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Abstract

We develop a rigidity criterion to show that in simplicial model
categories with a compatible symmetric monoidal structure, operad
structures can be automatically lifted along certain maps. This is
applied to obtain an unpublished result of M. J. Hopkins that certain
towers of generalized Moore spectra, closely related to the K (n)-local
sphere, are F-algebras in the category of pro-spectra. In addition, we
show that Adams resolutions automatically satisfy the above rigidity
criterion. In order to carry this out we develop the concept of an
operadic model category, whose objects have homotopically tractable
endomorphism operads.

1 Introduction

One of the canonical facts that distinguishes stable homotopy theory from
algebra is the fact that the mod 2 Moore spectrum does not admit a multi-
plication. There are numerous consequences and generalizations of this fact:
there is no Smith-Toda complex V(1) at the prime 2; the Smith-Toda com-
plex V(1) does not admit a multiplication at the prime 3; the mod 4 Moore
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spectrum admits no multiplication which is either associative or commuta-
tive; the mod p Moore spectrum admits the structure of an A(p — 1)-algebra
but not an A(p)-algebra; and so on. (A discussion of the literature on mul-
tiplicative properties of Moore spectra can be found in [42, A.6], while mul-
tiplicative properties of V(1) can be found in [30]. The higher structure on
Moore spectra plays an important role in [3§].)

These facts and others form a perpetual sequence of obstructions to the ex-
istence of strict multiplications on generalized Moore spectra, and it appears
to be the case that essentially no generalized Moore spectrum admits the
structure of an F.-algebra.

Despite this, the goal of the current paper is to show the following:

For any prime p and any n > 1, let {M;}; be a tower of generalized Moore
spectra of type n, with homotopy limit the p-complete sphere (as in [27, 4.22]).
Then {M;}r admits the structure of an E-algebra in the category of pro-
spectra.

Roughly, the multiplicative obstructions vanish when taking the inverse sys-
tem as a whole (by analogy with the inverse system of neighborhoods of the
identity in a topological group).

This statement is due to Mike Hopkins, and it is referenced in [35, 5.4.2].
Mark Behrens gave a proof that the tower admits an H,, structure, based
on Hopkins’ unpublished argument, in [6]. As discussed in [3], 2.7], Ausoni,
Richter, and Rognes worked out a version of Hopkins’ statement for the
pro-spectrum {ku/p”},>1 for any prime p as an object in the category of
pro-ku-modules. (Here, ku is the connective complex K-theory spectrum.)

It has been understood for some time that the K (n)-local category should,
in some sense, be a category with some pro-structure. For example, by [22]
§2], if X is any spectrum, then

Lictny (X) = holim (L, X A M;):

the K (n)-localization of X is the homotopy limit of the levelwise smash prod-
uct in pro-spectra of L, X with the tower {M;};. In applications the Morava
E-theory homology theory E(k,T').(—), as defined below, is often replaced
by the more tractable completed theory which again involves smashing with



the pro-spectrum {M;}:
Bk, T)Y(X) = 7. (Lictuy (B(k, T) A X)) 2 . (bolim (E(k,T) A X A My)).

(For example, see [20} §2], [24], and [34].) Thus, in some sense our goal is to
establish appropriate multiplicative properties of this procedure.

We give several applications of our results. Let n > 1 and let p be a fixed
prime. As in [32], let FG be the category that consists of pairs (k, '), where
k is any perfect field of characteristic p and I is a height n formal group law
over k. The morphisms are pairs (r, f): (k,T') — (k¥/,T"), where r: k' — k is
a ring homomorphism and f: I' — 7*(I") is an isomorphism of formal group
laws.

By [21] (see also [19 2.7]), the Goerss-Hopkins-Miller Theorem says that
there is a presheaf

E: FG? — Spp.., (k,T)— E(k,T),
where Spg__ is the category of commutative symmetric ring spectra and
E(k,T), =W (k) [u, ..., tn_1 ] [u™].

Here W (k) is the ring of Witt vectors of the field k, each u; has degree zero,
and the degree of u is —2. The E.-algebra E(k,T") is a Morava E-theory,
whose formal group law is a universal deformation of I'. In Section [6] we show
that each E(k,T") lifts to the E-algebra {E(k,I') A M}, in the category of
pro-spectra.

Also, in Section [7] we show that various completions that are commonly
employed in homotopy theory also have highly multiplicative structures. In
particular, these include classical Adams resolutions. This has the amusing
consequence that, in homotopy theory, the completion of a commutative
ring object with respect to a very weak notion of an ideal (whose quotient is
only assumed to have a left-unital binary operation) automatically inherits
a commutative ring structure.

It should be noted that some care is required in the definition of an F.-
algebra structure when working with pro-objects. In this paper, we use
a definition in terms of endomorphism operads in simplicial sets; an F..-
algebra structure is a map from an E-operad to the endomorphism operad
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of the pro-object. If X = {x,}, is a pro-object, note that this does not define
maps of pro-objects
{(EZ,)+ E/\ (Ta)""}a — X

Roughly, the issue is that the levelwise smash product only commutes with
finite colimits in the pro-category. In particular, it does not represent the
tensor of pro-objects with spaces [28, §4.1].

The starting point for the proof that Moore towers admit E., structures is
the following algebraic observation.

Proposition 1.1. Suppose that R is a commutative ring, S is an R-module,
and e € S is an element such that the evaluation map Hompg(S,S) — S is
an isomorphism. Then S admits a unique binary multiplication such that
e? = e, and under this multiplication S becomes a commutative R-algebra

with unit e.

The proof consists of iteratively applying the adjunction
HomR(S®R", S) = HomR(S®R(”_1), HOIIIR<S, S))

to show that a map S®E" — S is equivalent to a choice of image of e®";
existence shows that e ® e — e determines a binary multiplication, and
uniqueness forces the commutativity, associativity, and unitality properties.
In particular, this applies whenever S is the localization of a quotient of R.
One notes that, while this proof only requires studying maps S®&" — S for
n < 3, it is implicitly an operadic proof.

This proof almost carries through when S is the completion of R with respect
to an ideal m. However, in this case the topology on R/ needs to be taken into
account. The tensor product over R needs to be replaced by a completed
tensor product of inverse limits of modules, which does not have a right
adjoint in general. However, when restricted to objects which are inverse
limits of finitely presented modules, smallness gives the completed tensor
product a right adjoint (cf. [5, B.3]).

The paper follows roughly this line of argument, mixed with the homotopy
theory of pro-objects developed by Isaksen and Fausk [28] [1§].

Unfortunately, the “levelwise” tensor product for pro-objects does not usually
have a right adjoint. This means that the constructions of model categories of
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rings and modules, from [39] and 23], §4], do not apply in this circumstance.
Understanding these homotopical categories should be a topic worth further
investigation.

