MATH 4281: INTRODUCTION TO MODERN ALGEBRA SAMPLE MIDTERM TEST II

INSTRUCTOR: ALEX VORONOV

You may not use a calculator, notes, books, etc. Only the exam paper and a pencil or pen may be kept on your desk during the test.

Good luck!

Problem 1. Let

$$\pi = (12)(58)(346)(52)(41)(37)(67).$$

(1) Write π as a product of disjoint cycles.

- (2) Is $\pi \in A_8$?
- (3) What is the maximum possible order of an element in S_8 ?

Problem 2. Prove that

$$H = \left\{ \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} : \theta \in \mathbb{R} \right\}$$

is a subgroup of $G = SL(2, \mathbb{R})$. (Be sure to show that H is a subset of G.) You may find the following trig identities useful:

 $\sin(A+B) = \sin A \cos B + \sin B \cos A, \quad \sin(A-B) = \sin A \cos B - \sin B \cos A, \\ \cos(A+B) = \cos A \cos B - \sin A \sin B, \quad \cos(A-B) = \cos A \cos B + \sin A \sin B.$

Problem 3. Let G be a group and suppose that |G| = pq where p and q are primes. Prove that every proper subgroup of G is cyclic.

Problem 4. Let $G = \mathbb{Z}_{20}$, and H = < [4] >. List the distinct left cosets of H in G.

Problem 5. Give the definition of a zero divisor. Give an example of such.

Problem 6. Give the definition of a field as a ring with certain conditions. Which of the following are (1) fields, (2) rings, or (3) neither:

 \mathbb{C} , \mathbb{Z} , $\operatorname{Mat}_2(\mathbb{R})$, $\operatorname{GL}(2,\mathbb{R})$, \mathbb{Z}_{35} , \mathbb{Z}_{17} , $\mathbb{Z}_{200,000}$, K[x], $K[x, x^{-1}]$? Explain only why one is not a ring or not a field.

Answer: \mathbb{C} is a field (each nonzero complex number has an inverse) \mathbb{Z} is a ring (two ring operations, but the units are only ± 1), $\operatorname{Mat}_2(\mathbb{R})$ is a ring (two ring operations, but not every matrix is invertible), $\operatorname{GL}(2,\mathbb{R})$ is neither (not a ring and thereby a field, because closed only under multiplication), \mathbb{Z}_{35} is a ring (two ring operations, but has zero divisors: [5] and [7]), \mathbb{Z}_{17} is a field (two ring operations, and every nonzero element is invertible), $\mathbb{Z}_{200,000}$ is a ring (two ring operations, but [2] is a zero divisor), K[x] is a ring (two ring operations, but the units are only constant polynomials), $K[x, x^{-1}]$? is a ring (two ring operations, but the units are only $ax^n, a \in K, n \in \mathbb{Z}$).

Date: March 24, 2011.

Problem 7. Let G and H be groups and $\phi : G \to H$ a homomorphism. Prove that $\ker(\phi)$ is normal in G.