An overview of abelian varieties in homotopy theory

TYLER LAWSON

We give an overview of the theory of formal group laws in hoamgttheory, lead-
ing to the connection with higher-dimensional abelianet&s and automorphic
forms.

55P99; 55Q99

1 Introduction

The goal of this paper is to provide an overview of joint workkhwBehrens on
topological automorphic forms3]. The ultimate hope is to introduce a somewhat
broad audience of topologists to this subject matter cdimgaenodern homotopy
theory, algebraic geometry, and number theory.

Through an investigation of properties of Chern classed|eépuliscovered a connec-
tion between stable homotopy theory and 1-dimensionaldbgroup laws41]. After
almost 40 years, the impacts of this connection are stitidpélt. The stratification of
formal group laws in finite characteristic gives rise to theomatic filtrationin stable
homotopy theory42], and has definite calculational consequences. The niipete
and periodicity phenomena in stable homotopy groups ofregharise from a deep
investigation of this connectiori§].

Formal group laws have at least one other major manifestatize study of abelian
varieties. The examination of this connection led to atligphomology theories and
topological modular forms, or tmf2f]. One of the main results in this theory is
the construction of a spectrum tmf, a structured ring obijet¢he stable homotopy
category. The homotopy groups of tmf are, up to finite kermel eokernel, the ring
of integral modular formsJ0] via a natural comparison map. The spectrum tmf is
often viewed as a “universal” elliptic cohomology theoryresponding to the moduli
of elliptic curves. Unfortunately, the major involved pest have not yet published a
full exposition of this theory. The near-future reader igad to consultj], as well as
seek out some of the unpublished literature and readirg disttopological modular
forms if more background study is desired.


http://www.ams.org/mathscinet/search/mscdoc.html?code=55P99,(55Q99)
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Algebraic topology is explicitly tied to 1-dimensional foal group laws, and so the
formal group laws of higher-dimensional abelian variefeewd larger possible “height”
invariants of those) are initially not connected to topgloghe goal of 8] was to create
generalizations of the theory of topological modular forthsough certain moduli of
abelian varieties with extra data specifying 1-dimendienmand®f their formal
group laws.

The author doubts that it is possible to cover all of this lgmokind to any degree of
detail within the confines of a paper of reasonable size, earicting to those subjects
that are of interest from a topological point of view. In &, there are existing
(and better) sources for this material. Therefore, ourgimedion of this material is
informal, and we will try to list references for those who fs@me subject of interest to
them. We assume a basic understanding of stable homotoprytlaad an inevitable
aspect of the theory is that we require more and more of thgukege of algebraic
geometry as we proceed.

A rough outline of the topics covered follows.

In sections2 and 3 we begin with some background on the connection between the
theory of complex bordism and formal group laws. We nextulisdn sectior the ba-

sic theories of Hopf algebroids and stacks, and the rel@titween stack cohomology
and the Adams-Novikov spectral sequence in sediiowe then discuss the problem

of realizing formal group law data by spectra, such as iseaetti by the Landweber
exact functor theorem and the Goerss-Hopkins-Miller teagiin sectiorb. Examples

of multiplicative group laws are discussed in sectigGnand the theories of elliptic
cohomology and topological modular forms in secti@end9. We then discuss the
possibility of moving forward from these known exampleséaat®on10, by discussing
some of the geometry of the moduli of formal groups and heiglariants.

The generalization of the Goerss-Hopkins-Miller theorara tb Lurie, without which

the subject of topological automorphic forms would be pyrecsilation, is introduced
in sectionll We view it as our point of entry: given this theorem, whatdsrof new

structures in homotopy theory can we produce?

The answer, in the form of various moduli of higher-dimensioabelian varieties,
appears in sectioh2. Though the definitions of these moduli are lifted almosgclily
from the study of automorphic forms, we attempt in sectib8sl4, and15to indicate
why this data inatural to require in order produce moduli satisfying the hypotkese
of Lurie's theorem. In sectiof6, we try to indicate why some initial choices are made
the way they are.
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One of the applications in mind has been the constructiomdagfresolutions of the
K(n)-local sphere. Henn has given finite length algebraic tewwis allowing compu-
tation of the cohomology of the Morava stabilizer group imis of the cohomology of
finite subgroupsZ2]. Goerss-Henn-Mahowald-Rezkq] and Behrensf] gave anal-
ogous constructions of th€(2)-local sphere at the prime 3 out of a finite number of
spectra of the fornE'z‘G, whereE; is a Lubin-Tate spectrum arfd is a finite subgroup

of the Morava stabilizer group. The hope is that these cocistns will generalize
to other primes and higher height by considering diagramabedian varieties and
isogenies.

None of the (correct) material in this paper is new.

2 Generalized cohomology and formal group laws

Associated to a generalized cohomology theBrwith (graded) commutative multi-
plication, we can ask whether there is a reasonable the@hemn classes for complex
vector bundles.

The base case is that of line bundles, which we view as beprgsented by homotopy
classes of mapX — BU(1) = CP* for X a finite CW-complex. Arorientation of

E is essentially a first Chern class for line bundles. More i§jgadly, it is an element
u € E3(CP>) whose restriction t&E2(CPY) = Ej is the identity element 1 of the ring
E.. For any line bundld. on X represented by a mafp X — CP*, we have an
E-cohomology element;(L) = f*(u) € E2(X) which is the desired first Chern class.

Orientations do not necessarily exist; for instance, reghdéory KO does not have an
orientation. When orientations do exist, we say that the@owadlogy theory icomplex
orientable An orientation is not necessarily unique; given any oa&oh u, any
power series/ = > b u 1 with by € Ey, by = 1 determines another orientation and
another Chern class. Any other orientation determines addtermined uniquely by
such a power series.

Given an orientation o, we can derive computations &*(BU(n)) for all n > 0,
and conclude that for a vector bundieon a finite complexX there are higher Chern
classes;;(¢) € E?(X) satisfying naturality, the Cartan formula, the splittingnciple,
and almost all of the desirable properties of Chern clagsesdinary cohomology.
See [].



4 Tyler Lawson

The one aspect of this theory that differs from ordinary e¢oblogy has to do with
tensor products. For line bundlés and Ly, there is a tensor product line bundle
L1 ® L, formed by taking fiberwise tensor products. On classifyipgces, ifL; are
classified by map$: X — BU(1), the tensor product is classified yo (f; x fo),
wherey: BU(1) x BU(1) — BU(1) comes from the multiplication map on U(1).

There is a universal formula for the tensor product of twe bandles irE-cohomology,
given by the formula

callel)=>Y ajc(l)cyl)
for &j € Exjoj—2. This formula is valid for all line bundles but the coefficier; |
depend only on the orientation. We often denote this powersi the alternate forms

D aXy =F(xy) =X+¢y.
This last piece of notation is justified as follows. The tenm@duct of line bundles is

associative, commutative, and unital up to natural isommism, and so by extension
the same is true for the power series-r v:

e X+rp0=x,
e X+rpY=Y+fX and
o X+rY)+rz=Xx+r(Y+F 2.

These can be written out in formulas in terms of the coeffisien;, but the third
is difficult to express in closed form. A power series with ficgents in a ringR
satisfying the above identities is called a (commutativeirensional)formal group
law over R or just a formal group law.

The formal group law associated Ebdepends on the choice of orientation. However,
associated to a different orientatian= g(u), the formal group lawG(x,y) = X +g Yy
satisfies

gx+rYy) = 9() +c 9(y)-

We say that two formal group laws differing by such a changeeordinates for a
power seriesg(x) = X + byx? + --- are strictly isomorphic (If we forget which
orientation we have chosen, we have a formal group law with@hoice of coordinate
on it, or aformal group)

The formal group detects so much intricate information altleet cohomology theory
E that it is well beyond the scope of this document to exploveell [42]. For certain
cohomology theorie& (such as Landweber exact theories discussed in se@tidine
formal group determines the cohomology theory completéye can then ask, for
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some spaceX, to understand the cohomology grougs(X) in terms of the formal
group data. For example, X = BU(6), this turns out to be related to cubical structures

[2].