Outline

We summarize the portions of this paper not previously described. Our
work begins in Section [2|by collecting definitions and results on the homotopy
theory of operads and spaces of operad structures on objects. A more detailed
outline is at the beginning of that section.

In Section [3| we flesh out the proof outlined in the introduction. In model
categories with amenable symmetric monoidal structure, as well as a weak
variant of internal function objects, certain “rigid” maps automatically allow
one to lift algebra structures uniquely from the domain to the target.

Section [4] assembles together enough of the homotopy theory of pro-objects to
show that pro-dualizable objects behave well with respect to a weak function
object, allowing the results of Section [3| to be applied. To obtain the main
results of this section, we place several strong assumptions on the behavior
of filtered colimits with respect to the homotopy theory. In particular, we
require that filtered colimits represent homotopy colimits and preserve both
fibrations and finite limits. The main reason for restricting to this circum-
stance is that we need to gain homotopical control over function spaces of
the form limg colim, Map(z,,ys), as well as other function objects. (Func-
tors such as Map(—, y) are rarely assumed to have good behavior on towers
of fibrations.)

Section [5| verifies all these necessary assumptions in the case of modules over
a commutative symmetric ring spectrum. (The category of modules over
a commutative differential graded algebra is Quillen equivalent to such a
category.)

The main result of the paper appears in Section |§|, which shows (Theorem
that a tower of generalized Moore spectra (constructed by Hovey and
Strickland based on previous work of Devinatz, Hopkins, and Smith) auto-
matically obtains an FE_-algebra structure from the sphere. This is then
applied to show that certain chromatic localizations of the sphere, as well



as all the Morava E-theories E(k,T"), are naturally inverse limits of highly
multiplicative pro-objects.

Section [7| carries out the aforementioned study of multiplicative structure on
completions.

Notation and assumptions

As various model categories of pro-objects are very large and do not come
equipped with functorial factorization, there are set-theoretic technicalities.
These include being able to define either derived functors or a homotopy
category with the same underlying object set. We refer the reader to [13]
(e.g. §8) for one solution, which involves employing a larger universe in which
one constructs equivalence relations and produces canonical definitions which
can be made naturally equivalent to constructions in the smaller universe.

For a functor F’ with source a model category, the symbol LF" (resp. RF) will
be used to denote the derived functor, with domain the homotopy category
of cofibrant-fibrant objects, when F' takes acyclic cofibrations (resp. acyclic
fibrations) to weak equivalences. For inline operators such as ®, this will be
replaced by a superscript. We use [—, —] to denote the set of maps in the
homotopy category.

The generic symbol ® denotes a monoidal product, while ® is reserved for
actual tensor products and categories tensored over simplicial sets.

For a pro-object X, we will often write an isomorphic diagram using lowercase
symbols {z,}, without comment.
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2 Operads

In this section, we will discuss some background relating to operads and their
actions. In essence, we would like to establish situations where we have a
model category D supporting enough structure so that objects of D have en-
domorphism operads, and we would like to ensure that these endomorphism
operads are invariant under both weak equivalences and appropriate Quillen
equivalences.

This requires us to dig our way through several layers of terminology.

Endomorphism objects are functorial under isomorphisms. Our goal is to
produce “derived” endomorphism objects which are functorial under weak
equivalences. While our attention is turned towards endomorphism operads,
the methods apply when we have a very general enriching category V. We
give a functorial construction of derived endomorphism objects in V-monoids,
which mostly relies on an SM7 axiom, in Section 2.1} As a side benefit, we
obtain a definition of endomorphism objects for diagrams which will prove
necessary later.

We then turn our attention to the construction of endomorphism operads.
By its very nature, this requires our category to carry a symmetric monoidal
structure, a model structure, and an enrichment in spaces, and all of these
must obey compatibility rules. This presents us with a significant number
of adjectives to juggle. We study this compatibility in Section [2.2] finally
encoding it in the notion of an operadic model category.

The motivation for operadic model categories is the ability to extend our
enrichment, from simplicial sets under cartesian product to symmetric se-
quences under the composition product. The work of Section then pro-
duces derived endomorphism operads. To ensure that these constructions
make sense in homotopy theory, we show that they are invariant under an
appropriate notion of operadic Quillen equivalence.

Once this is in place, in Section [2.4] we are able to study a space parametrizing
O-algebra structures on a fixed object, and be assured that if O is cofibrant
it is an invariant under equivalences of the homotopy type and equivalences
of the model category.

In this paper, operads are assumed to have symmetric group actions, and



no assumptions are placed on degrees 0 or 1. We will write Com for the
commutative operad, which is terminal among simplicial operads and consists
of a single point in each degree.

Both the definitions and the philosophy here draw heavily from [31].

2.1 Enriched endomorphisms

In this section we assume that V is a monoidal category with a model struc-
ture, and that D is a model category with a V-enriched structure. For
a,b € D we write V-Mapp(a,b) for the enriched mapping object.

We assume that the following standard axiom holds.
Aziom 2.1 (SMT). Given a cofibration ¢: a— b and a fibration p: = — y in

D, the map

V-Mapp (b, z) — V-Mapp(a, ) X V-Mapp (b, y)
V_MapD(a’y)

is a fibration in V), which is acyclic if either ¢ or p is.

Write V-Mon for the category of monoids in V. For an object ¢ € D, we have
a V-endomorphism object V-Endp(c) € V-Mon.

Definition 2.2. A map in V-Mon is a fibration or a weak equivalence if the
underlying map is a fibration or weak equivalence in the category V.

This definition may or may not come from a model structure on the category
of V-monoids. However, under amenable circumstances it makes sense to
form the localization of V-Mon with respect to the weak equivalences.

Our goal is to prove that endomorphism objects are functorial in weak equiv-
alences, at least on the level of homotopy categories (Theorem . To con-
struct this functor, it is useful to first note that the subcategory of isomor-
phisms in the homotopy category of D is naturally equivalent to a category
formed by a restricted localization.

Lemma 2.3. Let M be a model category and A C M be the subcategory of
acyclic fibrations between cofibrant-fibrant objects. Then the natural functor

A7TA = ho(M)*,
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from the groupoid completion to the subcategory of isomorphisms in the ho-
motopy category of M, is fully faithful and essentially surjective.

Remark 2.4. The dual result clearly holds for inverting acyclic cofibrations.
Proof. Any object in M is equivalent to a cofibrant-fibrant one, so the functor
is obviously essentially surjective.

Let =,y be cofibrant-fibrant objects in M, and consider the obvious map
x— xx([] ), where the product is indexed by weak equivalences f: = — y.
We can factor this map into an acyclic cofibration x — 2 followed by a
fibration, and for any such weak equivalence f this yields a diagram in M of

the form

(Hf y) —=y.

T /
rT<—1x X
This shows that A~' A — ho(M)" is full. Moreover, all maps in the homo-
topy category are realized in A~!A by the inverse of the map & —» x followed

by a map  — y. Therefore, to complete the proof it suffices to show that
right homotopic acyclic fibrations  — y become equal in A1 A.

