hi have order p and commute with the elements of Mi+1 inside Gi+1.

In summary, we have the following situation:

Ki+1

Hi

tttttttttt

Gi+1

Ki

Mi

Gi

K = K1

G=G1 KKKKKKKKKK

F

We will later use the inflation-restriction sequence

0 //H1
(
Gi, E[pj ]

) inf //H1
(
Gi+1, E[pj ]

) res //H1
(
Hi, E[pj ]

)Gi //H2
(
Gi, E[pj ]

)
(1)

which is valid for all 1 6 j 6 i. In inductive arguments, we will also use that the short exact sequence

0 //E[p] //E[pj ] //E[pj−1] //0

gives a long exact sequence

E(F )[pj−1] //H1
(
Gi, E[p]

)
//H1
(
Gi, E[pj ]

)
//H1
(
Gi, E[pj−1]

)
. (2)

As mentioned in the introduction, these cohomology groups only start to be interesting when E[p] is
reducible. The following argument for this is given in [3] as Theorem 7.

Lemma 3. If G contains a non-trivial homothety, then H1
(
Gi, E[pi]

)
= 0.

Proof. Let g be a non-trivial homothety. Since g is central, 〈g〉 is a normal subgroup in G. Consider the
inflation-restriction sequence

0 //H1
(
G/〈g〉, E[p]g=1

)
//H1
(
G,E[p]

)
//H1
(
〈g〉, E[p])

The homothety g cannot have fixed points in E[p]; in particular E(F )[p] = 0. The left-hand side
cohomology group in the above sequence is therefore trivial. The right-hand side is also trivial because
〈g〉 is of order coprime to p.

We assume by induction that H1
(
Gi, E[pi]

)
and H1

(
Gi, E[p]

)
are both trivial. By assumption, the

restriction maps

H1
(
Gi+1, E[pi]

)
// H1

(
Hi, E[pi]

)Gi ∼= Hom
(
Hi, E[pi]

)Gi

H1
(
Gi+1, E[p]

)
// H1

(
Hi, E[p]

)Gi ∼= Hom
(
Hi, E[p]

)Gi

from (1) are both injective. Note that the target groups are actually equal because all elements in Hi

have order p. Since Mi+1 and Hi commute, the action of Gi on Hi factors through G, so the target in
both cases is Hom

(
Hi, E[p]

)G.
The homothety g acts trivially on Hi and non-trivially on any non-zero point in E[p]. Therefore,

there are no homomorphisms from Hi to E[p] which are fixed by g. It follows that H1
(
Gi+1, E[pi]

)
and H1

(
Gi+1, E[p]

)
are both trivial. The exact sequence (2) now implies that H1

(
Gi+1, E[pi+1]

)
is also

trivial.
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Lemma 4. Suppose p > 2. Assume that G does not contain a non-trivial homothety and F ∩Q(µp) = Q.
Then G is contained in a Borel subgroup.

Proof. By the Weil pairing, the determinant of ρ is the Teichmüller character ω describing the action of
Galois on the p-th roots of unity µp. The assumption F ∩Q(µp) = Q implies that det : G→ F×p must be
surjective.

Assume first that p > 3. We fix a basis of E[p] and view G as a subgroup of GL2(Fp). By the
classification of maximal subgroups of GL2(Fp), we have to show that the following cases can not occur:
G is a subgroup of the normalizer of a split Cartan group, G is a subgroup of the normalizer of a non-split
Cartan group, or G maps to an exceptional group A4, A5 or S4 in PGL2(Fp).

Suppose G is a subgroup of the group of diagonal and anti-diagonal matrices, which is the normalizer
of a split Cartan subgroup. Suppose moreover that G is not a subgroup of the diagonal matrices. The
square of

(
0 b
c 0

)
∈ G is the homothety by bc. Therefore, all anti-diagonal elements in G must be of the

form
(

0 c−1

c 0

)
. Multiplying this with a diagonal element

(
u 0
0 v

)
in G then shows that all diagonal elements

must have determinant 1. Hence the determinant would not be surjective for p > 3.
Next, suppose that G is a subgroup of the normalizer of a non-split Cartan group. Since G contains

no non-trivial homothety, the image of G in PGL2(Fp) is isomorphic to G. In other words, G must be a
subgroup of a dihedral group of order 2(p + 1). No such group could have a surjective map onto F×p if
p > 3.

Finally, assume that G is exceptional. As before, our hypothesis implies that G is isomorphic to a
subgroup of A4, A5 or S4. However the only case in which we could have a surjective map onto F×p with
p > 3 is when p = 5 and G is a cyclic group of order 4 in S4. However, as F5 contains the fourth roots
of unity µ4, all such subgroups are diagonalizable in GL2(F5).

We now return to the case p = 3. By assumption, G is isomorphic to its image in PGL2(Fp), which
is the full symmetric group on the four elements P1(F3). Since the determinant is surjective, the image
of G cannot be contained in the alternating group. Therefore it is not transitive on P1(F3), and G is
contained in a Borel subgroup.

From now on we will suppose that ϕ : E → E′ is an isogeny of degree p defined over F , and write
E[ϕ] for its kernel. The dual isogeny is denoted by ϕ̂ : E′ → E. We will now also fix a basis of
E[p] with the property that the first point belongs to E[ϕ]. In this basis, the Galois representation
ρ : Gal

(
F̄ /F

)
→ GL

(
E[p]

) ∼= GL2(Fp) now takes values in the Borel subgroup of upper triangular
matrices. We will write χ : Gal

(
F̄ /F

)
→ F×p for the character of the Galois group on E′[ϕ̂]. Then the

character on E[ϕ] is ωχ−1, where ω is the Teichmüller character introduced above. The representation
now is of the form ρ =

(
ωχ−1 ∗

0 χ

)
.

Corollary 5. Suppose p > 2. If F ∩Q(µp) = Q and the group H1
(
G,E[p]

)
is non-trivial, then E admits

exactly one isogeny ϕ : E → E′ of degree p that is defined over F .

Proof. By Lemma 3, we know that there is no non-trivial homothety in G. Then Lemma 4 implies that
G is contained in a Borel subgroup. Hence there is a subgroup of order p in E[p] fixed by the Galois
group. If there were a second subgroup of order p fixed by the Galois group, then in a suitable basis of
E[p] the group G would consist of diagonal matrices. It would follow that G has order coprime to p and
therefore that the cohomology group is trivial. Therefore, there is a unique isogeny defined over F of
degree p.

3 Proof of Theorem 1

We begin by assuming that E is defined over a number field F such that F ∩Q(µp) = Q.

Lemma 6. The cohomology group H1(G;E[2]) always vanishes.
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Proof. The group GL2(F2) is isomorphic to the symmetric group on 3 letters. For any cyclic subgroup
of GL2(F2) of order 2 generated by h, we may compute H1

(
〈h〉, E[2]

)
as the quotient of the kernel of the

norm NG = 1 + h on E[2] modulo the image of h− 1. Because p = 2, this group is trivial.
For a general subgroup G 6 GL2(F2), let H be the intersection of G with the normal subgroup of order

3. We have H1
(
H,E[2]

)
= 0 because the order of H is coprime to 2. We also have H1

(
G/H,E[2]H

)
= 0

because H is either of order 3 and only fixes 0 in E[2], or H is trivial and this group is H1
(
〈h〉, E[2]

)
= 0.

By the inflation-restriction sequence, we conclude that H1
(
G,E[2]

)
= 0.

Lemma 7. Let H < GL2(Fp) be the subgroup generated by h =
(

1 1
0 1

)
. We have an isomorphism

H1
(
H,E[p]

) ∼= Fp,

and the action of an element g =
(
u w
0 v

)
in the normalizer N(H) of H on this cohomology group is

multiplication by u−1v2.

Proof. The cohomology of the cyclic group H is computed to be

H1
(
H,E[p]

) ∼= ker
(∑p−1

a=0 h
a
)

im(h− 1)
=

ker (0)
im
(

0 1
0 0

) ∼= Fp.