3  Quillen’s theorem

There is a cohomology theoU associated to complex bordism that comes equipped
with an orientationu. There is also a “smash product” cohomology thebiy A MU
coming equipped with two orientationsandv, one per factor oMU, and hence with
two formal group laws with a strict isomorphisgibetween them.

The ring L = MU, forming the ground ring for complex bordism was calculated
by Milnor [36], and similarly forW = (MU A MU),.. Both are infinite polynomial
algebras ovefZ, the former on generatorg in degree P, the latter on thex and
additional generators; (also in degreei. The following theorem, however, provides
a more intrinsic description of these rings.

Theorem 1 (Quillen) The ringL is a classifying object for formal group laws in the
category of rings, i.e. associated to a riRgvith formal group lawF, there is a unique
ring map¢: L — R such that the image of the formal group lawliris F.

TheringW = L[bq, by, .. .] isaclassifying object for pairs of strictly isomorphic foal
group laws in the category of rings, i.e. associated to aRimgth a strict isomorphism
g between formal group laws andG, there is a unique ring map: W — R such
that the image of the strict isomorphism\W is the strict isomorphism iR.

(It is typical to view these rings as geometric objects Speefid Sped(V), which
reverses the variance; in schemes, these are classifyijegt®tdor group scheme
structures on a formal affine schemé.)

The structure of the rind. was originally determined by Lazard, and it is therefore
referred to as the Lazard ring.

There are numerous consequences of Quillen’s theorem. gemeral multiplicative
cohomology theorR, the theoryMU A Rinherits the orientation, and hence a formal
group law. The cohomology theoiU A MU A R has two orientations arising from
the orientations of each factor, and these two differ by amstrict isomorphism. For
more smash factors, this pattern repeats. Philosophice#iyhave a ringMU,.R with
formal group law, together with a compatible action of theugr of strictisomorphisms.



6 Tyler Lawson

Morava’s survey 37] is highly recommended.

4 Hopf algebroids and stacks

The pair MU, MU A MU) and the associated ringls, V) have various structure maps
connecting them. Geometrically, we have the following mafpschemes.

Specl) =— SpecWV) < SpecW) x specy) SpecWV)

These maps and their relationships are most concisehddigiteaying that the result is
a groupoid object in schemes. We view Spads the “object” scheme and Spég(
as the “morphism” scheme, and the maps between them agsociat

e an identity morphism to each object,
e source and target objects to each morphism,
e an inverse to each morphism, and

e a composition to each pair of morphisms where the sourceeofitst is the
target of the second.

The standard categorical identities (unitality, assodtg) become expressed as iden-
tities which the morphisms of schemes must satisfy.

A pair of rings @, I') with such structural morphisms is a representing objectfo
covariant functor from rings to groupoids; such an objegererally referred to as a
Hopf algebroid[42, Appendix A].

Example 2 Associated to a map of ringR — S, we have the Hopf algebroid
(S5 S®r S, sometimes called théescentHopf algebroid associated to this map of
rings. This represents the functor on rings which takes @ Tirto category whose
objects are morphisms frol®@ — T (or T-points of Spec§)), and where two objects
are isomorphic by a unique isomorphism if and only if theyéhthe same restriction
toR—T.

More scheme-theoretically, given a m#p— X of schemes, we get a groupoid object
(Y,Y xx Y) in schemes with the same properties.

Example 3 If Sis a ring with an action of a finite grouf®, then there is a Hopf
algebroid § [[s S representing a category of points of Sggcénd morphisms the
action of G by precomposition.
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Again in terms of schemes, associated to a schémth a (general) groufis acting,

we get a groupoid object/( [ [ Y) in schemes. Itis a minor but perpetual annoyance
that infinite products of rings do not correspond to infinimwducts of schemes;
SpecR) is always quasi-compact.

Example 4 If (A,T") is a Hopf algebroid and — B is a map of rings, then there is
an induced Hopf algebroidB(B @a ' ®a B).! The natural map

(A,F)—>(B,B®AF®AB)

represents a fully faithful functor between groupoids hvfite map on objects being the
map from points of SpeB| to points of Sped). This is an equivalence of categories
on T-points if and only if this map of categories is essentiallyjective (every object
is isomorphic to an object in the image).

In schemes, if X, Y) is a groupoid object in schemes arid— X is a morphism, there
is the associated pullback groupoid, Z xx Y xx Z) with a map to X, Y).

In principle, for a groupoid objectX Y) there is an associated “quotient object,” the
coequalizer of the source and target morphisfns: X. This categorical coequalizer,
however, is generally a very coarse object. The theorieshifalds and stacks are
designed to create “gentle” quotients of these objectsimgnsberinghowthese points
have been identified rather than just remembering the fitaiton.

To give a more precise definition of stacks, one needs to skisGuothendieck topolo-
gies. A Grothendieck topology gives a criterion for a fanafymaps{U, — X} to be
a “cover” of X; for convenience we will instead regard this as a criterimmaf single
map ][ U, — X to be a cover. The category of stacks in this Grothendiecéltgyy
has the following properties.

e Stacks, like groupoids, form a 2-category (having morpbkismd natural trans-
formations between morphisms).

e The category of stacks is closed under basic constructieeis @ 2-categorical
limits and colimits.

e Associated to a groupoid objecK,(Y), there is a functorial associated stack
AS(X,Y).

e If Z — X s a cover in the Grothendieck topology, then the map of goalgp
(Z,Z xx Y xx Z) — (X,Y) induces an equivalence on associated stacks.

"Note that the “descent” Hopf algebroid is a special case.
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In some sense stacks are characterized by these prop@8es Ih particular, to
construct a map from a schenveto the associated stacks(X, Y) is the same as to
find a coverU — V and a map from the descent objedt, U xy U) to (X, Y), modulo
a notion of natural equivalence.

Stacks appear frequently when classifying families of cisjever a base. In particular,
in the case of the Hopf algebroid of formal group laws (She&pecWV)) classifying
formal group laws and strict isomorphisms, the associat@tks\srg is referred to
as themoduli stack of formal group&@nd strict isomorphisms)

The theory of stacks deserves much better treatment thenatind the reader should
consult other referenced§, 40, 24, 50, 31]. What this rough outline is meant to do
is perhaps provide some intuition. Stacks form some famfilgategorical objects
including quotients by group actions, having good notidigluing. A Hopf algebroid
gives apresentationor a coordinate chart, on a stack.

When algebraic topology studies these topics, it is typiagdounded in the study of
Hopf algebroids; the more geometric language of stacksdptad more recently and
less often. There are several reasons for this.

This link to algebraic geometry historicallynly occurred through Hopf algebroids.
The development of structured categories of spectra has swade of these links more
clear, but there is still some foundational work to be doneamigebras and comodules
in spectra.

Additionally, the theory and language of stacks are not ghiie typical upbringing
of topologists, and have a reputation for being difficult éarh. By contrast, Hopf
algebroids and comodules admit much more compact deseripti

Finally, there is the aspect of computation. Algebraic togsts need to compute the
cohomology of the stacks that they study, and Hopf algebrprdvide very effective
libraries of methods for this. In this respect, we behave mlile physicists, who
become intricately acquainted with particular methodsamhputation and coordinate
charts for doing so, rather than regularly taking the “glbl@éwpoint of algebraic
geometry. (The irony of this situation is inescapable.)

2As L andW are graded rings, this moduli stack inherits some gradegtasg well that can
be confusing from a geometric point of view. It is common tplaee MU with a 2-periodic
spectrumMP to remove all gradings from the picture; the resulting Holgiearoid arising
from MP andMP A MP classifies formal group laws amsn-strictisomorphisms, but has the
gradingsremoved. The associated stack is usually writtes;, and has the same cohomology.
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By default, when we speak about stacks in this paper our iymdgrGrothendieck
topology is the “fpgc” (faithfully flat, quasi-compact) tology. Most other Grothendieck
topologies in common usage are not geared to handle infiolg@pmial algebras such
as the Lazard ring.