<

Let y— z — y X y be a path object for y, with pg, p1: 2z — y the component
projections (which are acyclic fibrations). Let h = z X, z, with the product
taken over py on both factors, and jg, j;: h — z the component projections.
The maps p1jo and p;j; make the object h into another path object for y.
However, we have an identity of acyclic fibrations pgjo = poji, and so in the
category A1 A we have pijo = pi7i. O

Definition 2.5. For a small category I, the functor category D' is a V-
enriched category, with V-Mapp: (F, G) described by the equalizer diagram

V-Mapp: (F,G) — H V-Mapp(F(i), G(i)) == | [ V-Mapp(F(i), G(j))-

i—7]

In the particular case where [ is the poset {0 < 1} and D’ is the category of
arrows Ar(D), we will abuse notation by writing V-Mapp(f, g) as an enriched
mapping object between two morphisms f and g of D. Similarly, in the case



where J is the poset {0 < 1 < 2} and D7 is the category of composable pairs
of arrows of D, for J-diagrams

/

(L. Lyand (5.5

we will similarly write V-Mapp((f’, f), (¢, g)) as an enriched mapping object.

Remark 2.6. When V-Mapp: D x D — V preserves limits, we can say
more. For Reedy categories I, the category D! then inherits a V-enriched
Reedy model structure that satisfies an SM7 axiom. (Compare [1], which
assumes a symmetric monoidal closed structure on V.)

For maps f: a — band p: x — yin D, the categorical equalizer V-Mapy( f, p)
can be alternatively described in V as a fiber product

V_Map’D(av ZL’) X V_Map’l)(bv y)

V-Mapp (a,y)

This makes the following proposition a straightforward consequence of the
SM7 axiom.

Proposition 2.7 (cf. [12, 6.6]). Suppose that in D, f: a — b is a map with
cofibrant domain and p: x — y is a fibration between fibrant objects. Then

o the map V-Mapp(f,p) — V-Mapp(b,y) is a fibration;

e if pis an acyclic fibration, then the map V-Mapp(f, p) — V-Mapp (b, y)
1s an acyclic fibration; and

e if p is an acyclic fibration and f is a weak equivalence between cofi-
brant objects, then the map V-Mapy(f,p) — V-Mapp(a,z) is a weak
equivalence.

Restricting to the case where f and p coincide, we deduce the following
consequences for endomorphisms.

Corollary 2.8. Suppose that in D, f: x — y is an acyclic fibration between
fibrant objects. If x is cofibrant, then the map V-Endp(f) — V-Endp(y) is
an acyclic fibration in V-Mon, and if both x and y are cofibrant, then the
map V-Endp(f) — V-Endp(x) is a weak equivalence in V-Mon.
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Similar analysis yields the following.

Proposition 2.9. Suppose that in D, a ENYNENF maps between cofibrant

objects and x % Y % 2 are fibrations with z fibrant. Then

e the map V-Mapp((g, f), (¢:p)) = V-Mapp(g. q) is a fibration;

e if p is an acyclic fibration, then the map V-Mapp((g, f), (¢,p)) —
V-Mapp(g,q) is an acyclic fibration; and

e if p and q are acyclic fibrations and g is a weak equivalence, then both
the maps

V-Mapyp((g, f), (¢,p)) = V-Mapp(f,p) and
V-Mapy((9g, f), (q,p)) — V-Mapp(gf, qp)

are weak equivalences.

Corollary 2.10. Suppose that in D, f: x — y and g: y — z are acyclic
fibrations between cofibrant-fibrant objects. Then the map V-Endp((g, f)) —
V-Endp(g) is an acyclic fibration in V-Mon, and the maps

V-Endp((g, f)) = V-Endp(f) and
V-Endp((g, f)) = V-Endp(gf)

are weak equivalences in V-Mon.

Theorem 2.11. Suppose that the category of V-monoids has a homotopy
category ho(V-Mon). Then there is a derived functor

RV-Endp: ho(D)” — ho(V-Mon),

from isomorphisms in the homotopy category of D to isomorphisms in the
homotopy category of V-monoids.

This lifts the composite of the antidiagonal
ho(D)*” — ho(D)? x ho(D)
with the functor
RV-Mapp: ho(D)® x ho(D) — ho(V).
The monoid V-Endp(c) represents the derived homotopy type in ho()V-Mon)

on cofibrant-fibrant objects.
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Remark 2.12. In the case of the mapping space between two objects in a
model category, this is most easily accomplished using the Dwyer-Kan sim-
plicial localization [14] (generalized in [I1]). This constructs a simplicially
enriched category, with the correct mapping spaces, where the weak equiva-
lences have become isomorphisms.

However, as natural transformations can only be recovered in the simplicial
localization using simplicial homotopies, study of the interaction between the
symmetric monoidal structure and simplicial localization would require extra
work. The shortest path is likely through oo-category theory, which would
take us too far afield.

Proof of [2.11] Let A C D be the category of acyclic fibrations between
cofibrant-fibrant objects of D. By Lemma [2.3| it suffices to define the functor
A — ho(V-Mon)™.

For an acyclic fibration f: x — y in A, Corollary gives a diagram of
weak equivalences

V-Endp(z) < V-Endp(f) = V-Endp(y)

in V-Mon, representing a composite map in ho(V-Mon)™. For a composition
g o [ we apply Corollary to obtain a commutative diagram

V‘EndD<(ga f))

T

V-Endp(f V-Endp(gf) V-Endp(g)
V-Endp(z V-Endp(y V-Endp(2)

of weak equivalences in V-Mon, which shows that the resulting assignment
respects composition. O

We also record that by replacing D with the category Ar(D) of arrows in
D, equipped with the projective model structure, we obtain the following
consequence of Theorem [2.11]
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Proposition 2.13. Suppose that the category of V-monoids has a homotopy
category ho(V-Mon). Then there is a derived functor

RV-Endp: ho(Ar(D))” — ho(V-Mon)",

from isomorphisms in the homotopy category of Ar(D) to isomorphisms in
the homotopy category of V-monoids, together with natural transformations

RV-Endp(z) < RV-Endp(f) = RV-Endp(y)

for f: x—y.

The monoid V-Endp(f) represents the derived homotopy type in ho()V-Mon)
on fibrations between cofibrant-fibrant objects.

2.2 Tensor model categories

First, we recall interaction between a monoidal structure and a model cate-
gory structure.

Recall that the pushout product aziom for cofibrations in a model category
with monoidal product ® says that if f: x — y and f’: 2/ — v are cofibra-
tions, then the pushout map

(y©2") Mppe (zOY) >y O Y
is a cofibration, and is a weak equivalence if either f or f’ is.

Definition 2.14. A tensor model category is a model category D equipped
with a monoidal product that

e satisfies the pushout product axiom for cofibrations,

e takes the product with an initial object in either variable to an initial
object, and

e preserves weak equivalences when either of the inputs is cofibrant.