The explicit isomorphism i : H1
(
H,E[p]

)
→ Fp sends a cocycle ξ : H → E[p] to the second coordinate of

ξ(h). Let now g =
(
u w
0 v

)
be an element of N(H) with u, v ∈ F×p . Then the action of g on ξ ∈ H1

(
H,E[p]

)
is as follows. (

g ? ξ
)
(h) = g ξ

(
g−1hg

)
= g ξ

(
hu
−1v
)

= g
(
hu
−1v−1 + · · ·+ h+ 1

)
ξ(h)

=
(
u 0
0 v

) (
u−1v ∗

0 u−1v

) ( ∗
i(ξ)

)
Here the terms denoted by ∗ are unknown entries which do not alter the result that

i
(
g ? ξ

)
= u−1 v2 i(ξ).

For the remainder of this section we will assume that p > 2 and E satisfies H1
(
G,E[p]

)
6= 0; we wish

to show that we fall into one of the cases listed in the Theorem 1.

Lemma 8. Suppose p > 2. Then G satisfies H1
(
G,E[p]

)
6= 0 if and only if p 6≡ 1 (mod 3) and there

exists a basis of E[p] such that G consists of all matrices of the form
(
v2 w
0 v

)
with v ∈ F×p and w ∈ Fp.

In this case, the cohomology group is isomorphic to Fp and the representation ρ is of the form
(
χ2 ∗
0 χ

)
,

where χ3 is the Teichmüller character ω.

Proof. By Corollary 5, we may view G as a group of upper triangular matrices containing the subgroup
H generated by element h =

(
1 1
0 1

)
of order p.

Since H is a normal subgroup of G, we can use the inflation-restriction sequence to show that

H1
(
G,E[p]

)
//H1
(
H,E[p]

)G/H
is an isomorphism because G/H is of order coprime to p. Because we assumed that H1

(
G,E[p]

)
is

non-trivial, by Lemma 7 we must have that G/H acts trivially on H1
(
H,E[p]

)
, that H1

(
G,E[p]

)
has

precisely p elements, and that all elements in G must be of the form
(
v2 w
0 v

)
with w ∈ Fp and v ∈ F×p .

Recall that the character χ is such that ρ =
(
ωχ−1 ∗

0 χ

)
. We now deduce that χ2 = ωχ−1 and hence

χ3 = ω. Since we assumed F ∩Q(µp) = Q, the determinant ω from G to F×p must be surjective. As the
determinant of the typical element in G is v3 with v ∈ F×p , we must conclude that either p = 3 or p ≡ 2
(mod 3), and that G is equal to the group of all matrices of the form

(
v2 w
0 v

)
.
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Corollary 9. If p = 3, we have H1
(
G,E[3]

)
6= 0 if and only if E has a 3-torsion point and no other

isogenies defined over F .

Proof. This can only occur if the group G is the group of matrices of the form
(

1 w
0 v

)
of order 6. This is

precisely the case when E(F )[3] is of order 3 and no other isogenies are defined over F .

Lemma 10. If p = 5, we have H1
(
G,E[5]

)
6= 0 if and only if the quadratic twist of E by D = 5 has a

5-torsion point and no other isogenies defined over F .

Proof. This happens precisely when we have

ρ =
(
ω2 ∗
0 ω−1

)
Here ω2 is the quadratic character corresponding to the non-trivial extension F

(√
5
)
/F contained in

F (µ5). Let E† be the quadratic twist of E by D = 5. Then we have the desired form of representation
ρ if and only if the representation ρ† on E†[5] is now of the form

(
1 ∗
0 ω

)
. We conclude that this occurs if

and only if E†(F )[5] has five points and E† has no other isogenies of degree 5 defined over F .

Theorem 11. Let E be an elliptic curve defined over a number field F with F ∩ Q(µp) = Q. Let
K = F

(
E[p]

)
and G = Gal(F/K). Then H1

(
G,E[p]

)
= 0 except in the following cases:

• p = 3, there is a rational 3-torsion point in E(F ), and there are no other 3-isogenies from E defined
over F .

• p = 5 and the quadratic twist of E by D = 5 has a rational point of order 5, but no other isogenies
of degree 5 defined over F .

• p > 11, p ≡ 2 (mod 3), there is a unique isogeny ϕ : E → E′ of degree p defined over F , its kernel
E[ϕ] acquires a rational point over F ·Q(µp)+, and E[ϕ] ∼= µ

⊗(p+1)/3
p .

There are only finitely many cases for each prime p with p > 17.

Proof. The only remaining cases to prove are those where p > 5. As we may assume p ≡ 2 (mod 3), one
sees that

ρ =

(
ω

p+1
3 ∗

0 ω
2−p
3

)
.

This explains the condition in the cases p > 11 in the above list.
The curve E and its unique isogeny ϕ of degree p defined over F represent a point on the modular

curve Y0(p) defined over F . For p = 11 and p = 17, the curve Y0(p) is of genus 1; for all larger primes
p ≡ 2 (mod 3) it is of genus at least two. Therefore there are only finitely many Q̄-isomorphism classes
of curves E/F with an isogeny of degree p defined over F . Only a single twist in each class can have ρ
of the above shape. Hence there are only finitely many exceptions for p > 17.

We specialize now to the field F = Q where the points on Y0(p) are well-known.

Lemma 12. If F = Q and p > 5, we have H1
(
G,E[p]

)
6= 0 if and only if E is the curve labeled as 121c2

in Cremona’s tables.

6



Proof. For all those p, there are only a finite number of Q̄-isomorphism classes of elliptic curves E with a
p-isogeny defined over Q. Mazur’s theorem [16] shows that there are no rational points on Y0(p) except for
three points on Y0(11) and two points on Y0(17). All of these five examples have no other automorphisms
than ±1. Hence, all elliptic curves E/Q representing one of them are quadratic twists of each other.

Let us first look at p = 11. The j-invariants of the three families are −121, −32768, and −24729001,
and the representation ρ must now be of the form

(
ω4 ∗
0 ω7

)
. We start with the last. The curve 121c2 is an

example of an elliptic curve with j-invariant −24729001. Using SageMath [23], we find a point P of order
11 in E

(
Q(µ11)

)
. Its x-coordinate in the global minimal model given above is 11ζ9 +11ζ8 +22ζ7 +22ζ6 +

22ζ5 + 22ζ4 + 11ζ3 + 11ζ2 + 39, where ζ is a primitive 11-th root of unity. One finds that σ(P ) = 5P
for the Galois element with σ(ζ) = ζ2. Therefore the action of Galois on the group generated by P is
given by ω4. The isogeny with P in its kernel is defined over Q and it is the only isogeny on E defined
over Q. Therefore the group G is precisely of the form required. Hence H1

(
G,E[p]

)
has p elements. No

quadratic twist of E could have the same property.
With similar computation one finds that the group G for the curve 121b1 with j-invariant −32768 is

of the form
(
ω8 ∗
0 ω3

)
and for the curve 121c1 with j-invariant −121 it is

(
ω7 ∗
0 ω4

)
. No quadratic twist of

these curves could have the required form for G.
For p = 17, the representation ρ must now be of the form

(
ω6 ∗
0 ω11

)
. In particular, for any prime ` 6= 11

of good reduction for E, the Frobenius element is sent to a matrix of the form
(
`6 ∗
0 `11

)
. We conclude that

we must have `6 + `11 ≡ a` (mod p), where a` is the trace of Frobenius. This gives an easy criterion to
rule out specific curves.

There are two j-invariants of elliptic curves that admit a 17-isogeny over Q: −297756989/2 and
−882216989/131072. In fact, these values were computed by Vélu and published on page 80 of [1]. We
pick a curve E for each of these j-invariants. The curves 14450p1 and 14450n1 are examples. Now for
both curves, it is easy to show that ±36 ± 311 6≡ a3 (mod 17) for any choice of the signs as a3 = ±2.
Therefore no quadratic twist of E will satisfy the congruence that we need. Thus H1

(
G,E[p]

)
= 0 for all

curves with a degree-17 isogeny. Similar computations were done by Greenberg in Remark 2.1.2 in [12].

This concludes the proof of Theorem 1.

4 Vanishing of the second cohomology

We continue to assume that E is defined over a number field F such that F ∩Q(µp) = Q.

Lemma 13. Let p be a prime. Then H2
(
G,E[p]

)
= 0 except if p > 2, E admits a p-isogeny ϕ : E → E′

and no other p-isogenies over F , and E′[ϕ̂] contains an F -rational p-torsion point. If this cohomology
group is non-zero then it contains p elements.