5 Cohomology and the Adams-Novikov spectral sequence

We fix a Hopf algebroid 4, I'), and assumé' is a flat A-module (equivalently under
either the source or target morphism). We regard the sourdeaget morphisms
A — I" as right and left module structures respectively.

A comoduleover this Hopf algebroid is a lef\-moduleM together with a map of left
A-modules
¢o: M —T ®aM.

We require that the composite

MET @AM 3 AgaM

is the identity, where is the augmentatiofi — A, and that the two composites
(c@l),(1®¢)p: M —>T @l ®aM

are equal, where is the comultiplicationl’ — I'®aT". (This map is typically referred
to as acoactionwhich is counital and coassociative.)

The structure of a comodule is equivalent to having an ispiiem of I'-modules
I @AM — T @4 M,

tensor product along the source and targemodule structures o’ respectively,
satisfying some associativity typically appearing in thedg of descent data.

The category of 4,1I") comodules forms an abelian category. This category is the
category ofjuasicoherent sheaven the associated stagkl = As(Spech), Specl)).

In general, one needs to show that homological algebrasrctiegory can reasonably
be carried out; seelp] for details.

Ignoring the fine details, one can define twherent cohomologgf the stack with
coefficients in a comodul® to be
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This is computed by the cobar complex
0—-M—-=T®aM-=TAl'®aM — --- |

where the boundary maps are alternating sums of unit mapsiltiplications, and
the coaction orM. A better definition is that these groups are the derivedtuscf

the global section functor on the stack. As such, this is gty an invariant of the
stack itself, and this underlies many change-of-rings mgiisms: for example, for

a faithfully flat mapA — B the associated cobar complex for the comodBiles M

over B,B @a ' ®a B) computes the same cohomology. (This is both an important
aspect of the theory of “faithfully flat descent” and a usefnputational tactic.)

The importance of coherent cohomology for homotopy thesithé Adams-Novikov
spectral sequence. For a spectrdithe MU -homologyMU, X inherits the structure
of an (L, W)-comodule, and we have the following result.

Theorem 5 There exists a (bigraded) spectral sequence R4ttterm
EXt{" w)(L, MU.X)

whose abutment is, X. If X is connective, the spectral sequence is strongly conver-
gent.

This spectral sequence arises through a purely formal mkmistn in the stable homo-
topy category, and does not rely on any stack-theoretictagri®ons. It is a general-
ization of the Adams spectral sequence, which is oftendtaseng cohomology and
hasE,-term Ext over the mog» Steenrod algebra.

We can recast this in terms of stacks. Any spectXiproduces a quasicoherent sheaf
on the moduli stack of formal group laws, and there is a spes&rquence converging
from the cohomology of the stack with coefficients in thisadite the homotopy oK.
Because in this way we see ourselves “recoveKrfgom the quasicoherent sheaf,” we
find ourselves in the position to state the following.

Slogan 6 The stable homotopy category is approximately the categioguasicoher-
ent sheaves on the moduli stack of formal grodsrc.®

3Strictly speaking, one should phrase this in term#tbf -local spectra, which are the only
spectrathaMU can recover fullinformation about. The current populahtéques concentrate
on MU -local spectra, as they include most of the examples of nuiméerest and we have very
few tactics available to handle the rest.
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This approximation, however, is purely in terms of algelmd & does not genuinely
recover the stable homotopy category. (The Mahowald uaicgyt principle claims
that any algebraic approximation to stable homotopy theangt be infinitely far from
correct.) However, the reader is invited to consider thiv¥ahg justification for the
slogan.

An object in the stable homotopy category is generally aersid as being “approxi-
mated” by its homotopy groups; they provide the basic infaron about the spectrum,
but they are connected together by a hos-orivariants that form the deeper structure.

The spectrumMU is a highly structured ring object, and the pail, MU A MU)
forms a “Hopf algebroid” in spectra. A general spectrXngives rise to a comodule
MU A X, and there is a natural map

X — Fovu,mu A Muy (MU, MU A X)

from X to the function spectrum of comodule maps; if we believe ihdiscent in
the category of spectra, this map should be a weak equivalethen X is “good.”
The Adams-Novikov spectral sequence would then simply balgebraic attempt to
recover the homotopy of the right-hand side by a universeffimient spectral sequence
(Ext on homotopy groups approximates homotopy groups ofpinggspaces).

The author is hopeful that the theory of comodules in spegtitasoon be fleshed out
rigorously.

We note that, in line with this slogan, Franke has provenfiva2(p — 1) > n? + n,
the homotopy category dE,-local spectra at the primp is the derived category of
an abelian categorylp], generalizing a result of Bousfield far = 1 [9]. As is
standard, this excludes the primes where significant naaittbehavior is present in
the homotopy category.

6 Realization problems

Given our current state of knowledge, it becomes reasorabdsk questions about
our ability to construct spectra.

(1) Can we realize formal group laws by spectra?
(2) Can we realize them functorially?

More precisely.
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(1) Suppose we have a graded riRgvith formal group lawF. When can we con-
struct an oriented ring spectruBhwhose homotopy iR and whose associated
generalized cohomology theory has formal group R®

(2) Suppose we have a diagram of graded rilgsand formal group lawd=,
equipped with strict isomorphismsg : Fg — f*F, of formal group laws for
any mapf: R, — Rg in the diagram, satisfyingg o g*(7f) = vgr. When can
we realize this as a diagraft, } of ring spectra?

More refined versions of these questions can also be askethmask for the realiza-
tions to come equipped with highly structured multiplicatin some fashion.

Two of the major results in this direction are the Landweb@cefunctor theorem and
the Goerss-Hopkins-Miller theorem.

We recall 2, Appendix 2] that for any primeo, there is a sequence of elements
(p, v1, Vo, ...) of L such that, ifF is the universal formal group law over the Lazard
ring L,

[pl(X) = X +£ - +EX=VeX®  mod @, V1, ,Vn_1).

The elements,, are well-defined modulo lower elements, but there are meltipoices
of lifts of them toL (such as the Hazewinkel or Araki elements) that each have the
advocates. (By conventiong = p.)

Associated to a formal group law over a fiddctlassified by a mag: L — k, there
areheightinvariants

hto(F) = inf{n | ¢(vn) # O}

For exampleF has height 0 ap if and only if the fieldk does not have characteristic
p. Over an algebraically closed field of characterighicthe height invariantt,
determines the formal group up to isomorphism (tottup to strict isomorphism).

Theorem 7 ([29, 46]) Suppose thall is a graded module over the Lazard ring
Then the functor sending a spectrofito the graded abelian group

M @ MU (X)
defines a generalized homology theory if and only if, for aimesp and alln, the

mapv, is an injective self-map o¥1/(p, . . ., Vn—1).

We refer to such an object as andweber exadheory. May showed that such theories
can be realized bU -modules B3, Theorem 8], and Hovey-Strickland showed that
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there is a functorial lifting from the category of Landwelmtact theories to the
homotopy category oMU -modules 26]. In addition, there are results far-algebras
rather tharnL-modules.

This theorem can be used to gives rise to numerous theoaeglexK -theoryKU is
one such by the Conner-Floyd theorem. Other examples ia¢hg Brown-Peterson
spectraBP and Johnson-Wilson spectiqn).

In the case of compleX-theory, we have also have a more refined multiplicative
structure and the Adams operationS. There is a generalization of this structure due
to Goerss-Hopkins-Miller45, 18].

Associated to a formal group laW over a perfect fielk of characteristig, there is
a complete local ring LT, F), called the Lubin-Tate ring, with residue fiekd The
Lubin-Tate ring carries a formal group laf% equipped with an isomorphism of its
reduction withF. If F hasht,(F) = n, then

LT(k7 F) = W(k)[[ulv U ,Un_]_]],
whereW (k) is the Witt ring ofk.