If D is further equipped with a symmetric tensor structure, D is a symmetric
tensor model category.
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Remark 2.15. Note that the second component makes this more restrictive
than [18, 12.1, 12.2]. Because the product with an initial object is always ini-
tial, the pushout product axiom implies that the monoidal product preserves
cofibrant objects.

By analogy with the definition of a (lax) monoidal Quillen adjunction [40,
3.6], we have the following.

Definition 2.16. Suppose that D and D’ are tensor model categories. A
tensor Quillen adjunction is a Quillen adjoint pair of functors

L: D27 R,
together with a lax monoidal structure on R, such that
e for any cofibrant objects x,y € D, the induced natural transformation
L(x ®y) — L(z) ® L(y) is a weak equivalence, and

e for some cofibrant replacement I. of the unit I of D, the induced map
L(I.) — I is a weak equivalence.

We refer to this as a symmetric tensor Quillen adjunction if the functor R is
lax symmetric monoidal, and a tensor Quillen equivalence if the underlying
adjunction is a Quillen equivalence.

Definition 2.17. A simplicial tensor model category is a simplicial model
category D equipped with a monoidal product such that

e this structure makes D into a tensor model category,

e there are choices of natural isomorphisms

Krz=Zz@ (K®I) and
Koz (Koo

for x € D and K a finite simplicial set which are compatible with the
unit isomorphism, and

e the functor Mapy (I, —) is a right Quillen functor.

14



(Here ® denotes the tensor of objects of D with simplicial sets from the
simplicial model structure, and Map,, denotes the simplicial mapping object.)
In this case, we say that the monoidal structure on D is compatible with the
simplicial model structure.

A simplicial symmetric tensor model category is a simplicial tensor model
category such that the composite natural isomorphism

r(Kel)2Ker= (K)o

is the natural symmetry isomorphism.

We will freely make use of phrases such as “simplicial (symmetric) tensor
Quillen adjunction/equivalence” to indicate tensor Quillen adjunctions with
an appropriate lift to a lax monoidal simplicial Quillen adjunction.

Remark 2.18. We note that several situations occur where the Quillen func-
tors in question are each the identity functor, viewed as a Quillen functor
between two distinct tensor model structures on the same monoidal category.
In this circumstance, the extra axioms for a tensor Quillen equivalence or a
simplicial symmetric Quillen equivalence are trivially satisfied.

Remark 2.19. The Yoneda embedding ensures that, for any finite K and L
and any z, (K X L)®@ 2z = K ® (L ® ). Compatibility then implies that
this is isomorphic to (K @ I) ® (L ® I) ® x. These can be used to obtain
well-behaved maps

Mapp(z,y) x Mapp(2',y') = Mapp(z @ ',y © ).

If the tensor structure is symmetric, this map is equivariant with respect to
the symmetry isomorphisms.

Remark 2.20. The following are equivalent.

1. The unit object I is cofibrant in D.

2. The functor Mapp (I, —), from D to simplicial sets, is a right Quillen
functor.

3. The functor (—) ® I, from simplicial sets to D, is a left Quillen functor.

4. The functor (—) ® I, from simplicial sets to D, preserves cofibrations.
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Evidently each implies the next. To complete the equivalence, we take the
cofibration () — * and tensor with I, which (again, checking the Yoneda em-

bedding) is naturally isomorphic to the map from an initial object of D to
L.

It is unsatisfying to make the assumption that the unit is cofibrant, but it will
ensure homotopical control on endomorphism operads. It may be dropped
if we are willing to define operads without an object parametrizing 0-ary
operations, but this significantly complicates the proof of Proposition [2.27]

The hypotheses of a simplicial tensor model category are designed to ensure
that the monoidal structure can produce a reasonably-behaved multicategor-
ical enrichment, and hence reasonably-behaved endomorphism operads.

For the sake of brevity in this paper we employ the following shorthand,
with the implicit understanding that it demonstrates a prejudice towards
simplicial sets.

Definition 2.21. An operadic model category is a simplicial symmetric ten-
sor model category. An operadic Quillen adjunction is a simplicial symmet-
ric tensor Quillen adjunction, and if the underlying adjunction is a Quillen
equivalence we refer to it as an operadic Quillen equivalence.

We now relate these to operads in the ordinary sense.

Recall that a symmetric sequence is a collection of simplicial sets {X (n)},>0
equipped with actions of the symmetric groups ,,. There is a model struc-
ture on symmetric sequences whose fibrations and weak equivalences are
collections of equivariant maps X (n) — Y (n) which satisfy these proper-
ties levelwise (ignoring the action of the symmetric group). The category
of symmetric sequences has a (non-symmetric) monoidal structure o, the
composition product, whose algebras are operads [29].

The main reason for introducing the concept of an operadic model category
is the following proposition.

Proposition 2.22. Let V be the category of symmetric sequences of simpli-
cial sets. Then for an operadic model category D, the definition

V-Mapp(z,y) = {Mapp(x®", ) }»

makes D into a V-enriched category satisfying the SM7 axiom.
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Proof. This is a straightforward consequence of the structure on D, though
it requires Remarks [2.15] and O

Remark 2.23. In particular, for amap f: z — y in D, the endomorphism op-
erad V-Endp(f) is the symmetric sequence which, in degree n, is the pullback
of the diagram

Mapp(mm, T) — Mapp(a:@", y) MaPD(?/@n, Y).

Remark 2.24. While operadic model categories have natural V-enrichments,
operadic Quillen adjunctions do not automatically yield V-enriched adjunc-
tions, except in a homotopical sense, unless both adjoints are strong monoidal.

2.3 Model structures on operads

The model structure on the category of symmetric sequences lifts to one on
the category of operads in simplicial sets, with fibrations and weak equiva-
lences defined levelwise [8], 3.3.1].

This extends to a simplicial model structure. This exact statement does
not appear to be in the immediately available literature. However, one can
obtain it using either of the following approaches.

e Rezk’s thesis constructs a simplicial model structure on operads with
weak equivalences and fibrations defined levelwise under an equivari-
ant model structure [31), 3.2.11], extending a simplicial model structure
on symmetric sequences. The method of proof extends to the Berger-
Moerdijk model structure, with weak equivalences and fibrations de-
fined to be ordinary nonequivariant weak equivalences and fibrations,
by discarding some of the generating cofibrations and generating acyclic
cofibrations. (This does not alter Rezk’s Proposition 3.1.5, the main
technical tool for proving the result, which uses the existence of a func-
torial levelwise fibrant replacement for simplicial operads as in [37,
B2].)

e Alternatively, we can use the fact that operads can be expressed alge-
braically. There is a functor which takes an N-graded set X = {X,,}
and produces the free operad Q(X) on X (which can be expressed in
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terms of rooted trees with nodes appropriately labelled by elements
of X). The functor @ is a monad on graded sets whose algebras are
discrete operads. It also commutes with filtered colimits, which makes
it a multisorted theory in the terminology of [33]. One can then apply
[33, Theorem 7.1] to obtain the desired simplicial model structure on
the category of simplicial (-algebras—i.e., operads in simplicial sets.