We could also write the condition in the lemma as either that E[ϕ] ∼= µp or that χ is trivial.

Proof. As before, only the cases when p divides the order of G are of interest.
We again discuss the case p = 2 separately. A Sylow subgroup of G is a cyclic group of order 2

generated by h, and the restriction H2
(
G,E[p]

)
→ H2

(
〈h〉, E[p]

)
is an inclusion. However, H2

(
〈h〉, E[p]

)
can be computed as the Tate cohomology group Ĥ0

(
〈h〉, E[p]

)
, which is zero.

For p > 2, we have to deal with the cases when G contains SL
(
E[p]

)
and when G is contained in a

Borel subgroup.
In the first case, G is actually the full group GL

(
E[p]

)
as the Weil pairing forces the determinant to

be surjective. If Z is the center of G, then Hi
(
Z,E[p]

)
= 0 for all i > 0. The Hochschild-Serre spectral

sequence implies that Hi
(
G,E[p]

)
= 0 for all i > 0.

Now we may assume that G is contained in the Borel subgroup of upper-triangular matrices. If there
is more that one isomorphism class of p-isogeny leaving E which is defined over F , then G is of order
coprime to p and hence H2

(
G,E[p]

)
= 0. Therefore, we may assume that G contains the unique p-Sylow
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H generated by h =
(

1 1
0 1

)
. Since H is normal and G/H is of order coprime to p, the restriction

H2
(
G,E[p]

) ∼= H2
(
H,E[p]

)G/H
is an isomorphism.

Fix an injective homomorphism ψ : H → Q/Z. Let δ : H1
(
H,Q/Z

)
→ H2

(
H,Z

)
be the connecting

homomorphism. Then we have an isomorphism Ĥ0
(
H,E[p]

)
→ H2

(
H,E[p]

)
given by sending a point

P ∈ E[p] to the cup product δψ ∪ P . For p > 2, the Tate cohomology group Ĥ0
(
H,E[p]

)
is equal to the

usual cohomology group H0
(
H,E[p]

)
= E[ϕ], which has p elements.

Let g =
(
u w
0 v

)
∈ G. On the one hand, it acts on P by multiplication by u. On the other hand, it acts

on ψ by multiplication by u−1v because

(g ? ψ)(h) = g ψ
(
g−1hg

)
= ψ

(
hu
−1v
)

= u−1v ψ(h).

It follows that g acts on the generator of H2
(
H,E[p]

)
by multiplication by uu−1v = v. Unless all such

g ∈ G have v = 1, we conclude that the second cohomology group vanishes. Otherwise it has p elements,
and this occurs if and only if E′[ϕ̂] contains a rational p-torsion point.

5 Application to the conjecture of Birch and Swinnerton-Dyer
and p-descent

The vanishing of the Galois cohomology group we consider is used when trying to extend Kolyvagin’s
results to find a sharper bound on the Birch and Swinnerton-Dyer conjecture for elliptic curves of analytic
rank at most 1. This was the original motivation in Cha’s work [3]. In [13], the authors attempt to extend
Cha’s results, but there is a mistake in the proof of their Lemma 5.4 and consequently their Theorem 3.5
is not correct. The latter is also copied as Theorem 5.3 in [17]. Using our results above, we can now state
and prove a corrected version of Theorem 3.5 in [13]. We refer to the original paper for the notations.

Theorem 14. Let E/Q be an elliptic curve of analytic rank at most 1. Let p be an odd prime. Let
F a quadratic imaginary field satisfying the Heegner hypothesis and suppose p does not ramify in F/Q.
Suppose that (E, p) does not appear in the list of Theorem 1 and that E is not isogenous to an elliptic
curve over Q such that the dual isogeny contains a rational p-torsion point. Then the p-adic valuation of
the order of the Tate-Shafarevich group is bounded by twice the index of the Heegner point.

Proof. In their proof, only the vanishing of H1
(
G,E[p]

)
and H2

(
G,E[p]

)
are needed for the argument.

Under our assumptions they both vanish by Theorem 1 and Lemma 13. One has also to note that, as
pointed out in [17], the assumption in their theorem that E does not admit complex multiplication is not
used in the proof. Finally, the paper [13] needs that F is not included in K = Q

(
E[p]

)
to conclude that

Hi
(
Gal(F (E[p])/F ), E[p]

)
also vanishes for i = 1 and 2. This is guaranteed by the Heegner hypothesis

and the assumption that p does not ramify in F , as F and K then have disjoint sets of ramified primes.

The following is a short-cut in the usual p-descent for E =121c2 and p = 11. It is not a new result as
it appears already in [18] as Example 7.4. However it illustrates that the non-trivial class in H1

(
G,E[p]

)
can be of use.

Proposition 15. The Tate-Shafarevich group of the curve 121c2 does not contain any non-trivial ele-
ments of order 11. The full Birch and Swinnerton-Dyer conjecture holds for this curve.

Proof. Set p = 11. Let ϕ : E → E′ be the p-isogeny defined over Q. We saw before that E[ϕ] ∼= Fp(4)
and E′[ϕ̂] ∼= Fp(7) where Fp(k) is the 1-dimensional Fp-vector space with the Galois group acting by the
character ωk.

Let F be the maximal extension of Q which is unramified at all finite places ` 6= p. Write G =
Gal
(
F/Q

)
and H = Gal

(
F/Q(ζ)

)
where ζ is a primitive p-th root of 1. Let Γ = G/H. Since |Γ| is
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coprime to p, we have an isomorphism H1
(
G, E[ϕ]

) ∼= H1(H, E[ϕ]
)Γ. Now Dirichlet’s unit theorem can

be used to compute

H1
(
H,Fp(1)

)
= H1

(
H, µp

) ∼= Fp(1)⊕
4⊕
i=0

Fp(2 i)

as a Fp[Γ]-module; see for instance Corollary 8.6.12 (or 8.7.3 in the second edition) in [19]. Since
H1
(
H,Fp(k)

) ∼= H1
(
H,Fp(1)

)
(k − 1), the group H1

(
G,Fp(k)

)
is a sum of copies of Fp corresponding to

the copies of Fp(1− k) in H1
(
H,Fp(1)

)
. We deduce that H1

(
G, E[ϕ]

)
is trivial and that H1

(
G, E′[ϕ̂]

)
is

1-dimensional.
Since K/Q is only ramified at p, we have an inflation map H1

(
G,E′[ϕ̂]

)
→ H1

(
G, E′[ϕ̂]

)
. By Theo-

rem 1 and the above, this is now an isomorphism and our explicit cocycle ξ can be viewed as a generator
for H1

(
G, E′[ϕ̂]

)
.

The ϕ̂-Selmer group Selϕ̂ is defined to be the kernel of the map

H1
(
G, E′[ϕ̂]

)
→ H1

(
Qp, E

′)[ϕ̂].

An explicit local computation shows that ϕ̂ : E′(Qp) → E(Qp) is surjective. Therefore H1
(
Qp, E

′)[ϕ̂] ∼=
H1
(
Qp, E

′[ϕ̂]
)
. Since K/Q is totally ramified at p, the decomposition group of K/Q at the unique place

above p in K is equal to G. Therefore ξ also inflates to a non-trivial element in H1
(
Qp, E

′[ϕ̂]
)
. It follows

that the generator of H1
(
G, E′[ϕ̂]

)
does not lie in the Selmer group. Therefore Selϕ̂ is trivial.

Since H1
(
G, E[ϕ]

)
= 0, the ϕ-Selmer group Selϕ is trivial. The usual exact sequence

Selϕ // Selp(E/Q) // Selϕ̂

shows now that the p-Selmer group Selp(E/Q) is trivial. Therefore the rank of E is zero and the p-primary
part of the Tate-Shafarevich group X(E/Q) is trivial.

As explained in Theorem 8.5 in [17], the only prime at which one has to check the Birch and
Swinnerton-Dyer conjecture after the Heegner point computations done there is p = 11. Therefore,
this completes the proof of the conjecture for this specific elliptic curve.

The main result of [17] (based on [18] and [8]) by Miller and his collaborators states that the Birch and
Swinnerton-Dyer conjecture holds for all elliptic curves of conductor at most 5000 and analytic rank at
most 1. As a consequence of the error in [13], the verification for some curves in this list is not complete.
The following is a description how we performed the necessary computations to fill in the gaps for all
these curves. See also [24] for the correction of the corresponding bug in SageMath.