This ring is universal among such local rings, as follows.ve@iany local ringR
with nilpotent maximal idealn and residue field an extensidghof k, together with
a formal group lawG over R such thatG and F have the same extension £pthere
exists a unique ring map LK(F) — R carryingF to G. In particular, the group of
automorphisms oF acts on LTk, F).

Theorem 8 (Goerss-Hopkins-Miller) There is a functor
E: {formal groups over perfect fields, isos- {E.. ring spectra

such that the homotopy groups Bk, F) areLT(k, F)[u™!], where|u| = 2.

This spectrum is variously referred to as a Hopkins-Millgectrum, Lubin-Tate spec-
trum, or MoravaE-theory spectrum. It is common to denote By the spectrum
associated to the particular example of the Honda formalmtaw over the fieldfn,
which has heighh. Even worse, this theory is sometimes referred tihakubin-Tate
theory of heightn. To do so brushes the abundance of different multiplicaftvens
of this spectrum under the rug.

We note that this functorial behavior allows us to constasfiomology theories that
are not complex oriented. Forinstance, the kedheory spectruniKO is the homotopy
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fixed point spectrum of the action of the grodifh, >~} on KU, and theK(n)-local
sphered kS are fixed point objects of the full automorphism groups olthkin-Tate
theories 12].

The extra multiplicative structure on the Lubin-Tate spedallows us to speak of
categories of modules and smash products over them, botarfudviools in theory

and application. The functoriality in the Goerss-Hopkivgler theorem allows one
to construct many new spectra via homotopy fixed-point cangons. These objects
are now indispensable in stable homotopy theory.

7 Forms of the multiplicative group

The purpose of this sectionis to describe i€atheory as being recovered from families
of formal group laws, and specifically cohomology theorissogiated to forms of the
multiplicative group.

There is a multiplicative group schenfig, overZ. It is described by the Hopf algebra
Z[x*1], with comultiplication x — x ® x. For a ringR, the set ofR-points of G, is
the unit groupR* . The formal completion of this at= 1 is a formal grougGm.

However, there are various nonisomorpfionsof the multiplicative group over other
base rings that become isomorphic after a flat extensioneXamnple, there is a Hopf
algebra

Z |:%7X7y:| /(X2+y2_ 1)7

with comultiplicationx — X®@ X —y®Vy),y — X® Y+ Yy ® X). For aringR, the set
of R-points is the set

{x+iy [ ¥ +y* =1},
with multiplication determined by? = —1. Although all forms of the multiplicative

group scheme become isomorphic over an algebraically ¢lfistd, there is still
number-theoretic content locked into these various forms.

We now parametrize these structures. Associated to anyppdistinct pointsa, 3 €
Al, there is a unique group structure & \ {a, 3} with co as unit. The pair of
points is determined uniquely by being the roots of a polyiabe? + bx + ¢ with
discriminantA = b? — 4c a unit. Explicitly, the group structure is given by

X1Xo — C

X1, %) > ———————
(X1, Z)Hx1+x2—b
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This has a chosen coordinatgxinear the identity of the group structure. By taking a
power series expansion of the group law, we get a formal glaaup\We note that given

b andc in aring R, we can explicitly compute thp-series as described in sectibn
and find that the image off € L/pis

p—1

(B -apt=n"

Therefore, such a formal group law over a riRgis always Landweber exact when
multiplication by p is injective for allp.

An isomorphism between two such forms®f must be given by an automorphism of
P! preservingoo, and hence a linear translation— Ax + r. Expanding in terms of
1/x, such an isomorphism gives rise tstaictisomorphism if and only if\ = 1.

We therefore consider the following three Hopf algebroidsametrizing isomorphism
classes of quadratic& + bx + ¢, or forms of the multiplicative group, in different
ways.

A = Z[b,c, (b*—40)7Y
a = Alr]

B = Za, B, (a1
I'e = B[r,9/(5+ (- p)
C = Z[o™

Ic = C[§/(S+ as)

These determine categories such that, for anyTinthe T -points are given as follows.

(A,Ta):  {quadratics? + bx+ ¢, translations< — x + r}
(B,I'g):  {quadraticsX — «)(x — 3),

translations<x — x + r plus interchanges ef and5}
(C,T¢):  {quadratics¢ — ax, transformations — x + a}

There is a natural faithfully flat map. — B given by b — —(a + 8),c — af
corresponding to a forgetful functor on quadratics. Theastl descent Hopf algebroid
(B, B®aI'a ®a B) isisomorphic to B, I'g), and so the two Hopf algebroids represent
the same stack.

The category given by the second is naturally equivalentsisb&ategory given by the
third Hopf algebroid for alll . We can choose a universal representative for this natural
equivalence given by the natural transformatlgn— B of B-algebras sendingto 3
ands to 0, showing that these also represent the same stack.
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The third Hopf algebroid, finally, is well-known as the Hopdg@broid computing the
homotopy of reaK -theory KO.

In this way, we “recover” reaK-theory as being associated to the moduli stack of
forms of the multiplicative group in a way compatible witketformal group structure.

We note that, bynot inverting the discriminanb?® — 4c, we would recover a Hopf
algebroid computing the homotopy of thennectivereal K -theory spectrunko. On
the level of moduli stacks, this allows the degenerate cade@dditive formal group
schemeG, of heightoo. Geometrically, this point is dense in the moduli of forms of
Gm.

8 Elliptic curves and elliptic conomology theories

One other main source of formal group laws in algebraic gegni®given by elliptic
curves.

Over aringR, any equation of the form
V2 + aixy + agy = X + @ + auX + ag

(a Weierstrass equation) determines a closed subset effivej spacé?. There is a
discriminant invariantA € R which is a unit if and only if the group scheme is smooth.
See 48, Chapter II].

There is a commutative group law on the nonsingular points ¥@ : 1 : 0] € P? as
identity. Three distinct pointg, ¢, andr are colinear inP? if and only if they add to
zero in the group law.

The coordinatex/y determines a coordinate near in the group scheme, and expand-
ing the group law in power series near gives a formal group law oveR.

Two Weierstrass curves are isomorphic oRdaf and only if there is a unit\ € R* and
r,s t € R such that the isomorphism is given By— A2X +r,y — A3y + sx+t. The
isomorphism induces a strict isomorphism of formal growpsl# and only if A = 1.

An elliptic curve over a general scheme has a formal defmitlut can be formed
by patching together such Weierstrass curves locally @rfltt topology). There is a
Hopf algebroid representing the groupoid of nonsingularevétrass curves and strict
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isomorphisms, given by

A = Za,ap, a3 84,8, A7,
I = A[r,S,t].

The associated stackle is a moduli stack of elliptic curves (and strict isomorphsm
The natural association taking such an elliptic curve tddtsal group law gives a
map of stacks

Mel — Msre

to the moduli stack of formal groups.

One can instead think of this moduli stack as parametrizaigs g, w) of an elliptic
curve E and a nonzero invariant 1-form on E. The invariant 1-form determines a
coordinate near the unit of the elliptic curve up to first oyéed a map of such elliptic
curves then induces a strict isomorphism if and only if itggrees the form.

An elliptic cohomology theorgonsists of a conomology theoly which is weakly
even periodit, together with an elliptic curve over Sp&gj and an isomorphism of
formal group laws between the formal group law associatatigcelliptic curve and
the formal group law of the spectrum. Landweber exact tesoof this form were
investigated by Landweber-Ravenel-Stong based on a Jgualtic [30]. In terms of
the moduli, we would like to view these as arising from scher@pecky) over Mg
with spectra realizing them.

Similarly, by allowing the possibility of elliptic curvesitin nodalsingularities (so that
the resulting curve is isomorphic ' with two points identified, with multiplication
on the smooth locus a form @), we get a compactificatiomg of the moduli of

elliptic curves. The objeciM is a smooth Deligne-Mumford stack over Spgk(
[11]. This stack is more difficult to express in terms of Hopf digeds.