2.4 Spaces of algebra structures

In this section, we assume that D is an operadic model category, viewed as
a model category enriched in symmetric sequences of simplicial sets.

From this point forward, we will drop the enriching category from some of
the notation as follows. For an object x € D, the endomorphism operad
Endp(x) is the symmetric sequence which, in degree n, is the simplicial set
Mapp(2®™, x). Similarly, for a map f: x — y in D, we have the endomor-
phism operad Endp(f).

Definition 2.25. For a cofibrant operad O and a cofibrant-fibrant object
x € D, the space of O-algebra structures on x is the space of operad maps

Mapoperad(07 EndD (‘x) ) :

For a map n: = — y between cofibrant-fibrant objects in D, the space of
O-algebra structures on 1 is the space of operad maps

Ma’poper(zd(o7 Endp (77)) :

Equivalently, this is the space of pairs of O-algebra structures on = and y
making 7 into a map of (-algebras.

Corollary 2.26. If O is a cofibrant operad, a weak equivalence f: v —
y between cofibrant-fibrant objects in D determines an isomorphism in the
homotopy category between the spaces of O-algebra structures on x and y.

Proof. By Theorem [2.11], we find that the operads Endp(x) and Endp(y) are
canonically equivalent in the homotopy category of operads, and the spaces
of maps from O are equivalent. O
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Proposition 2.27. Let f: 1+— 1 be a fibrant replacement for the unit object
of D. Then the space of E-algebra structures on Iy compatible with the
multiplication on I is contractible.

Proof. The map I— I is an acyclic cofibration between cofibrant objects.
The enrichment of the opposite category D gives rise to a dual formulation
of Corollary , and specifically implies that the map Endp(f) — Endp(I)
is an acyclic fibration.

Let € be a cofibrant E-operad (a cofibrant replacement for Com), and fix
the map &€ — Com — Endp(I) coming from I being the unit. Then the space
of lifts in the diagram

Endp(f) —_— Endp (Hf)

iw

£ Endp(I)

is contractible. However, via the map & — Endp(If), these lifts precisely
parametrize F-algebra structures on Iy which are compatible with the mul-
tiplication on 1. O

Finally, we note that endomorphism operads are invariant under certain
Quillen equivalences.

Proposition 2.28. Suppose that L: D = D’: R is an operadic Quillen ad-
jgunction. Then for any cofibrant-fibrant objects y € D and x € D" with an
equivalence f: y — Rx, there is a map in the homotopy category of operads
from Endp (x) to Endp(y).

If, in addition, this adjunction is an operadic Quillen equivalence, this map
15 an isomorphism in the homotopy category of operads.
Proof. Using Proposition 2.7, we may assume that the equivalence f is an

acyclic fibration.

Since R has a simplicial lift which is lax symmetric monoidal, we obtain a
natural map
Endp (z) — Endp(Rx)
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of operads. By Corollary we have an acyclic fibration Endp(f) S
Endp(Rz). The composite

Endp (2) — Endp(Rz) « Endp(f) — Endp(y)

provides the desired map in the homotopy category of operads.

Now we further assume that the adjunction is an operadic Quillen equiva-
lence. Form the pullback

O = Endp(f) X End'D/(l').
Endp(Rz)

The map O — Endp (z) is a weak equivalence. To complete the proof it
therefore suffices to show that the map O — Endp(y) is a weak equivalence.

In degree n, O is the pullback of the diagram
Mapp (2", ) — Mapp (2", Ry) = Mapp (y°", y),

so it suffices to show that the right-hand map is an equivalence. However,
this map is the composite

Mapp (y°", y) = Mapp, ((Lx)®",y) = Mapp, (L(x®"),y) = Mapp(2°", Ry).

The first of these maps is an equivalence because y is cofibrant-fibrant and
Lz is cofibrant, while the second is an equivalence because L(x®") — (Lx)®"
is an equivalence in D’ between cofibrant objects (by definition of a tensor
Quillen adjunction). O

3 Algebra structures on rigid objects

In this section we assume that D is an operadic model category. Our goal is
to prove a rigidity result (Theorem allowing us to lift algebra structures,
as mentioned in the introduction. In order for this to be ultimately applicable
to pro-objects, we will first need to develop a theory which applies when the
tensor structure carries something weaker than a right adjoint.
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3.1 Weak function objects

Definition 3.1. A weak function object for the homotopy category ho(D) is
a functor
Frek(— —): ho(D) x ho(D) — ho(D)
equipped with a natural transformation of functors
]Rl\/[apD(‘r ®]L Y, Z) - RMapD('ra Fweak(zJ? Z))

in the homotopy category of spaces. For specific z, y, and z such that this
map is an isomorphism in the homotopy category of spaces, we will say that
the weak function object provides an adjoint for maps x ®“y — 2.

Ezample 3.2. Suppose the tensor model category D is closed, and use Fp(x, y)
to denote the internal function object in D. Then for any x cofibrant in
D, the functor (=) ® z: D — D is a left Quillen functor, the adjoint
Fp(xz,—): D — D is the corresponding right Quillen functor, and these
determine an adjunction on the homotopy category. It follows that given
arbitrary z and y in ho(D), if F“**(z,y) is defined to be the image of
Fp(x.,yy), where x, and y; are cofibrant and fibrant representatives of x
and y respectively, then D has a weak function object that provides an ad-
joint for x ®% y — 2 for all x,y, 2 € ho(D).

Remark 3.3. We have the following consequences of Definition |3.1]

e Substituting x = I, we obtain a natural transformation
RMapD(ya Z) - RMap’D(L Fweak(y’ Z))
e Substituting z = z and y = [, the image of the natural isomorphism

r ®Y T — x is a homotopy class of map x — Fvek(I x). If this is a
natural isomorphism, we refer to the weak function object as unital.

e Given a map f: x — 2’ between objects, the natural transformation
of functors

Fweak:(x/, _) N Fweak($’ _)

will be referred to as the map induced by f and denoted by f*. Similarly,
the natural transformation

Fweak(_’x) N Fweak(_7$/)

will be denoted by f..
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e If the weak function object provides an adjoint for F®*(y, 2)®ty — z,
the identity self-map of F¢®(y, z) lifts to a natural evaluation map
Fveak(y 2) @ y — 2z in the homotopy category of D.

3.2 Rigid objects

Definition 3.4. Suppose that D has a weak function object. A mapn: r —
y in the homotopy category of D is rigid if the map

,,7*: Fweak(y’ y) — Fvweak(l,7 y>
is a weak equivalence.