From the change in Theorem 14, it follows that only curves E contained in the list of Theorem 1
could have been affected when verifying the p-part of the conjecture. The case 121c2 was verified in
Proposition 15. The exceptional cases with p = 3 are already dealt with in Theorem 9.1 in [18], as
they were already considered exceptional cases there. That only leaves the curves with non-vanishing
H1
(
G,E[5]

)
. For the following list of curves, we had to perform a 5-descent to verify the conjecture:

50a3, 50a4, 75a2, 150b3, 150b4, 175c2, 275b1, 325d2, 550b1, 550f3, 775c1, 950a1, 1050d2, 1425b1, 1450a1,
1650b1, 1650b2, 1650c2, 1650d2, 1950b2, 1975d1, 2175f2, 2350e2, 2550f2, 2850a1, 2850a2, 2850g2, 2950a1,
3075d1, 3075g2, 3325c1, 3550d1, 3850k2, 3950a1, 4350a1, 4350a2, 4425c1, 4450a1, 4450f2, 4650e1, 4650k2,
4650m2. The methods in [18] are sufficient in all these cases. If the rank is 1, then even the weaker bound
in their Corollary 7.3 is enough. Otherwise, if the rank is 0, the Selmer groups for ϕ and ϕ̂ are trivial as
one finds quickly by looking at a few local conditions.

6 Results for i > 1

We now turn to the question of finding all cases of elliptic curves E/F and primes p such that the group
H1
(
Gi, E[pi]

)
does not vanish for some i > 1. We continue to assume that F ∩ Q(µp) = Q and we will

assume now that p > 2.
By Lemma 3 and Lemma 4, we know that all these groups vanish unless there is an isogeny ϕ : E → E′

defined over F . Therefore, we may continue to assume the existence of ϕ and that the group G is contained
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in the Borel subgroup of upper triangular matrices. This fixes (up to scalar) the first basis element of
E[p] and we still have some flexibility about the second; if there is a second subgroup of E[p] fixed by
the Galois group, we will choose the second basis element in there. Unlike in the case i = 1, we may not
yet assume that p divides the order of G.

In what follows we will write expressions like G =
(

1 ∗
0 ∗
)
. By this we mean that G is equal to the

group of all matrices of this form in GL2(Fp), so ∗ on the diagonal can take any non-zero value and ∗ in
the top right corner can be any value in Fp.

Let M be the additive group of 2×2-matrices with coefficients in Fp. Then G 6 GL2(Fp) acts on M by
conjugation. We would like to determine HomG

(
M,E[p]

)
. We do so by computing first HomG

(
M,E[ϕ]

)
and HomG

(
M,E′[ϕ̂]

)
.

Lemma 16. Suppose first p > 3. The group HomG

(
M,E[ϕ]

)
is trivial except in the following cases.

• If G =
(

1 0
0 ∗
)

in a suitable basis of E[p], then HomG

(
M,E[ϕ]

)
has dimension 2 over Fp.

• If G =
(
∗ 0
0 1

)
in a suitable basis of E[p], this group has dimension 1.

• If G =
(

1 ∗
0 ∗
)
, this group has dimension 1.

• If G 6
{( u w

0 u2

) ∣∣ u ∈ F×p , w ∈ Fp
}

, this group has dimension 1.

If p = 3, the list is the same with one modification to the second and to the last case above.

• If G =
(
∗ 0
0 1

)
in a suitable basis of E[3], this group has dimension 2.

Proof. If f : M → E[ϕ] is fixed by g ∈ G, then f(m) = g · f(g−1mg) for all m ∈ M . Let α, β, γ, and δ
be the images in E[ϕ] under f of

(
1 0
0 0

)
,
(

0 1
0 0

)
,
(

0 0
1 0

)
, and

(
0 0
0 1

)
respectively. Then the above equation

for m being one of the these four matrices yields four equations that have to hold for all g =
(
u w
0 v

)
∈ G:

α = u · (α+ u−1w β)

β = u · (u−1v β)

γ = u · (−v−1wα− u−1v−1w2 β + uv−1 γ + v−1w δ)

δ = u · (δ − u−1w β)

(3)

From these equations, we deduce the following:

f is fixed by
(

1 1
0 1

)
⇐⇒ β = 0 and α = δ

f is fixed by
(

1 0
0 v

)
for some v 6= 1 ⇐⇒ β = γ = 0

f is fixed by
(
u 0
0 1

)
for some u 6= ±1 ⇐⇒ α = γ = δ = 0

f is fixed by
(−1 0

0 1

)
⇐⇒ α = δ = 0

Assume first that G is contained in
(

1 ∗
0 ∗
)
. Since the determinant must be surjective, G is either

(
1 ∗
0 ∗
)

or
(

1 0
0 ∗
)
, after choosing a suitable second basis element for E[p]. In both cases, the above allows us to

verify the statements in the lemma. The case when G is contained in
( ∗ ∗

0 1

)
is very similar, except that

when p = 3, in which case we are in the group of matrices with v = u2 and we can only apply the fourth
equation instead of the third.

Assume now that G contains an element
(
u w
0 v

)
with v 6= 1 and one with u 6= 1. Then β = 0 by the

second equation in (3). From the last two equations, we deduce that α = δ = 0. Now the equations (3)
simplify to one equation (1 − u2v−1)γ = 0. Therefore, if G is contained in the group of matrices with
v = u2, then the dimension of HomG

(
M,E[ϕ]

)
is 1 and p > 3 as otherwise all g ∈ G have v = 1, otherwise

the space is trivial.

Recall that E′[ϕ̂] is the kernel of the dual isogeny.
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Lemma 17. Suppose p > 2. The group HomG

(
M,E′[ϕ̂]

)
is trivial except in the following cases. If G

is contained in
(

1 ∗
0 ∗
)

or if G =
( ∗ ∗

0 1

)
or if G =

{(
v2 0
0 v

) ∣∣ v ∈ F×p
}

in a suitable basis for E[p], then
HomG

(
M,E′[ϕ̂]

)
has dimension 1. If G =

(
∗ 0
0 1

)
in a suitable basis of E[p], then it has dimension 2.

Proof. This is analogous to the proof of the previous lemma. The equations (3) become equations where
the u at the start of the right hand side of each equation is replaced by a v. This new set of equations
can be rewritten as follows.

(1− v)α = u−1vw β

(1− u−1v2)β = 0

(1− u)γ = w(δ − α)− u−1w2β

(1− v)δ = −u−1vw β

(4)

From here, the computations are again straightforward for the cases when G is contained in
( ∗ ∗

0 1

)
or(

1 ∗
0 ∗
)
. If G is contained in the group

{(
v2 w
0 v

) ∣∣ v ∈ F×p , w ∈ Fp
}

, it is either equal to this group, in which
case the cohomology group in question is trivial, or it is equal to a subgroup of order p− 1. In the latter
case, we may change the choice of basis of E[p] to get G to be equal to

{(
v2 0
0 v

) ∣∣ v ∈ F×p
}

, in which case
α = γ = δ = 0, but β is free. In all other cases it is trivial.

The exact sequence

0 // HomG

(
M,E[ϕ]

)
// HomG

(
M,E[p]

) ϕ // HomG

(
M,E′[ϕ̂]

)
(5)

connects the results from the previous two lemmas.

Proposition 18. If p > 3, the group HomG

(
M,E[p]

)
vanishes except when, for some choice of basis of

E[p], it is one of the following subgroups.

G =
(

1 0
0 ∗
)

=
(
∗ 0
0 1

)
=
(

1 ∗
0 ∗
)

6
( u ∗

0 u2

)
=
(
v2 0
0 v

)
dimFp

HomG

(
M,E[p]

)
3 3 2 1 1

If p = 3, the group HomG

(
M,E[p]

)
vanishes except when, for some choice of basis of E[p], it is one of

the following subgroups.

G =
(

1 0
0 ∗
)

=
(
∗ 0
0 1

)
=
(

1 ∗
0 ∗
)

=
( ∗ ∗

0 1

)
dimF3 HomG

(
M,E[3]

)
3 4 2 1

Here we have chosen a suitable second basis element in E[p] as in the previous lemmas. Of course,
the first two cases are in fact the same when the basis elements are swapped.

