MATH 4281: INTRODUCTION TO MODERN ALGEBRA
SAMPLE MIDTERM TEST III, WITH SELECTED SOLUTIONS

INSTRUCTOR: ALEX VORONOV

You may not use a calculator, notes, books, etc. Only the exam paper and a
pencil or pen may be kept on your desk during the test.
Good luck!

Problem 1. Let G = Zy, and H =< [4] >.

(1) What is the order of [6] + H in G/H?
(2) Is G/H isomorphic to Z4 or the group of symmetries of the rectangle?
Explain your answer.

Problem 2. Let G = Dy x Dy and H = ((r,e)), the subgroup generated by the
element (r,e) € Dy x Dy, where r is a 90-degree counterclockwise rotation of the
square about the centroid axis and e is the nonmotion. Let j be the flip about the
axis passing through the opposite vertices of the square.

(1) Show that H is normal and calculate the order of the quotient group G/H.
(2) What is the order of (r®,j)H in G/H?

Problem 3. (1) Find all abelian groups of order 20 up to isomorphism.
(2) Does every abelian group of order 20 have an element of order 47
(3) Does every abelian group of order 20 have an element of order 57

Problem 4. Let G; and G2 be groups and H;, Hs normal subgroups of G; and
G, respectively. Prove that

(G1 x G2)/(Hy x Hy) 2 G1/Hy x G2/ Hs.
[Hint: Use one of the homomorphism theorems.]
Solution: Define a homomorphism
¢:G1 x Gy — G1/Hy x Go/Hy
by the formula
¢(91,92) := (91H1, g2 H3).

Check that ¢ is a surjective ring homomorphism. Its kernel ker ¢ is the set of pairs
(91,92) such that (g1H1,g2Hs) = (Hy, Hs), which means g, € Hy and g2 € Hs.
Thus, ker ¢ = H; x Hy, and we are done by the first homomorphism theorem.

Problem 5. How many necklaces can be made with eight beads of r different
colors, if any number of beads of each color can be used? Describe all group actions
you are using for counting.
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Solution: This is done similar to Example 5.2.4. Define an action of the dihedral
group Dg on the set X of colorings of beads on a circular wire with a knot not
yet tied up. This set has r® elements, because we have r choices for each bead
independently. To define the action of Dg on X, place the beads at the vertices
of a regular octagon and move the beads around by its symmetries. Note that the
number of necklaces is the number of orbits of this action. Now apply Burnside’s
lemma to this action, for which we need to compute the number of elements in the
set Fix(g) for each g inDg. For Fix(e) is always all X, so |Fix(e)| = r8. Let R
denote counterclockwise rotation of the octagon by 27/8. Since g = R, R®, R®,
and R" generate the same subgroup of Dg, their sets Fix(g) will be the same; and
if a coloring is in Fix(R), all the beads must be of the same color, and there are r
such colorings. Since g = R? and RS generate the same subgroup of Dg, their sets
Fix(g) will be the same; and if a coloring is in Fix(R?), every other bead around
the circle should be of the same color, and there are r2 such colorings. The set
Fix(R*) will have every opposite bead on the other side of the circle colored the
same; thus, there are r* colorings like that. For each of the four flips a over axes
passing through the opposite vertices, the sets Fix(a) will have vertices across the
axis colored the same. There are three such pairs, which gives 72 colorings; whereas
the two vertices on the axis may be colored in any way, which results in a total of 7°
colorings. Finally, for each of the four flips b in axes passing through the midpoints
of the opposite sides, the sets Fix(b) will have vertices across the axis colored the
same; resulting in 7* colorings. Collecting all these in Burnside’s formulas, we get
%(7"8 +dr 4+ 2r% 4t 4rS 4t
orbits and thereby necklaces.

Problem 6. Find all ring homomorphisms from Z to Z.

Solution: If ¢ : Z — Z is a homomorphism, it will satisfy ¢(a+0b) = ¢(a) + ¢(b)
and thus, ¢(m) = me¢(1) = mn, where n denotes ¢(1). Now, since we also have
¢(ab) = ¢(a)p(b), we get (ab)n = (an)(bn) for each a,b € Z, in particular, for
a=b=1: n=n? which yields n = 0 or 1. Thus, every homomorphism must be
either ¢(m) = 0 or ¢(m) = m, and it is clear that both maps are homomorphisms.
Thus, this describes all of them.

Problem 7. Let I be the set of all polynomials in Z[z| that have an even number
as the constant term. Prove that I is an ideal of Z[z]. Is it principal? Is it maximal?

Solution: To see that I is an ideal, we check that the sum of two polynomi-
als with even constant term is a polynomial like that and the negative of such
polynomial is a polynomial with even constant term; also, if we multiply such a
polynomial by any other polynomial, we will also get an even constant term in the
result. The ideal I is not principal, because the two polynomials 2 and x + 2 in 1
do not have common factors in Z[z]. The ideal I is maximal, because Z[z]|/I = Z,
(the isomorphism comes from a homomorphism p(z) — p(0) (mod 2)), which is a
field.