Theorem 3.5. Suppose that n: x — y is a rigid map in ho(D). In addition,
suppose that for any n,m > 0, the weak function object provides adjoints for

(x®L" o y@Lm) Otz — y and
Ln ]Lm
@ oty oty -y
Then the map of operads REndp(n) — REndp(z) is an equivalence.

In particular, if O is a cofibrant operad and x is equipped with a homotopy
class of O-algebra structure §: O — REndp(x), the homotopy fiber over 0
of the map

RMapoperad(O7 REDdD (77) ) - ]RMapoperad(O7 REndD (‘T)>

18 contractible.

Proof. By Corollary we can represent 1 by a fibration n: z — y be-
tween cofibrant-fibrant objects in D. This implies that the iterated tensor
powers %" and y®" are also cofibrant by Remark (with n = 0 true by
assumption on D).

We then apply the rigidity of 7 and the adjoints provided by the weak function
object to find that in the diagram of spaces

n m (1@77®1)* n m
Mapp, (22" @ y®m+D ) Mapp (22D @ y®m y)

Nl lw

RMap’D (37@” O y®ma Fweak(y, y)) — RMapD<x®n O y®m’ Fweak ($, y))>
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the top map is a weak equivalence. In particular, we find by induction that

(n®")*: Mapp(y®",y) — Mapp(z®", )

is a weak equivalence for all n. (Moreover, the source and target of (n®")*
represent derived function spaces.)

The endomorphism operad Endp(n) is the symmetric sequence which, in
degree n, is the pullback of the diagram

Mapp(2°", 2) = Mapp (2", y) < Mapp (y®", y).

In each degree Endp(n)(n) is a homotopy pullback of the above diagram be-
cause one of the maps is a fibration. As the other map in this diagram is
an equivalence and simplicial sets are right proper, we find that the “forget-
ful” map of operads Endp(n) — Endp(zx) is a levelwise weak equivalence as
desired.

For any O-algebra structure : O — Endp(z), the weak equivalence Endp(n) —
Endp(x) implies that the homotopy fiber over € is contractible, or equiva-
lently that the space of homotopy lifts in the diagram

EDdD(TI)

@] S Endp(z)

is contractible as well. O

As a consequence of Proposition [2.27] we have the following.

Corollary 3.6. Suppose n: 1 — y is a rigid map in ho(D), and that for any
n > 0 the weak function object provides adjoints for the maps

y®L" o y —y and
y®L" OFT — Y.

For any cofibrant E,-operad &, the space of extensions to an action of £ on
y making n into an Es-algebra map is contractible.
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4 Pro-objects

We first recall the basics on pro-objects in a category C.

Definition 4.1. For a category C, the pro-category pro-C is the category of
cofiltered diagrams X = {x,}, of objects of C, with maps X — Y = {yz}s

defined by
Homp,oc(X,Y) = lign colim Home (24, y3).

For two cofiltered systems X and Y indexed by the same category, a level
map X — Y is a natural transformation of diagrams; any map is isomorphic
in the pro-category to a level map [2, Appendix 3.2].

A map X — Y of pro-objects satisfies a property essentially levelwise if it is
isomorphic to a level map such that each component x, — y, satisfies this

property.

Remark 4.2. For any cofiltered index category .J, there exists a final map
I — J where [ is a cofinite directed set [15, 2.1.6]. This allows us to replace
any pro-object by an isomorphic pro-object indexed on a cofinite directed
set.

4.1 Model structures

We now recall the strict model structure on pro-objects from [2§].

Definition 4.3 ([28, 3.1, 4.1, 4.2]). Suppose C is a model category. A map
X — Y in pro-C is:

e a strict weak equivalence if it is an essentially levelwise weak equiva-
lence;

e a strict cofibration if it is an essentially levelwise cofibration;

e a special fibration if it is isomorphic to a level map {z, — Y, }o indexed
by a cofinite directed set such that, for all a, the relative matching map

To — %1?014 l'ﬁ) Xlim5<ay5 Yo

is a fibration;
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e a strict fibration if it is a retract of a special fibration.

Remark 4.4. 1f I is cofinite directed, the category of I-diagrams admits an
injective model structure (equivalently, a Reedy model structure) where weak
equivalences and cofibrations are defined levelwise [23, 5.1.3], [I5, §3.2]. In
this structure, the fibrations are precisely those maps satisfying the condition
in the definition of a special fibration, and fibrant objects are also levelwise
fibrant.

By Remark [4.2] every pro-object X can be reindexed to an isomorphic pro-
object X’ indexed by a cofinite directed set. There is then a levelwise acyclic
cofibration X" — X; where X is an injective fibrant diagram, and hence
represents a strict fibrant replacement; in addition, there is an injective fi-
bration X, — X’ which is a levelwise weak equivalence, where X, is levelwise
cofibrant, which represents a strict cofibrant replacement.

Theorem 4.5 ([28] 4.15]). If C is a proper model category, then the classes
of strict weak equivalences, strict cofibrations, and strict fibrations define a
proper model structure on pro-C.

If C has a simplicial enrichment, we can extend this notion to the category
pro-C.

Definition 4.6 ([28, §4.1]). Let C be a simplicial model category. For objects
X and Y in pro-C, we define the mapping simplicial set by

Mappro—c (X7 Y) = hgn colim MapC (l’a, yﬁ) :

For X € pro-C, the tensor and cotensor with a finite simplicial set K are
defined levelwise, and for arbitrary K using limits and colimits in the pro-
category.

Remark 4.7. As stated in the introduction, it is important to remember
that limits and colimits of pro-objects cannot be formed levelwise (even for
systems of level maps). In particular, for infinite complexes K the levelwise
tensor and cotensor generally do not represent the tensor and cotensor in
pro-C.

Theorem 4.8 (|28, 4.17]). If C is a proper simplicial model category, then
the strict model structure on pro-C is also a simplicial model structure.
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Theorem 4.9 ([17, 6.4]). Suppose L: C = D: R is a Quillen adjunction be-
tween proper model categories. Then the induced adjunction of pro-categories
{L}: pro-C 2 pro-D: {R} is a Quillen adjunction. If the original adjunction
is a Quillen equivalence, then so is the adjunction on pro-categories.

Corollary 4.10. Suppose L: C = D: R is a simplicial Quillen adjunction
between proper simplicial model categories. Then the induced Quillen ad-
gunction {L}: pro-C = pro-D: {R} lifts to a simplicial Quillen adjunction
between the pro-categories.