Proof. If HomG

(
M,E′[ϕ̂]

)
= 0, then the exact sequence (5) reduces this to Lemma 16. Otherwise, we

have to check if the homomorphisms f : M → E′[ϕ̂] lift to homomorphisms e : M → E[p] that are G-
equivariant. In the following four cases, they all lift indeed. We will just give the explicit map which form
a basis of HomG

(
M,E[p]

)
modulo the image from HomG

(
M,E[ϕ]

)
. One can verify without difficult that

they are G-equivariant.

G =
(

1 0
0 ∗
)

=
(
∗ 0
0 1

)
=
(

1 ∗
0 ∗
)

=
(
v2 0
0 v

)
e
(
a b
c d

) (
a
c

) (
0
a

)
and

(
0
d

) (
a
c

) (
0
b

)
There is only the case G =

( ∗ ∗
0 1

)
left to treat. The generator of HomG

(
M,E′[ϕ̂]

)
is given by f

(
a b
c d

)
=

a+d. We will show that f does not lift to a map e : M → E[p]. Denote by
(
α
1

)
the image of

(
1 0
0 0

)
under

such an e and by
(
β
0

)
the image of

(
0 1
0 0

)
. Then we must have for all u 6= 1 and w in Fp that(

β
0

)
=
(
u w
0 1

)
e
(

0 u−1w
0 0

)
=
(
u w
0 1

)(
u−1wβ

0

)
=
(
wβ
0

)
.
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Hence β = 0. Again for all u and w, we should have that(
α
1

)
=
(
u w
0 1

)
e
(

1 u−1w
0 0

)
=
(
u w
0 1

)(
α
1

)
=
(
uα+w

1

)
.

However, this cannot hold for all choices no matter what α is.

Definition. Let E/F be an elliptic curve. We will say that Gi is greatest possible if it consists of all the
matrices in GL2(Z/piZ) that reduce to a matrix in G modulo p. Equivalently, Mi is the kernel of the
map GL2(Z/pi)→ GL2(Fp).

We will show that if p > 2 and i > 1, then Gi is greatest possible if and only if G2 is greatest possible:
Since Gi → Gi−1 is surjective, by induction it suffices to prove that the kernel Hi−1 contains all matrices
of the form 1 + pi−1A ∈ GL2(Z/pi). If G2 is greatest possible, then for any A ∈ M2(Fp) there exists an
element g ∈ Gi whose image in GL2(Z/p2) is 1 + pA. Then gp

i−2
has image (1 + pi−1A) in GL2(Z/pi) by

taking binomial expansions, and so Gi contains all of Hi−1.

Proposition 19. Let p > 2 be a prime and let E/F be an elliptic curve. Suppose G lies in the Borel
subgroup of upper triangular matrices and that G2 is greatest possible. If G is not among the exceptional
cases in Theorem 1 or in Proposition 18, then H1

(
Gi, E[pj ]

)
= 0 for all i > j > 1.

Proof. The short exact sequence (2) implies that if H1
(
Gi+1, E[pj−1]

)
and H1

(
Gi+1, E[p]

)
are zero, then

so is H1
(
Gi+1, E[pj ]

)
. By induction on j, it suffices to prove the proposition in the case j = 1.

For i = 1, the statement follows from Theorem 1. We assume now that it holds for i > 1. By
assumption Mi+1 is isomorphic to the group (1 + pMat2

(
Z/pi

)
) ⊂ GL2(Z/pi+1) and Hi is isomorphic to

the group M of all matrices with coefficients in Fp. Using Proposition 18, we find

H1
(
Mi+1, E[p]

)G = HomG

(
Mi+1, E[p]

) ∼= HomG

(
M,E[p]

)
= 0

because all elements in the kernel of the map Mi+1 →M are p’th powers. (Note that this requires p > 2.)
Now considering the inflation-restriction sequence

0 //H1
(
G,E[p]

)
//H1
(
Gi+1, E[p]

)
//H1
(
Mi+1, E[p]

)G (6)

yields that H1
(
Gi+1, E[p]

)
= 0.

Lemma 20. Let p > 2 be a prime and E/F an elliptic curve such that G2 is greatest possible. If G is
among the exceptional cases in Theorem 1 or in Proposition 18 then H1

(
Gi, E[pi]

)
6= 0 for all i > 2.

Proof. We claim that the sequence (6) is part of a short exact sequence. The next term in the sequence
is H2

(
G,E[p]

)
, and so it suffices to show that the map H1(Mi+1, E[p])G → H2

(
G,E[p]

)
is zero. By

Lemma 13, the target group is trivial unless G =
( ∗ ∗

0 1

)
. If p > 3 and G =

( ∗ ∗
0 1

)
, then the source group

H1(Mi+1, E[p])G vanishes. If p = 3 and G =
( ∗ ∗

0 1

)
, the source is cyclic and generated by a cocycle

ξ : Mi+1 → E[3] such that
(
a b
c d

)
7→
(
c/3
0

)
. The image of ξ in H2

(
G,E[p]

)
is zero because the formula(

a b
c d

)
7→
(
ac/3

0

)
lifts it to a cocycle Gi+1 → E[3].

Therefore, the dimension of H1(Gi+1, E[p]) is the sum of the dimensions of the two groups surrounding
it in the sequence (6). In all cases, this dimension is strictly larger than the dimension of the group of
p-torsion points of E defined over F .

Now we turn to sequence (2) with i > 2. In all cases, the dimension of H1
(
Gi, E[p]

)
is strictly larger

than the dimension of E(F )[pi−1]/pE(F )[pi] (which is at most 1 because E(F )[pi−1] must be cyclic by
the assumption on F ). We conclude that H1

(
Gi, E[pi]

)
is non-trivial.

So far we have been able to treat all cases in which Gi is greatest possible and F ∩ Q(µp) = Q. We
will now restrict our attention to F = Q and p > 3. Luckily, for the large majority of elliptic curves
over Q the groups Gi are indeed greatest possible. The following is a summary of the results in [12] and
in [11].
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Theorem 21. Let p > 3 and i > 1. Let E/Q be an elliptic curve with an isogeny of degree p defined over
Q. Then Gi is greatest possible except in two cases:

• when p = 7 and the curve is the quadratic twist of a curve of conductor 49, or

• when p = 5 and there is an isogeny ψ : E → E′′ of degree 25 defined over Q.

We will now treat the two exceptional cases, starting with p = 5.

Lemma 22. Let E/Q be an elliptic curve and suppose there is an cyclic isogeny ψ : E → E′ → E′′ of
degree p2 = 25 defined over Q. Then H1

(
G2, E[p2]

)
= 0 if and only if H1

(
Gi, E[pi]

)
= 0 for all i > 1.

This vanishing holds except if G =
(

1 ∗
0 ∗
)
, if G =

( ∗ ∗
0 1

)
, or if E appears in Theorem 1 as an exception.

For instance, it is non-vanishing if E admits a rational 5-torsion point or if E′ admits a rational
5-torsion point. The curves 11a3 and 11a2 are examples of these two situations where H1

(
G,E[p]

)
= 0,

yet H1
(
Gi, E[pi]

)
6= 0 for all i > 1 because there are two 5-isogenies 11a3→ 11a1→ 11a2 with only 11a3

and 11a1 having a rational 5-torsion point. The cohomology group H1
(
G2, E[25]

)
is also non-trivial for

11a1 by Proposition 19.

Proof. Note that there are no elliptic curves with rational points of order 25 and there are no cyclic
isogenies over Q of degree p3 = 125. Greenberg shows in Theorem 2 in [12] that the index of G2 in
GL2

(
Z/25

)
is divisible by 5 but not 25. Hence the group G2 can be identified with a subgroup of the

upper triangular matrices modulo p2, but the top left entry is not constant 1 modulo p2 and the top right
corner is not constant zero modulo p. Since the index is only divisible by 5 once, the group G2 consists
of all the upper triangular matrices that reduce to an element of G.

We wish to use the same strategy as in the proof of Proposition 19, but we have to show that G-
fixed part of H1

(
M2, E[p]

)
is still zero despite M2 6= M . This time M2 can be identified with upper

triangular matrices modulo p and the computations are slightly easier. One finds that HomG

(
M2, E[ϕ]

)
has dimension 2 if G =

(
1 ∗
0 ∗
)

and 0 in all other cases. Similarly, the dimension of HomG

(
M2, E

′[ϕ̂]
)

is
equal to 2 if G =

( ∗ ∗
0 1

)
and zero otherwise. (Alternatively, it is not too hard to show by direct calculation

that the dimension of HomG

(
M2, E[p]

)
is 2 if G =

(
1 ∗
0 ∗
)
, 1 if G =

( ∗ ∗
0 1

)
, and 0 otherwise.)

