Date due: Wednesday, February 9, 2011
The problem set is due at the beginning of the class on Wednesday.
Section 1.8: Exercises 15 and 16.
A. What is the coefficient of x^{5} when one expands $(x+2)^{7}$?
B. A weekly lottery asks you to choose 5 different numbers between 1 and 45 . At the end of the week, 5 such numbers are drawn at random and you win the jackpot if your 5 numbers match the drawn numbers (order does not matter). What is your chance of winning?
C. If p is a prime number of the form $4 n+3$, then prove that we cannot solve $x^{2} \equiv-1(\bmod p)$. [Hint: Use Fermat's Little theorem.]
Section 1.9: Exercises 3, 6, 7, 9.