Based on our investigation of forms of the multiplicativenf@l group, it is natural to
ask whether there is a “universal” elliptic conomology theassociated td\g; and a
universal elliptic cohomology theory with nodal singute$ associated td1¢. Here
we could interpret universality as being either a lift of tiréversal elliptic curve over
this stack, or being somehow universal among elliptic coblogy theories.

If 6 is invertible in R, each Weierstrass curve is isomorphic (via a unigtrect
isomorphism) to a uniquely determined elliptic curve of thiem y? = x3 + c4X + Cs.

“A spectrum isweakly even periodiif the nonzero homotopy groups are concentrated in
even degrees, and the prodigt®e, Eq — Epiq is always an isomorphism fqu, g even.
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This universal elliptic curve over the (graded) ri@g%, C4, Cs, A™1] has a Landweber
exact formal group law, and hence is realized by a cohomdlogpry generally denoted
by &Il [3].

We would be remiss if we did not mention the inspiring conizecto multiplicative
genera and string theor][

9 Topological modular forms

The theories TMRA~Y], TMF, and tmf of topological modular forms are extensions
of the construction of the universal elliptic theafyl . This extension occurs in several
directions.

e These theories are all realized 8., ring spectra, with the corresponding
increase in structure on categories of modules and algebras

e These theories are universal objects, in that they can tstraated as a limit of
elliptic conomology theories. TMB{~1] and TMF are associated to the moduli
stacks Mg and Mg respectively. These are not elliptic cohomology theories
themselves, just a0 is not a complex oriented theory due to the existence of
forms of G, with automorphisms.

e Unlike &Il these theories carry information at the primes 2 and 3. ttiqodar,
they detect a good portion of interesting 2- and 3-primafgrimation about
stable homotopy groups of spheres.

The construction of these theories (due to Hopkins et ak)yeato fully appear in the
literature, but has nevertheless been highly influentigthénsubject for several years.

An interpretation in terms of sheaves is as follows. On theluioMg; and Mg

of elliptic curves, anyetale map (roughly, a map which is locally an isomorphism,
such as a covering map) from SpRECan be realized by a highly structured elliptic
cohomology theory in a functorial way. Stated another wag, have a lift of the
structure sheat) of the stack in thettale topology to a sheaP" of commutative
ring spectra.

(We should mention that associatedhtodular curveswhich are certain coverings of
Mae, these structure sheaves give rise to versions of TMF witl ltructures. This
construction, however, may require certain primes to beried.)
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The homotopy of TMFA 1] is computable via the Adams-Novikov spectral sequence
[4, 44], whoseE;-term is the cohomology of the Weierstrass curve Hopf algjelbof
section8. Similarly, the Adams-Novikov spectral sequence for thenbtopy of TMF
hasE,-term given in terms of the cohomology of the compactified oliod 1. The
zero-line of each of these spectral sequences can be iddntifih a ring of modular
forms overz.

The spectrum tmf also has homotopy computed by the Weissstibgebroid, but
without the discriminant inverted. It corresponds to a miodt possibly singular
elliptic curves where we allow the possibility of curvesindidditivereduction, or cusp
singularities. As a spectrum, however, tmf is generallystautted as a connective
cover of TMF and does not fit well into the theory of “derive@delraic geometry”
due to Lurie et al.

10 The moduli stack of formal groups

We have discussed several cohomology theories here wittiaieships to the moduli
stack of formal groups\Mgrg. It is time to elaborate on the geometry of this moduli
stack.

From this point forward, we fix a prime p and focus our attentibere. In particular,
all rings and spectra are assumed to be p-local, or p-loeali# not.

We recall that a formal group law over an algebraically aibBeld of characteristic
p is classified uniquely up to isomorphism by its height ingati In terms of the

Lazard ringL, we have a sequence of elemepisq, vy, - - -, with each prime ideal
(p, V1, ...,Vn_1) cutting out an irreducible closed substaA‘(k?F”G of the moduli stack.

It turns out that these prime ideals (and their union) arettiginvariant prime ideals
of the moduli. The intersection of all these closed substaEkhe height=o locus.

As aresult, we have a stratification of the moduli stack ia§e@ts according to height.
There is a corresponding filtration in homotopy theory chtlee chromatic filtration
and it has proved to be a powerful organizing principle fodenstanding large-scale
phenomena in homotopy theor§d, 13]. We note that the Landweber exact functor
theorem might be interpreted as a condition for a map $ee( Mskg to be flat.

Having said this, we would like to indicate how the variout@mology theories we
have discussed fit into this filtration.
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Rational cohomology, represented by the Eilenberg-MackpectrumHQ, has the
prime p = vg inverted. It hence lives over the height 0 open substackffg.

Mod-p cohomology, represented by the Eilenberg-Maclane spacHilr,, has the
additive formal group lawx +¢ y = X + Yy, and hence is concentrated over the height
oo closed substack.

We saw in sectioi7 that forms of the multiplicative formal group law have theagtity

vy invertible. These theories, exemplified by complkestheoryKU and realK -theory

KO, therefore are concentrated over the open substack oftedegs than or equal to

1. (The connective versioris and ku of these spectra are concentrated over heights
0, 1, andoo.) The work of Morava on forms oK -theory also falls into this region
[38].

It is a standard part of the theory of elliptic curves in cloéegstic p that there are
two distinct classes: therdinary curves, whose formal groups have height 1, and the
supersingularcurves, whose formal groups have height 2. The theories TWIE]
and TMF, and indeed all elliptic cohomology theories, aex¢fore concentrated on
the open substack of heights less than or equal to 2. (Thesctima spectrum tmf is
concentrated over heights 0, 1, 2, ard)

As these theories only detect “low” chromatic phenomenay #re limited in their
ability to detect phenomena in stable homotopy theory. raisiral to ask for us to find
cohomology theories that elaborate on the chromatic lapemsmotopy theory at all
heights.

It is worth remarking that an understanding of chromatiel@ne led to proofs of the
Hopf invariant one problem, and hence to the final solutiothefclassical problem
about vector fields on spheres. Referring to chromatic levelas “low” is incredibly
misleading. The computations involved in stable homotdw@oty at chromatic level
two are quite detailed4]7, 17], and the Kervaire invariant problem is concentrated at
this level. Very little is computationally known beyondsgtpoint.

Several examples of spectra with higher height are givenhkeyMorava theories
mentioned in sectio. The MoravaE-theory spectrunie(k, F) associated to a formal
group law of heightn < oo over a perfect fieldk is concentrated over the height

< n open substack oM. In some sense, however, these theories are controlled
by their behavior at height exactly, and do not have much “interpolating” behavior.
They are also more properly viewed as “pro-objects” (ingesgstems) in the stable
homotopy category, and have homotopy groups that are nigtifiigienerated as abelian
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groups. Finally, these theories are derived strictly fromfbrmal group point of view
in homotopy theory, and they can be difficult to connect tongetnic content.

More examples are given by the Johnson-Wilson thedgi@s, which are not known
to have much structured multiplication far> 1.

More “global” examples are given by spectra denotegl, @dere eg is tmf. These
spectra take as starting point the Artin-Schreier curve

Y l=x"—x

In characteristiq, this curve has a large symmetry group that also acts on tiodizan
variety. The Jacobian has a higher-dimensional formal graut the group action
produces a 1l-dimensional split summand of this formal graith height p — 1.
Hopkins and Gorbunov-Mahowaldnitiated an investigation of a Hopf algebroid
associated to deformations of this curve of the form

Y =% —x+ ) uX,

whose realization would be a spectrum denoted y £619]. Ravenel generalized
this to the Artin-Schreier curve

ypf_l = Xp =X

whose formal group law has a 1-dimensional summand of hdjght 1)f and an
interesting symmetry grouptg]. However, the existence of spectrum realizations is
(at the time of this writing) still not known.