Proof. Applying limg colim,, to the natural isomorphism

Mape (24, Rys) = Mapp(Lzy, yp)
extends the adjunction to a simplicial adjunction. O

Proposition 4.11. Suppose C is a proper simplicial model category. For lev-
elwise cofibrant X and levelwise fibrant 'Y in pro-C with strict fibrant replace-
ment Yy, the homotopically correct mapping simplicial set Mappm_c(X, Yy) is
a natural representative for the homotopy type

hollgim hocolim RMape (24, y3s)-

Proof. Since X is strict cofibrant, [I8, 5.3] shows that Map,,,c(X,Y}) is
weakly equivalent to
hoéim colim Mape (4, yg)-

Because X is levelwise cofibrant and Y is levelwise fibrant, the mapping
spaces Map.(z4,ys) are representatives for the derived mapping spaces. Fi-
nally, in simplicial sets, filtered colimits are always representatives for homo-
topy colimits because filtered colimits preserve weak equivalences. O

4.2 Tensor structures

Definition 4.12 ([I8, §11]). Suppose C has a monoidal operation ® with
unit I. The levelwise monoidal structure on pro-C is defined so that for
X,Y € pro-C indexed by I and J respectively, the tensor X ® Y is the pro-

object {z4 ® yp}axp indexed by I x J. The unit is the constant pro-object
I.
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Remark 4.13. Note that this tensor structure on pro-C is almost never closed,
even when the tensor structure on C is, as the levelwise tensor usually does
not commute with colimits (including infinite coproducts) in either variable.
However, the constant pro-object {()} is initial in the pro-category, and is
preserved by the levelwise tensor product if it is preserved by ®.

Proposition 4.14 ([I8, 12.7, 12.3]). If C is a proper tensor model category,
then the strict model structure on pro-C is also a tensor model category under
the levelwise tensor structure.

If, in addition, C is an operadic model category, the levelwise tensor structure
on pro-C makes pro-C into an operadic model category.

Proposition 4.15. Suppose L: C = D: R is a tensor Quillen adjunc-
tion between proper tensor model categories. Then the induced adjunction
{L}: pro-C 2 pro-D: {R} is a tensor Quillen adjunction, which is symmet-
ric if the original Quillen adjunction is.

Proof. By Theorem[4.9] the pair {L} and { R} form a Quillen adjunction. For
pro-objects X and Y, the maps Rz, ® Ryg — R(z, ® ys) assemble levelwise
to a natural lax monoidal structure for the functor { R} on pro-objects, and
the induced natural transformations for {L} are also computed levelwise. If
X and Y are cofibrant objects of pro-C, we may choose levelwise cofibrant
models which make the conditions of Definition 2.16] immediate. O

Combining this with Corollary [4.10, we obtain the following.

Corollary 4.16. Suppose L: C = D: R is an operadic Quillen adjunction
between proper operadic model categories. Then the induced Quillen adjunc-
tion {L}: pro-C = pro-D: {R} is an operadic Quillen adjunction.

4.3 Function objects

For the remainder of Section we will suppose that C is a proper op-
eradic model category whose monoidal product is symmetric monoidal closed.
Specifically, there is a cofibrant unit object I, and for objects z,y € C we
have a product z ® y and an internal function object Fe(z,y).
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Definition 4.17 ([16, 9.14]). There is a functor
Foro-c: (pro-C) x pro-C — pro-C

defined by
Fpro—C(X> Y) = {Cogm FC(Q:DU yﬁ)}ﬂ?

equipped with a natural transformation
Ma’ppro—c (X O Y7 Z) — Mappro—C<X’ Fpro‘C(Y7 Z))
given by the composite

lim colién Mape (o ® yg, 2+) = lim colim colﬁim Mape(za, Fe(yg, zy))
¥ oax v @

— lim colim Map (24, colﬁim Fe(ys, 2y))-
~ @

Remark 4.18. In particular, the case X = {I} produces a natural isomor-
phism
Mappro—C (]L FPYO‘C(Y’ Z)) = Mappro—C(Y7 Z)

Remark 4.19. The functor Fj,o-¢ does not generally act as an internal func-
tion object, in large part due to the presence of the colimit in the definition.

4.4 Homotopical properties of function objects

We continue the assumptions of Section [4.3] on C.

Proposition 4.20. Suppose that filtered colimits preserve fibrations, rep-
resent homotopy colimits, and commute with finite limits in C. Then the
function object Fiyo-c(X,Y) satisfies the following properties.

1. For a fized Y € pro-C and a cofiltered index category I, Fyro-c(—,Y)
takes finite colimits in C! to finite limits in pro-C.

2. For a fivred X € pro-C and a cofiltered index category I, Fpro-c(X,—)
takes finite limits in C! to finite limits in pro-C.
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3. The function object satisfies an SM7 axiom: for any strict cofibration
1. A— B and strict fibration p: X — 'Y in pro-C, the induced map

Fpro—C(Ba X) — Fpro—C(B7 Y) X Fpro—C(Aa X)
Fpro—C(Avy)

s a fibration, which is a strict equivalence if either i or p is.

Proof. 1. For a finite diagram J — Cf, the colimit as a diagram of pro-
objects is computed by the colimit in C! [2, Appendix 4.2]. By assump-
tion, the natural morphisms

colim lim F (7, y5) — lim colim F¢ (27, y3)

are isomorphisms for all 3, so we find that the natural map Fjyo-c(colim; X7,Y) —
lim; Fo-c(X7,Y) is an isomorphism.

2. The proof of this item is identical to that of the previous one.

3. We note that the statement is preserved by retracts in p, and so we
may assume that p: X — Y is a special fibration. We can choose level
representations for ¢ and p with several properties:

e the map i is a levelwise cofibration {a, — b4 }a,

e the map 7 is a levelwise acyclic cofibration if 7 is a strict equivalence
28, 4.13],

e the map p is indexed by a cofinite directed set,

e the maps from x5 to Mg = Yz Xiim, 4y, (limy<5 2,) defined by p
are fibrations, and

e the fibrations x5 — Mp are weak equivalences if p is a strict
equivalence [28] 4.14].

The pushout product axiom in C is equivalent to the internal SM7
axiom. Hence for all « and (3, we find that the map

Fc(ba,l'ﬁ) — Fc(ba,Mg> X Fc(aa,275)
FC(aouMﬁ)
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is a fibration, and is a weak equivalence if ¢ or p is a strict equivalence.
Using the fact that Fi preserves limits in the target variable, this says
that the natural map

Fc(ba,l'g) — Zaﬂ X (hH’ch(ba,ilj',y))

lirn7<3 Zaﬁ <

is a fibration which is trivial if 2 or p is, where

Za,'y = FC<baa y’y) X FC(aaa x’y)

Fe (U«aay'y)

is the component of the fiber product in degree 7.

Taking colimits in «, which commutes with the fiber product and pre-
serves fibrations by assumption, we obtain a level representation of the
map
Fpro_c(B, X) — Fpm-c(B, Y) X Fpro_c(A, X)
Fpro-c(AY)

by a special fibration. Since filtered colimits represent homotopy col-
imits, they preserve weak equivalences, and so this is a levelwise equiv-
alence if 7 or p is a strict equivalence, as desired. O

Remark 4.21. This actually proves that the SM7 map of F,.,-¢ already pro-
vides a special fibration or special acyclic fibration if the original map p is a
special fibration or special acyclic fibration.