Hence if we assume that neither G =
( ∗ ∗

0 1

)
nor G =

(
1 ∗
0 ∗
)

nor G =
{(

v2 w
0 v

) ∣∣∣ v ∈ F×p , w ∈ Fp
}

, then

H1
(
Gi, E[pi]

)
= 0 for all i > 1 with the same proof as in Proposition 19.

If G =
(

1 ∗
0 ∗
)
, then one can show as in Lemma 20 that H1

(
Gi, E[pi]

)
is non-zero for all i > 1. Similarly

for G =
{(

v2 w
0 v

) ∣∣∣ v ∈ F×p , w ∈ Fp
}

.

Finally if G =
( ∗ ∗

0 1

)
, then one may compute H1

(
G2, E[p2]

)
directly: the group G2 consists of all

upper triangular matrices modulo p2 whose lower right entry is congruent to 1 modulo p. Let H be the
subgroup generated by

(
1 1
0 1

)
. Then the method used in the proof of Theorem 1 shows that the subgroup

of H1
(
H,E[p2]

)
fixed by the action of G2/H is trivial. However H1

(
G2/H,E[p2]H

) ∼= Z/pZ implies then
that H1

(
G2, E[p2]

) ∼= Z/pZ where an explicit isomorphism sends a cocycle ξ to the first coordinate of
ξ
((

1 0
0 1+p

))
in pZ/p2Z. From the exact sequence (2), one deduces that H1

(
G2, E[p]

)
is non-trivial and

again this implies that all H1
(
Gi, E[pi]

)
are non-zero for i > 1.

Lemma 23. Let E/Q be a quadratic twist of a curve of conductor 49 and let p = 7. Then H1
(
Gi, E[pi]

)
=

0 for all i > 1.

Proof. Assume first that E is one of the curves of conductor 49. By assumption E has complex multi-
plication by O, where O is either Z[

√
−7] or the ring of integers in Q(

√
−7). Since Q(

√
−7) ⊂ K, the

subgroup Gal(K/Q(
√
−7)) < G acts by O-linear endomorphisms on E[7i]. By scaling with the period,

we may choose points p and
√
−7 · p as a basis for E[7i]. Any lift of these forms a Z7-basis of the Tate

module T7E. The endomorphism a+ b
√
−7 with a, b ∈ Q ∩ Z7 acts via

(
a b
−7b a

)
on T7(E).
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The Frobenius element Fr` ∈ GL(T7E) for ` = 347 has trace a` = 4 for all four curves of conductor 49.
Since ` splits in Q(

√
−7), the Frobenius Fr` in GL2(Z7) is a matrix of the above shape with trace 4 and

determinant 347. We find that it is congruent to
(

2 0
0 2

)
modulo 7. Since G contains now the homotheties

by 2 and 4, the result follows from Lemma 3.
Let now E be a quadratic twist of a curve of conductor 49. Then it is the quadratic twist of one

of them by an integer D coprime to 7. The above homotheties are multiplied by a non-zero scalar and
hence Lemma 3 also implies the result for E.

Proof of Theorem 2. We combine the results from Proposition 19, Lemma 20, Lemma 22 and Lemma 23.
From these we conclude immediately that H1

(
Gi, E[pi]

)
= 0 if and only if H1

(
G2, E[p2]

)
= 0.

We are now left with making the list in Theorem 2 match with the non-vanishing cases. We start by
verifying that the cohomology groups are non-vanishing in each of the five special cases in the theorem.

• First, if E contains a rational point of order p, then G =
(

1 0
0 ∗
)
, G =

(
∗ 0
0 1

)
, or G =

(
1 ∗
0 ∗
)
. In all

these cases, the cohomology groups in question do not vanish by Lemma 20 and Lemma 22.

• In the second point in the list of Theorem 2, p = 5 and the quadratic twist by D = 5 of E has a
rational 5-torsion point. Then G is contained in

{(
v2 ∗
0 v

) ∣∣ v ∈ F×p
}

. If G is equal to that group,
then Theorem 1 and Lemma 20 or Lemma 22 imply the non-vanishing of H1

(
G2, E[p2]

)
. Otherwise

we may choose the basis of E[p] so that G is contained in the diagonal matrices of this form, in
which case Lemma 20 proves the assertion.

• In the third point, p = 5 and the quadratic twist by D = 5 of E′ has a rational 5-torsion point.
Then G is contained in

{( u ∗
0 u2

) ∣∣ u ∈ F×p
}

. There is no isogeny of degree 25 defined over Q leaving
from E, hence G2 is greatest possible; therefore Lemma 20 proves the desired non-vanishing.

• If we are in the situation of the fourth point in Theorem 2, we are in the situation of Lemma 22
and G =

( ∗ ∗
0 1

)
. Therefore H1

(
G2, E[p2]

)
6= 0.

• In the final point, if p = 11 and E is 121c2, then Theorem 1 and Lemma 20 shows the desired
non-vanishing. If the curve is 121c1 instead, then G =

{( u ∗
0 u2

) ∣∣ u ∈ F×p
}

and Lemma 20 treats
this case too.

Next, we have to check that every case when the group H1
(
G2, E[p2]

)
is non-trivial is among the

exceptional cases of Theorem 2 above.
Let us assume first that G2 is greatest possible and consider the cases in Lemma 20. If G =

(
1 0
0 ∗
)

or
G =

(
1 ∗
0 ∗
)
, then E has a rational p-torsion point. By Mazur’s Theorem on the torsion point on elliptic

curves over Q, we know that this can only occur if p = 5 or p = 7 and we fall under the first point in
the list of Theorem 2. If (E, p) appears as an exception in Theorem 1, then either p = 5 and we are in
the situation of the second point, or p = 11 and we are in the last point on the list. If G is the group of
all matrices of the form

(
v2 0
0 v

)
, then the quadratic twist by D = 5 has a rational 5-torsion point and we

are in the situation of the second point. Finally, assume G is contained in the group
{( u ∗

0 u2

) ∣∣ u ∈ F×p
}

.
Then p ≡ 2 (mod 3). If p = 5, then the quadratic twist by D = 5 of E′ has a rational 5-torsion point
and we are in the third case. If p > 11, then the proof that there is only one curve, namely 121c1, is very
analogous to Lemma 12.

Finally, we consider the cases in Lemma 22. If G =
(

1 ∗
0 ∗
)
, then E has a rational 5-torsion point and

we are in the first point in the list. If G =
( ∗ ∗

0 1

)
, then E′ admits a rational 5-torsion point, which is the

fourth point on the list. If (E, p) appear as exceptions in Theorem 1, then we fall into the second point
on the list.

7 Numerical computations

We used Magma [2] to perform, for small primes p, the numerical computation of our cohomology group
H1
(
G2, V2

)
for various subgroup G2 6 GL2(Z/p2), where V2 is the natural rank 2 module over Z/p2 on

which G2 acts. We restricted our attention to groups with surjective determinants and we only considered
groups up to conjugation in GL2(Z/p2).

We will continue to write M2 for the kernel of reduction G2 → GL2(Fp) and G for its image.
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7.1 p = 2

For the prime p = 2, the groups H1
(
G2, V2

)
are non-zero for 36 conjugacy classes of subgroup G2 6

GL2(Z/4) with surjective determinant. The possible cohomology groups are
(
Z/2

)k for 0 6 k 6 6 and
Z/4. Non-trivial cohomology groups appear for all dimensions 1 6 d 6 4 of M2.

7.2 p = 3

There are 41 groups G2 with non-vanishing H1
(
G2, V2

)
. For thirteen of them the cohomology group is

Z/3⊕ Z/3, for one it is Z/3⊕ Z/3⊕ Z/3 and for all others it is just Z/3. In all non-vanishing cases the
image G 6 GL2(F3) of reduction has either non-trivial H0(G,V ) or non-trivial H2(G,V ), where V is
the 2-dimensional vector space over F3 with its natural action by G 6 GL2(F3). In other words, these
numerical computations show that if the group H1

(
G2, E[9]

)
is non-trivial for an elliptic curve E/Q,

there is an isogeny ϕ : E → E′ defined over Q of degree 3 such that either ϕ or its dual ϕ̂ has a rational
3-torsion point in its kernel.