11 p-divisible groups and Lurie’s theorem

In 2005, Lurie announced a result that gave sufficient caditto functorially realize
a family of 1-dimensional formal group laws by spectra gieentain properties and
certain extra data. The extra data comes in the formmtévisible group (or Barsotti-
Tate group), and the necessary property is that locally tiiuetsire of thep-divisible
group determines the geometry. In this section we introdigrae basics on these
objects. The interested reader should con<id ¢r [34].

A p-divisible groupG over a an algebraically closed fieldconsists of a (possibly
multi-dimensional) formal groufp of finite heighth and a discrete group isomorphic

*The author’s talk at the conference misattributed this,rantiiple attendees corrected him;
he would like to issue an apology.
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to (Q/Z)", together in an exact sequence
0—-F—-G— (Q/z) —0.

The integem = h + r is theheightof G, and the dimension of the formal component
F is thedimensiorof G.

However, we require a more precise description in generakr @ base schemg, a
p-divisible group actually consists of a sequence of finitat, droup scheme&[p¥]
(the pX-torsion) overX with G[p°] = 0 and inclusionsG[pX] c G[p**1] such that the
multiplication-by{ map factors as

G[p*™ - G[pY] c G[p*1].

The height and dimension of thedivisible group are locally constant functions Xn
equivalent to the rank diz[p] and the dimension of its tangent space. At any geometric
point x € X, the restriction of the-divisible group tox lives in the natural short exact
sequence

0— G° — Gy — G* -0,

with the subobject (the connected component of the unitfahmal component and
the quotient thé&talecomponent. The formal compone®{® is a formal group orX.
The height of the formal component is an upper semicontisdfanction onX, and
gives rise to a stratification of which is the pullback of the stratification determined
by the regular sequence, {1, . ..).

In fact, a deeper investigation into the isomorphism clasge-divisible groups over

afield gives rise to a so-called “Newton polygon” associ&tealp-divisible group and

a Newton polygon stratification. However, fprdivisible groups of dimension 1 this
is equivalent to the formal-height stratification.

Similar to formal group laws, there is a deformation thedrpalivisible groups. Each
p-divisible groupG of heightn over a perfect fielk of characteristiq has a universal
deformationG over a ring analogous to the Lubin-Tate ring.

For anyn < oo, there is a formal moduliMp(n) of p-divisible groups of height
and dimension 1 and their isomorphisms. The author is noteanfany amenable
presentations of a moduli stack analogous to the presentafithe moduli of formal
group laws, and whether a well-behaved Hopf algebroid existdelling this stack
seems to still be open. From a formal point of view, the categbmaps from a scheme
X to Mp(n) should be the category gf-divisible groups of height on X, and the
associationG — G™' gives a natural transformation froov,(n) to the moduli of
formal groupsMeg.
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We state a version of Lurie’s theorem here.

Theorem9 (Lurie) Let M be analgebraic stack OVE()G equipped with a morphism

classifying ap-divisible groupG. Suppose that at any poirte M, the complete
local ring of M at x is isomorphic to the universal deformation ring of {hlivisible
group atx. Then the composite realization problem

M — Mp(n) — Mec

has a canonical solution; that is, there is a she&.gfeven weakly periodi& on the
etale site ofM with Eq locally isomorphic to the structure sheaf and the assatiate
formal groupG isomorphic to the formal grouf™® . The space of all solutions is
connected and has a preferred basepoint.

The proof of Lurie’s theorem requires the Hopkins-Milleetiiem to provide objects for
local comparison, and so generalizations without the ‘ensial deformation” condition
are not expected without some new direction of proof. We afste that the theorem
does not apply as stated to the compactified madili;, and so only gives a proof of
the existence of TMRA~1] rather than TMF.

Our perspective, however, is to view this theorem as a blagk H tells us that if we
can find a moduliM such that

e M has acanonicallyassociated 1-dimensionatdivisible groupG of height
n, and

¢ the local geometry of\ corresponds exactly to local deformations(bf

then we can find a canonical sheaf of spectra\dn Having this in hand, our goal is
to seek examples of such moduli.

Unfortunately, several examples mentioned in previou§®@ex do not immediately
seem to have attachqudivisible groups. The deformations of Artin-Schreiervas
in the previous section, or Johnson-Wilson theories, doanptiori have attached
p-divisible groups’

®The stackM must actually be formal, witlp topologically nilpotent.

’In the Artin-Schreier case, the question becomes one ofhirig the 1-dimensional split
summand of the Jacobian at the Artin-Schreier curve to arfedsionalp-divisible group at
all points. The author is not aware of a solution to this peabht this stage.
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At the other extreme, one could ask to realize the modulikst&€,(n) itself by a
spectrum. This stack has geometry very close to the modubrofial groups. In
particular, it still breaks down according to height, butrisncated at heighh and
has extra structure at heights below The resulting object should give an interesting
perspective on chromatic homotopy theory.

The main obstruction to this program, however, seems to édlifficulty in find-
ing a presentation of this stack or any reasonable infoomadbout the category of
guasicoherent sheaves.

12 PEL Shimura varieties and TAF

Based on Lurie’s theorem, it becomes natural to seek mochabigms with associated
1-dimensionalp-divisible groups of height in order to produce new spectra. Fol-
lowing the approaches of Gorbunov-Mahowald and Ravenegppeoach this through
abelian varieties. However, rather than considering fasibf plane curves and their
Jacobians, we consider families of abelian varieties gupapvith extra structure. The
stunning fact is that the precise assumptions needed tapeagasonable families of
p-divisible groups occualreadyin families of PEL abelian varieties of a type studied
classically by Shimura, and of the specific kind featured arrtd and Taylor's proof
of the local Langlands corresponden@®][ The reader interested in these varieties
should refer to 35] and then 28.

One of the main places that-divisible groups occur in algebraic geometry is from
group schemes. For any (connected) commutative group scfiemve have maps
representing multiplication bg¥:

P G— G.

The identity elemene € G has ascheme-theoretimverse images[p] c G. Associ-
ated to a group schent® over a given bas&, the systenG[p¥] forms ap-divisible
group G(p) under sufficient assumptions @, such as ifG is an abelian variety.

For example, consider the multiplicative group scheme 8mecR), given by Gy, =
SpecR[t*1]). The multiplication-bypk map is given on the ring level by the map
t — t”, and the scheme-theoretic preimage of the identity is thecheme of solutions
of t* =1, or

SpecRItHY/(t* — 1)).
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If R has characteristic zero, then this schemegfatistinct points over each geometric
point of SpedR). If R has characteristip, then this scheme is isomorphic to

SpecRIt™]/(t — 1F).
Each geometric point has onbnepreimage in this case, and so thalivisible group
Gm(p) is totally formal.

The basic problem is as follows.

e The only 1-dimensional group schemes over an algebraichised field are
the additive groufz,, the multiplicative grougs,, and elliptic curves.

e The p-divisible group of am-dimensional abelian variet% has height & and
dimensionn.

As a result, if we decide that we will consider moduli of higltdmensional abelian
varieties, we need some way to cut down the dimension gittiwisible groupto 1. As

in the Mahowald-Gorbunov-Ravenel approach, we can caisyotlt by assuming that
we have endomorphisms of the abelian variety splitting dffdimensional summand
G canonically.

However, we also must satisfy a condition on the local gegm&Yhat this translates
to in practice is the following: given an infinitesimal exsgmn of thep-divisible group
G, we must be able to complete this to a unique deformation @fetement in the
moduli.

Our main weapon in this task is the following. S@&][for a proof, due to Drinfel'd.

Theorem 10 (Serre-Tate) Suppose we have a base schefnm which p is locally
nilpotent, together with an abelian schéme X. Any deformation of thep-divisible
groupA(p) determines a unique deformation A&f

Some of the language here is deliberately vague. Howevsristimore easily stated
in terms of fields. Suppose thétis a field of characteristip, andR is a local ring
with nilpotent maximal ideaim and residue fielk. Then the category of abelian
schemes oveR is naturally equivalent (via a forgetful functor) to the egory of
abelian varietie\ over k equipped with extensions of thegirdivisible groupA(p) to
R.