Corollary 4.22. Under the assumptions of Proposition we have the
following consequences.
1. For fibrant Y € pro-C, Fyo-c(—,Y) preserves weak equivalences be-

tween cofibrant objects.

2. For cofibrant X € pro-C, F-c(X,—) preserves weak equivalences be-
tween fibrant objects.

3. The functor Fyo-c(—, —) descends to a well-defined weak function object
Fweak(— ) for the homotopy category of cofibrant-fibrant objects of
pro-C.
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Proof. By Ken Brown’s lemma [23] 1.1.12], to prove the first item it suffices
to prove that Fp.-c(—,Y) takes acyclic cofibrations to weak equivalences.
This follows by applying the SM7 property to an acyclic cofibration X — X’
and the fibration ¥ — .

The second item follows exactly as in the previous case by applying the SM7
property to an acyclic fibration. The final item is then a direct consequence.
O

The following proposition allows us to gain homotopical control on function
objects from the associated pro-objects in the homotopy category.

Proposition 4.23. Suppose that filtered colimits preserve fibrations, repre-
sent homotopy colimits, and commute with finite limits in C. For levelwise
coftibrant X and levelwise fibrant'Y in pro-C with fibrant replacement Y, the
map Foro-c(X,Y) = Foro-c(X,Y') is a weak equivalence. The representative
Foro-c(X,Y") for the homotopically correct weak function object F“**(XY")
s a representative for the homotopy type

{hocolim RF¢ (x4, ys)} 5.

Proof. This argument closely follows [I8, 5.3]. By assumption X is strict
cofibrant, and by reindexing we may assume that Y is indexed by a cofinite
directed set I and still levelwise fibrant. The index category I is a Reedy
category, so we may choose a Reedy fibrant replacement Y — Y’ which is a
levelwise weak equivalence so that the maps y; — lim,<5y. are fibrations.
In particular, yj is always fibrant.

The levelwise properties imply that the function objects F¢(xq, yg) are repre-
sentatives for the derived function objects, and that the maps Fe(zq,ys) —
Fe(wq,ys) are weak equivalences.

As in the proof of Proposition [4.20] the homotopically correct function object
{colim,, Fe(za,yj5)}p is levelwise equivalent to {colim, Fe(7a,ys)}s. Since
colimits represent homotopy colimits, we obtain the desired result. O
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4.5 Pro-dualizable objects

Continuing the assumptions of Section [4.3] we now begin to study dualiz-
ability.

Definition 4.24. For an object x € ho(C), the dual Dz is the function object
RFe(x,1). The map Dz ®% x — T is the evaluation pairing.

Given y € ho(C), the adjoint to the map Dx ®" x ®y — y is a natural
transformation Dz @ y — RF¢(z,y). The object x € ho(C) is dualizable if
this map is a natural isomorphism of functors on ho(C).

An object X € ho(pro-C) is pro-dualizable if it is isomorphic in the homotopy
category to a cofiltered diagram of objects whose images in the homotopy
category are dualizable.

Remark 4.25. We follow [27] in using the term dualizable, rather than the
term strongly dualizable from [25].

The following are immediate consequences of the definitions.

Proposition 4.26. The unit 1 is dualizable. Dualizable objects are closed
under the tensor in ho(C), and pro-dualizable objects are closed under the
levelwise tensor in ho(pro-C).

Suppose that the unit object I is compact, in the sense that the functor
RMap, (I, —) commutes with filtered homotopy colimits. Then the natural
equivalence

RMape(z,y) =~ RMap,(I, Dz o y)

implies that RMap,(z, —) commutes with filtered homotopy colimits. We
then have the following result, which is similar in spirit to the earlier results
[5, B.3, (2)] and [16], 9.15].

Proposition 4.27. Suppose that filtered colimits preserve fibrations, repre-
sent homotopy colimits, and commute with finite limits in C. In addition,
suppose that RMap (L, —) commutes with filtered homotopy colimits. Let
X € ho(pro-C) be pro-dualizable. Then, for any Y and Z in ho(pro-C), the
weak function object F*** provides an adjoint to the map X ®“Y — Z

.
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Proof. Without loss of generality, we can lift X to a pro-object represented
by a diagram which is levelwise cofibrant and dualizable. Similarly, we choose
lifts of Y to a strict cofibrant diagram and Z to a special fibrant diagram,
which in particular is levelwise fibrant.

Combining Propositions and the natural transformation
Mappro-c (X ®IL K Z) — Mappro—c (X7 Fweak(y7 Z))
is naturally represented by the map of homotopy types

holim hocoﬁlim RMape (,®ygs, 2,) — holim hocolim RMape (x4, hocglim RFe(ys, zy))-
Y «, ¥ «

As RMap,(z,, —) commutes with filtered homotopy colimits, this reduces to

the adjunction RMape(zq ® ys, 2y) = RMape(xa, Fe(ys, 24))- O]

Combining this with Theorem [3.5] we have the following result.

Theorem 4.28. Suppose that filtered colimits preserve fibrations, represent
homotopy colimits, and commute with finite limits in C. In addition, suppose
that RMap, (I, —) commutes with filtered homotopy colimits. Let n: X — Y
in ho(pro-C) be a rigid map between pro-dualizable objects. If X is an algebra
over a cofibrant operad O, then there exists an O-algebra structure on Y,
compatible with n, which is unique up to homotopy.

5 Symmetric spectra and filtered colimits

In this section, we verify several conditions on model categories of interest
in this paper. In particular, we show that the “base category” of symmetric
spectra is a proper operadic model category, and hence, has an associated
model category of pro-objects that is operadic. Also, we show that this base
model structure satisfies several required assumptions from Section

We write Sp for the category of symmetric spectra in simplicial sets described
in [26]. For R aring object in Sp, we write Spg, for the category of R-modules.
We will follow [36] (which uses the term “absolute flat stable”) in using the
term flat stable model structure for what is called the R-model structure in
[41].
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The properties of filtered colimits preserving fibrations, preserving weak
equivalences, and commuting with finite limits are true in the category of
simplicial sets, and are inherited by several categories based on diagrams of
them.

Proposition 5.1. Let R be a commutative ring object in Sp. Under the flat
stable model structure, the category Spg is a proper monoidal model category
under ANr with a compatible simplicial enrichment and cofibrant unit. In this
category, filtered colimits represent homotopy colimits, commute with finite
limits, and preserve fibrations. Mapping spaces out of R commute with filtered
homotopy colimits.

Remark 5.2. As in [41] 2.8], the identity functor is a Quillen equivalence
between the ordinary stable model structure and the flat stable model struc-
ture. By Remark [2.18] the flat stable and ordinary stable model structures
are essentially equivalent for considering operadic structures.

Proof. By [41], 2.6, 2.7], the flat stable model structure makes Spg a proper
monoidal mod