The maximal order of the cohomology group appears for the group G2 consisting of all matrices in
GL2(Z/9) with reduction

(
1 0
0 1

)
or
(

1 0
0 −1

)
modulo 3.

7.3 p = 5

There are 39 groups G2 with non-vanishing H1
(
G2, V2

)
. For two of them, the group is Z/5 ⊕ Z/5, for

one it is Z/25 and for all others it is Z/5. If we restrict to those groups for which M2 has dimension 4,
then there are five cases as found in Section 6:

G
(
v2 0
0 v

) (
1 0
0 ∗
) ( u ∗

0 u2

) (
v2 ∗
0 v

) (
1 ∗
0 ∗
)

|G| 4 4 20 20 20
H1
(
G2, V2

)
Z/5 Z/5⊕ Z/5 Z/5 Z/5 Z/5

This determines what the non-vanishing cohomology groups can be for this specific prime.

7.4 p = 7

Here we restricted our attention to the subgroups G2 for which M2 has dimension 4. Then, as previously
found, there are only two cases. The group G can be of the form

(
1 0
0 ∗
)

or
(

1 ∗
0 ∗
)
. In the first case the

cohomology group H1
(
G2, V2

)
is Z/7⊕ Z/7; in the latter it is Z/7.

8 Applications to local and global divisibility of rational points

The cohomology groups that we have discussed in this paper also appear in the analogue of the Grunwald–
Wang problem for elliptic curves. This question was raised by Dvornicich and Zannier in [9].
Grunwald–Wang problem for elliptic curves. Let E/Q be an elliptic curve, P ∈ E(Q), and m > 1. If P
is divisible by m in E(Q`) for almost all `, is it true that P is divisible by m in E(Q) ?

By the Chinese remainder theorem, it is sufficient to restrict to the case when m = pi is a prime power.
The answer is positive if m is prime. The explicit example in [10] shows that the answer is negative for
m = 4. In [20], it is shown that the answer is positive for all m = p2 with p a prime larger than 3. To
our knowledge, the case m = 9 has not been determined.

This question connects to our cohomology groups through the following reinterpretation. Suppose
m = pi for our fixed prime p. Let Σ be a finite set of places in Q. Let

D(E/Q) = ker
(
E(Q)/piE(Q)→

∏
v 6∈Σ

E(Qv)/piE(Qv)
)

be the group that measures if there are points P that are locally divisible by pi, but not globally. Let

L(E/Q) = L(Gi) = ker
(
H1
(
Gi, E[pi]

)
→

∏
C6Gi
C cyclic

H1
(
C,E[pi]

))
(7)
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be the kernel of reduction to all the cyclic subgroups of Gi. We now assume that Σ contains all places
above p and all bad places. By Chebotarev’s theorem, L(E/Q) is also the kernel of localization from
H1
(
Gi, E[pi]

)
to all H1(Dw|v, E[pi]

)
where Dw|v is the decomposition group in Ki/Q of a place w above

v. Hence a natural notation for L(E/Q) could be X1
(
U,E[pi]

)
with U the complement of Σ in Spec(Z).

The sequence
0 //D(E/Q) //L(E/Q) //H1

(
Gi, E(Ki)

)
is exact. Hence the answer is positive for m = pi if H1

(
Gi, E[pi]

)
vanishes. Note that the description

of L(E/Q) in (7) is now entirely group-theoretic, and can be computed numerically with the methods
described in the previous section.

Theorem 24. Let p a prime and i > 1. Then the Grunwald–Wang problem for local-global divisibility by
m = pi admits a positive answer for all elliptic curves E/Q if and only if p > 3 or m = 2 or m = 3.

Proof. If we find a point P of infinite order that is a counter-example for m = pi, then pjP is a counter-
example for m = pi+j for any j > 0. As mentioned before, the negative answer for m = 4 is explained
in [10]. This settles also all higher powers of 2 as their examples are points of infinite order. Counter-
examples when m is a power of 3 were first found by Creutz in [7]. We will give below in Proposition 25
a new counter-example of infinite order for m = 9. For p > 5 the theorem follows from [20]. However,
we wish to give a slightly simplified proof with our methods.

Assume therefore p > 5. We will now show that the kernel of localization L(Gi) is zero. Note that by
Greenberg’s result in Theorem 21 and the work done in the exceptional cases in Lemma 22 and Lemma 23,
we may assume that Gi is greatest possible or that i = 2 and M2 consists of all matrices m such that
m− 1 is upper triangular. In both cases the elements in E[pi] fixed by Mi are just E[p]. We get an exact
sequence

0 //H1
(
G,E[p]

) inf //H1
(
Gi, E[pi]

)
//H1
(
Mi, E[pi]

)
.

First assume that L(Gi) contains a non-trivial element which belongs to the image of the inflation map
from H1

(
G,E[p]

)
. Since the latter must now be non-trivial, G must contain the element h̄ =

(
1 1
0 1

)
.

By the description of Mi, we find that Gi contains the element h =
(

1 1
0 1

)
. Let C be the cyclic group

generated by h and let C̄ be its image in G. Our computations for proving Theorem 1 showed that
H1
(
G,E[p]

)
→ H1(C̄, E[p]

)
is a bijection. Next, both maps in the composition

H1
(
C̄, E[p]

)
//H1
(
C̄, E[pi]C∩Mi

)
//H1
(
C,E[pi]

)
are injective: for the latter it is because any inflation map is injective, and for the first it can be
read off the long exact sequence associated to the inclusion E[p] → E[pi]C∩Mi . We conclude that
H1
(
G,E[p]

)
→ H1

(
C,E[pi]

)
is injective. This now contradicts the assumption that L(Gi) contained a

non-trivial element from H1
(
G,E[p]

)
.

Therefore, L(Gi) injects into to

L(Mi) = ker
(
H1
(
Mi, E[pi]

)
→

∏
C6Mi
cyclic

H1
(
C,E[pi]

))
,

where the product now runs over all cyclic subgroups of Mi. We will now prove by induction on i that
L(Mi) is trivial. It is known for i = 1.

Recall that the group Hi acts trivially on E[pi]. We consider the following diagram with exact rows:

0 // H1
(
Mi, E[pi]

)
//

��

H1
(
Mi+1, E[pi]

)
//

��

H1
(
Hi, E[pi]

)
��

0 // ∏
C H

1
(
C/C ∩Hi, E[pi]C∩Hi

)
// ∏

C H
1
(
C,E[pi]

)
// ∏

C H
1
(
C ∩Hi, E[pi]

)
(8)
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where the products run over all cyclic subgroups C of Mi+1. Now the vertical map on the right hand
side has the same kernel as

H1
(
Hi, E[pi]

)
= Hom

(
Hi, E[pi]

)
//
∏

D6Hi
cyclic

Hom
(
D,E[pi]

)
and this map is clearly injective. Since C ∩ Hi fixes E[pi] the vertical map on the right in the above
diagram (8) is injective by induction hypothesis because C/C ∩Hi

∼= CHi/Hi will run through all cyclic
subgroups of Mi at least once. Therefore the middle vertical map in (8) is injective, too.

Next, consider the following diagram with exact rows:

0 // E[p] δ // Hom
(
Mi+1, E[p]

) ι //

��

H1
(
Mi+1, E[pi+1]

) [p] //

��

H1
(
Mi+1, E[pi]

)
��

E[pi+1]C
[p] // E[pi]C

δC // Hom
(
C,E[p]

)
// H1

(
C,E[pi+1]

)
// H1

(
C,E[pi]

)
Here C is any cyclic subgroup of Mi+1. The zero at the top left corner is a consequence from the fact
that the Mi+1-fixed points in E[pj ] are exactly E[p] for all 1 6 j 6 i+ 1.