This does the heavy lifting for us. If we can specify a modiiiloelian varieties with a
1-dimensional summan@ of the p-divisible group that controls thentire p-divisible

8An abelian scheme is a family of abelian varieties over treeba
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group in some way, we will be done. This is accomplished vadforementioned
moduli of PEL Shimura varieties. For simplicity, we considbe case of simple
complex multiplication, rather than an action by a divisagebra, leaving generality
to other references.

To define these Shimura varieties requires the compilatiensabstantial dossier. We
simply present this now, and make it our goal in the followssgtions to justify why
all these pieces of data are important for us to include.

We first must state some necessary facts from the theory tibalshemes without
proof.

e If Alis an abelian scheme, tdealabelian schem@" is the identity component
Pic°(A) of the group of line bundles oA. Duals exist over a general base
scheme, dualization is a contravariant functor, and théléedual is canonically
isomorphic toA.

e There is a compatible dualization functor prdivisible groups with a canonical
isomorphismAY (p) = (A(p))Y . Dualization preserves height, but not dimension.
However, we have that dirf¥) + dim(G") is the height ofG).

e AnisogenyA — B between abelian schemes is a surjection with finite kernel;
it expressesB as isomorphic tA/H for H a finite subgroup scheme &f. An
isogeny isprime-to-pif the kernel has rank prime tp (as a group scheme).

e The endomorphism ring Endl(p)) is p-complete, and hence’,-algebra.

Fix an integen and continue to fix a primp. Let F be a quadratic imaginary extension
field of Q, and O the ring of integers of-. We require that be chosen so that
splits inF, i.e. O ® Zp = Zp x Zp. In particular, we can choose an idempotent
e € Or ® Zp such thate # 0,1. Complex conjugation is forced to taketo 1 — e.

In addition, we need to fix one further piece of data requicespecify a level structure,
which will be discussed in sectidtb.

We consider the functor that associates to a sch¥mger Z, the category of tuples
(A, A\, ¢,n) of the following type.

e Ais an abelian scheme of dimensiorover X.
e )\ A— AV isaprime-top polarization. (This is an isogeny such that = ),
together with a positivity condition; we will discuss it ther in sectioriL4.)

e 1. O — End@) is a ring homomorphism fron®g to the endomorphism ring
of A such that\u(a) = ()" ) for all @ € Op. We require that the summand
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e-A(p) C A(p) is 1-dimensional. (See sectids.)
e 7 is alevel structure or\. (See sectiolb.)

Morphisms in the category are isomorphismsA — B that commute with the action
¢, that preserve the level structure, and suchtthagf = n\a for some positive integer
n.

We take as given that this moduli is well-behaved. In paldiGit is represented by a
smooth Deligne-Mumford stack of relative dimension—-1) overZ,. We abusively
denote it by Sh without decorating it wimy of the necessary input data. It has an
associated sheaf of spectra, and the “universal” objean{g br global section object)
is denoted TAF. The Adams-Novikov spectral sequence tdletm

HS(Sh w®') = m_sTAF,

wherew isthe line bundle of invariant 1-forms onthe 1-dimensidoahal component.
The zero line
Ho(Sh, w®t)

consists of (integral) automorphic forms on the Shimuraksta

The heightn stratum of the Shimura stack is nonempty, and consists ofita et
of points whose automorphism groups can be identified witltefisubgroups of the
so-called Morava stabilizer grodfy,. There is a corresponding description of K@) -
localization of the spectrum TAF as a finite product of fixemAp spectra of Morava
E-theories by finite subgroups. These points can be classifeedhe Tate-Honda
classification of abelian varieties over finite fields.

In the following sections, we will explain how the specifiést bf data produces a 1-
dimensionalp-divisible group of the type precisely necessary for Lisgrtbeorem. For
reasons of clarity in exposition, we will discuss endomaspis before polarizations.

13 Eis for Endomorphism

The most immediately relevant portion of the data of a Shawariety is the endomor-
phism structure. The goal of this endomorphism is to prouslevith a 1-dimensional
split summand of the-divisible group ofA.

Recall that the endomorphism structurés a ring mapOr — End(A), where Of
was a ring of integers whogg-completionOr ® Z, contains a chosen idempoteat
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making it isomorphic tdZ, x Zy.
The composite ring homomorphism

Or — End@) — EndA(p))
lands in aZp-algebra, and so we have a factorization

OF © Zp — EndA(p)).
The image of the idempotertgives a splitting ofp-divisible groups
Alp) = e-Alp) © (1 —€) - A(p).

By assumption the-divisible groupe - A(p) is 1-dimensional.

Therefore, the elements of this moduli have canonicallyo@ated 1-dimensional
p-divisible groups. We do not yet know that these have height

There is a similar decomposition of tigedivisible group of the dual abelian variety.

A(p) = e’ -Ap)’ @ (1-e") Ap)".

14 P is for Polarization

The next piece of necessary data is the primg-fwlarization\: A — AV. Although
polarizations are typically used in algebraic geometryuargntee representability of
various moduli problems (and this is a side effect necedsanys, as well), in our case
the polarization also gives control over the complemergargmand of thg-divisible

group.

The condition that this map is a prime-foisogeny implies that the induced map of
p-divisible groups\: A(p) — AY(p) is an isomorphism.

The condition that\ conjugate-commutes with the action ©f in particular implies
xe=(1-e")\.

As a result, the isomorphism
A(p) — A" (p)

decomposes into the pair of isomorphisms.

e-A(p)—(L—-¢€")-A'(p)=(1-¢ Ap)’
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(1-¢-Ap)—e" - A'(p) = (e-Ap)"

As a result, the polarization provides us witbanonicalidentification of (1-€)- A(p),

the ( — 1)-dimensional complementary summand of ghdivisible group, with the
object €- A(p))Y, thedual of the 1-dimensional summand of interest to us. As the
summands corresponding écand (1— €) must then have the same height, the height
of each individual factor is.

This allows us to check that the conditions of Lurie’s theorkold. As stated in
section1l, we must check that an infinitesimal extension of the 1-dsiwal p-
divisible groupe- A(p) determines a unique extensionAdfwith endomorphisms, and
with polarization.

In brief, we sketch the necessary reasoning.

e An extension of-A(p) determines a dual extension @& A(p))¥ = (1—e)-A(p).
e Therefore, we have an extension of the whpldivisible groupA(p).

e Declaring thate and (1— €) are idempotents corresponding to this splitting
determines an extension of the action(df.

e Theisomorphisms given by the polarization give a uniquergsibn ofA: A(p) —
A(p) which conjugate-commutes with the action®@f .

e The Serre-Tate theorem discussed in sectidthen implies that the extension
of A(p), with the given extensions afand A, determine a unigue extension of
A with extensions of and \.

A polarization also includes a positivity condition. Foramplex torusC9/A overC,
this amounts to a positive definite Hermitian form 68 whose imaginary part takes
integer values orh. The existence of such a form serves to eliminate the pdisgsibiat
the torus does not have enough nonconstant meromorphitdnson it to determine a
projective embedding; in higher dimensions, complex weierically cannot be made
algebraic.

Polarizations also serve to eliminate pathology in farsibéabelian varieties. The set
of automorphisms of a polarized abelian variety is a finiteugy and the moduli of
polarized abelian varieties is itself a Deligne-Mumfordcst [L4, 39]. Knowing this
serves as a first step in our ability to find a Deligne-Mumfdeatk for the PEL moduli
we are interested in.
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15 L is for Level Structure

There is one remaining ingredient in the data of a PEL Shimargty, which is the
data of a level structure.

Those familiar with the more classical theory of ellipticrees will be familiar with
level structures such as the choice of a finite subgroup ofuinee, or a basis for the
n-torsion. This kind of data can be included in the level stices, but it is not (for the
purposes of this document) the main point.