If ξ ∈ L(Mi+1), then its image under [p] in H1
(
Mi+1, E[pi]

)
must be trivial by what we have shown for

the middle vertical map in (8). Therefore ξ is the image under ι of an element f in Hom
(
Mi+1, E[p]

)
. Since

E[p] is p-torsion, we can identify Hom
(
Mi+1, E[p]

)
with Hom

(
M2, E[p]

)
. To say that ξ restricts to zero

for a cyclic group C 6 Mi+1 forces f : M2 → E[p] to be in the image of the map δC : E[p]→ Hom
(
C,E[p]

)
for all cyclic subgroups C of M2.

Now we identify M2 with the additive subgroup M̃2 6 Mat2(Fp) as before. Under this identification
the map δ sends a p-torsion point T ∈ E[p] = F2

p to the map f sending a matrix m ∈ M̃2 to m(T ).
Thus, the restriction of f to Hom

(
〈m〉,F2

p

)
is in the image of δ〈m〉 for a particular m ∈ M̃2 if and only if

f(m) ∈ F2
p belongs to the image of m. Therefore, we have shown that

L(Mi+1) =

{
f ∈ Hom

(
M̃2,F2

p

) ∣∣∣ f(m) ∈ im(m) ∀m ∈ M̃2

}
{
f(m) = m(T ) for some T ∈ F2

p

} . (9)

We wish to show that L(Mi+1) is trivial if M̃2 is the full matrix group or the upper triangular matrices.
Assume first that M̃2 is the full matrix group. Then f is determined by its image on the matrices with
only one non-zero entry. However, the local condition of being in the image of δC for these matrices
and the matrices

(
1 0
1 0

)
and

(
0 1
0 1

)
forces f(m) to be just m(T ) for T = f

((
1 0
0 0

))
+ f

((
0 0
0 1

))
. Therefore

L(Mi+1) is trivial. The case when M̃2 is the group of upper triangular matrices is very similar.

The result about the vanishing of L(G2) for p > 3 in the above proof is reminiscent of Proposition 3.2.ii
in [9]. We have reproved part of this result with a more conceptual approach. The main reason for doing
so is that the general statement there is slightly incorrect. The case dim(M2) = 3 assumes that

(
1 1
0 1

)
belongs to G2. However, for p = 3, the group G2 generated by

(
7 8
3 1

)
and the group of all matrices m

with m − 1 upper-triangular is a counterexample. This group does not contain any elements of order 9
and one can compute that L(G2) is isomorphic to Z/3.

We include here a new counter-example for m = 9; the method is quite different from [7] where a first
such example was found.

Proposition 25. Let E be the elliptic curve labeled 243a2, given by the global minimal equation y2 +y =
x3 + 20, and let P = (−2, 3). Then 3P is divisible by 9 in E(Q`) for all primes ` 6= 3, but it is not
divisible by 9 in E(Q).

Proof. Since P is a generator of the free part of this curve of rank 1, it is clear that 3P is not divisible
by 9 in E(Q).
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Let k be the unique subfield of Q(µ9) of degree 3 over Q and let ζ be a primitive 9-th root of unity.
Then P ′ = (3ζ5 + 3ζ4 + 3, 9ζ4 − 9ζ2 + 9ζ + 4) ∈ E(k) satisfies 3P ′ = P . Thus, if ` ≡ ±1 (mod 9), then `
splits in k and hence P is divisible by 3 in E(Q`). As a consequence, 3P is divisible by 9 over Q`.

For this curve and p = 3, the group G =
(

1 ∗
0 ∗
)

is of order 6 and K = Q(θ) with θ6 + 3 = 0. Factoring
the 9-division polynomial, one finds that K2/K is an extension of degree 3. The field of definition of the
points of order 9 is K2 except for those points T with 3T ∈ E(Q)[3]. Those are defined instead over a
non-Galois extension of degree 3 over k.

Let ` 6≡ ±1 (mod 9) and ` 6= 3. Then the Frobenius element Fr` in G2 cannot belong to Gal(K2/k).
Therefore Fr` does not fix any point of order 9. It follows that Ẽ(F`)[9] = Ẽ(F`)[3]. Consider the following
commutative diagram, whose lower row is exact.

P ∈ E(Q)/3E(Q)
[3] //

��

E(Q)/9E(Q)

��
E(Q`)[9]

[3] // E(Q`)[3] δ // E(Q`)/3E(Q`)
[3] // E(Q`)/9E(Q`)

Since ` 6= 3, the reduction of E at ` is good and hence [3] is an isomorphism on the kernel of reduction
E(Q`)→ Ẽ(F`). It follows that E(Q`)[3] ∼= Ẽ(F`)[3] and E(Q`)/3E(Q`) ∼= Ẽ(F`)/3Ẽ(F`) have the same
size. By the above argument δ is an injective map between two groups of the same size. Thus δ is a
bijection. This implies that 3P is divisible by 9 in E(Q`).

This is the counter-example of smallest conductor for m = 9; here is how we found that this curve is
a likely candidate.

Consider curves E with a 3-isogeny where either the kernel has a rational 3-torsion point or where
the kernel of the dual isogeny has a rational 3-torsion point. On the one hand, we computed (for a few
thousand primes ` 6= 3 of good reduction) the pairs (a`(E), `) modulo 9. On the other hand, we may
determine all subgroups G2 6 GL2(Z/9) with surjective determinant to find the examples for which the
kernel (7) is non-trivial. There are 13 such groups. The dimension of M2 in these cases is 1, 2 or 3. For
each of them we may list pairs (tr(g),det(g)) when g runs through all matrices g ∈ G2.

Now, if the list of possible pairs (a`(E), `) modulo 9 agrees with one of the lists above, then G2 could
be among the groups for which the localization kernel is non-trivial. Furthermore, it is easy to check
local divisibility for primes ` < 1000 for all possible candidates in 3E(Q)/9E(Q). The above curve 243a2
was the first to pass all these tests.

Here are a few more candidates. Note that we have not formally proved that local divisibility holds
by 9 holds for all primes ` of good reduction.

The point P = (6, 17) on the curve 9747f1 gives a point 3P which is likely to be locally divisible by 9
for all primes, but not divisible by 9 globally. In this example G2 has 54 elements.

On the curve 972d2 the point 3P with P = (13, 35) is likely to be locally divisible by 9 for all places
` 6= 3, yet not globally so. This is a curve without a rational 3-torsion point and G2 having 54 elements
again.

All the above examples have complex multiplication by the maximal order in Q(
√
−3). The curve

722a1, with a point P having x-coordinate 27444
169 , is an example without complex multiplication and

|G2| = 162. Again, it is likely that 3P is locally divisible by 9 at all places ` 6= 19, but 3P is not globally
divisible by 9. The group G2 here is probably conjugate to the one mentioned earlier as a counter-example
to Proposition 3.2.ii in [9].

We have also done numerical calculation of the kernel in (7) for other primes. For p = 5, there are
only three subgroups G2 in GL2(Z/25) with non-trivial localization kernel. They all have dim(M2) = 2
and |G| = 4.

For p = 2, there are twelve cases. The dimensions of M2 can be 1, 2, or 3. In only one of these cases
is the localization kernel is Z/2⊕ Z/2; otherwise it is Z/2.
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verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves, Math. Comp.
78 (2009), no. 268, 2397–2425.

[14] Benedict H. Gross, Kolyvagin’s work on modular elliptic curves, L-functions and arithmetic (Durham,
1989), London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991,
pp. 235–256.

[15] Ahmed Matar, For an elliptic curve E/Q can the cohomology group H1
(
Gal(Q(E[p])/Q), E[p]

)
be

nontrivial?, http://mathoverflow.net/questions/186807, 2014.

[16] Barry Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math.
44 (1978), no. 2, 129–162.

[17] Robert L. Miller, Proving the Birch and Swinnerton-Dyer conjecture for specific elliptic curves of
analytic rank zero and one, LMS J. Comput. Math. 14 (2011), 327–350.

[18] Robert L. Miller and Michael Stoll, Explicit isogeny descent on elliptic curves, Math. Comp. 82
(2013), no. 281, 513–529.

[19] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren
der Mathematischen Wissenschaften, vol. 323, Springer, 2000.

19



[20] Laura Paladino, Gabriele Ranieri, and Evelina Viada, On the minimal set for counterexamples to
the local-global principle, J. Algebra 415 (2014), 290–304.

[21] Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math.
15 (1972), no. 4, 259–331.

[22] , Cohomologie Galoisienne, Lecture Notes in Mathematics, Vol. 5, Springer-Verlag, Berlin-
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