Given just the requirements of a polarization and endomsnpldata (a PE moduli
problem), we would still have a moduli satisfying the requients of Lurie’s theorem,
and could produce spectra. However, such a moduli probleadxssually suffer from
a slight defect, in the form of an infinite number of conneatethponents.

There are various pieces of data, however, that are intar@the connected com-
ponent; we can use this to classify various connected coemtsrnnto ones of more
manageable size for our sanity.

We require a definition. Suppogeis an abelian variety over an algebraically closed
field k. For any prime/ # p, we have the groups[¢¥] of ¢-torsion points ofA, which
are abstractly isomorphic t&(¢€)?". These fit into an inverse system

= AP — A’ — Al — 0
where the maps are multiplication iy The inverse limit is called thé-adic Tate
module F(A) of A, and is a freeZ,-module of rank B.

The data of a polarizatioA — A gives rise to a pairing on thé-adic Tate module.
Specifically, it gives rise to an alternating bilinear pagrito the Tate module of the
multiplicative group schem@&,(Gn) = Z,. This pairing is referred to as the-Welil
pairing.

If (A, \,¢) is a polarized abelian variety ov&rwith conjugate-commuting action of
Or, we find thatT,(A) is a freeZ,-module of rank 8 equipped with a pairing—, —)
on T,(A). This form is alternating, bilinear, an@r-Hermitian in the sense that

(ax,y) = (x, ay)
forall o € Of.

The isomorphism class of this pairing up to multiplicationdscalar is afnvariant
of the connected component @& (\, ¢) in the PE moduli problem.
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Therefore, part of the input data required to define our PEdutiproblem is, for each

¢ # p, a specified isomorphism class of frég-moduleM; of rank 2h with alternating
Hermitian bilinear pairing (up to scale). We can also speaif open subgroul of

the group of automorphisms df[ M, (such as automorphisms preserving specified
subgroups or torsion points) as part of the data. TKherbit of an isomorphism
[IM¢ — [ Te(A) is alevel K structure

In the PEL moduli problem of tuplesA(A, ¢, n), the level structure; is a (locally
constant) choice of leve structure onT,(Ax) for each geometric point of the base
schemeX. This is equivalent to specifying one such choice per cat@tecomponent
which is invariant under the action of tiééale fundamental group of.

Given such a level structure, one can prove that the modubv@h Z, consists of a
finite number of connected components. These details doccot @ the elliptic case
because there are few isomorphism classes of alternafingdyi pairings on a lattice
of rank two.

It is common in the more advanced theory of automorphic farmnsimply drop the
abelian varieties entirely, and simply think in terms of duetive algebraic group with

a chosen open compact subgrdpWhen pressed, for many expressions of a Shimura
variety one can find a reduction to a certain kind of moduli loélean varieties by a
process of reduction. However, this is by no means a stifaigberd process.

16 Questions

This section is an attempt to give a series of straw-man aggisras to why we might
choose this particular conglomeration of initial dataheatthan making some slight
alteration. It also attempts to answer some other questimisppear frequently.

Question 11 Why do we act byOr for a quadratic extension @@? Why don’t we
choose endomorphisms by some other ring? WHy specified as part of the data?

In short, we must act by a ring whogecompletion contains an idempotent, but does
not contain an idempotent itself (which would force the freinsional summand to
come from an elliptic curve, and hence cap the height optiaevisible group at 2). In
order to uniquely give extensions of endomorphisms as iticset4, the p-completion

of the ring must essentially bé, x Z,, and since End) is a finitely generated free
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abelian group forA over a fieldk, we might as well assume that our ring to be free of
rank 2 overZ.

Such aring® has rationalization a quadratic extensiorgfbut might not be integrally
closed. We could indeed choose such subring®pef and these would give more
general theories with interesting content, i is a legitimate starting point.

If we did not specifyF or O as part of the data, they would be invariants of connected
components.

Question 12 Why do we require an action on the abelian variety itself? \Wlog't
we simply require an abelian variety with a specified 1-disi@mal summand of its
p-divisible group?

The short answer is that it is based on our desire for the Shistack Sh to actually
have some content at heigit

Essentially, any height point of such a moduli will automatically have an action of
a ring Og for someF, or possibly a subring as specified in the previous question.
More, simply specifying that we have a 1-dimensional surdnainthe p-divisible
group will give a tremendous abundance of path componetiteohoduli as in section
15. Those path components that cannot be rectified to aaetions for some) will

not have any height points.

Question 13 Why don't we simply pick a connected component of the modather
than specifying a level structure and possibly ending up w&veral connected com-
ponents?

One problem is that it is hard to know how much data is requive@duce down to a
particular connected component, and even when it is knoverhiard to state it. This
kind of data is often a question about class groups.

Eventhen, the resulting moduli is no longer defined &jgrbut instead usually defined
over some algebraic extension.

Question 14 Which choices of quadratic imaginary field and level struetdata
determine interesting Shimura varieties? How does thetstrel of the spectrum TAF
vary depending on these inputs? What does the global gepofetiese moduli look
like (in characteristic O or characterisf} at interesting chromatic heights? How does
one go about computing these rings of integral, or evennmatjcutomorphic forms
and higher cohomology?
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Some progress has been made at understanding chromati2 lewe the connection
between TAF and TMF. A brief description of this is to follow $ectionl7. The
structure definitely varies from input to input. Howevelistls a place where more
computation is needed, and to create more computation ausrie use more tech-
nigues for computing with these algebraic stacks that arsingly presented by Hopf
algebroids.

17 Example: CM curves and abelian surfaces

We list here two basic examples of these moduli of abeliaietras at chromatic levels
1 and 2.

At chromatic level 1, the objects we are classifying arepttli curves with com-
plex multiplication (the polarization data turns out to leelundant). Associated to a
gquadratic imaginary extensidn of Q, the moduli roughly takes the form
[T0«//0¢1
CI(F)
Here CIF) is the class group ofF, and f//G] denotes a point with automorphism

group G. This is, strictly speaking, only a description of the getiinepoints of the
stack.

At chromatic level 2, the objects under study are abeliafasas with polarization
and action ofOg, together with a level structure. Ignoring the level stwef one
can construct various path components of the moduli aswvisllo (This describes
forthcoming work [].)

Given an elliptic curvekE, we can form a new abelian surfaBe® O = E x E,
with Og-action through the second factor. The Hermitian pairing(n, together
with a “canonical” polarization on the elliptic curvg, gives rise to a polarization of
E ® Of that conjugate-commutes with tif¢- -action. This construction is natural in
the elliptic curve, and produces a map of moduli

Mg — Sh

The image turns out to be a path component of Sh. This is anoig@nism onto
the path component unles$s is formed by adjoining a 4th or 6th root of unity. In
these cases it is a degree 2 or degree 3 cover respectivelyearecover spectra with
homotopy

Zplca, €2, A7Y € T TMF[A™Y]
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for primesp = 1 mod 4, and
Zplc3, c6, A7 € T TMF[ATY].
for primesp = 1 mod 3.

There are generalizations and modifications of this coatitnito recover path compo-
nents for other choices of level structure. In particulgirubing alternate constructions
we obtain objects which are homotopy fixed points of the actiban Atkin-Lehner
involution on spectra TM&EN)[A1].

Two such examples are as follows. These rings of modulardama subrings of those
described by Behren$§]and Mahowald-Rezk32] respectively.

If p> 3 iscongruentto 1 or 3 mod 8, there is a spectrum associat@aniduli of
abelian varieties wittZ[ v/ —2]-multiplication whose homotopy is a subring

Zplae, D'/ C TMFo(2)[A™ 1.

of the p-completed ring of modular forms of level 2, wheigg| = 4 and|D| = 8.

If pis congruent to 1 mod 3, there is a spectrum associated to alnuidabelian
varieties withZ[(1 + +/—3)/2]-multiplication whose homotopy is a subring

Zp[a§,D*Y/ C TMRo(3)[A ™.
of the p-completed ring of modular forms of level 3, wheed| = |D| = 12.
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