MATH 4281: INTRODUCTION À L'ALGÈBRE MODERNE SELECTED SOLUTIONS TO HOMEWORK 12

INSTRUCTOR: ALEX VORONOV

- **6.2.12: Solution:** For noncontinuous functions, the answer is functions which take values 0 and 1 on points of X. The functions on X = [0, 1] which take values 0 or 1 and are continuous will be just constant, because of the intermediate value theorem: otherwise, they will have to take all values between 0 and 1.
- **6.2.14:** Solution: Use Proposition 6.2.28 (b,d). We need to see that R = Re + R(1-e), which is true because for each $r \in R$, we have r = re + r(1-e). Then if re + r'(1-e) = 0, then, multiplying by e in the right, we get re + 0 = 0, i.e., re = 0. Similarly, r'(1-e) = 0.
- **6.2.15:** Solution: A nontrivial idempotent might be found as e = [15] by going through elements of \mathbb{Z}_{35} one by one and checking if $[2]^2 = [2]$, $[3]^2 = [3]$, and so on. Then $\mathbb{Z}_{35}e = [15]\mathbb{Z}_{35}$ and $\mathbb{Z}_{35}(1-e) = [-14]\mathbb{Z}_{35} = [21]\mathbb{Z}_{35}$. Let us define maps $\phi : \mathbb{Z}_5 \to [21]\mathbb{Z}_{35}$ and $\psi : \mathbb{Z}_7 \to [15]\mathbb{Z}_{35}$: $\phi(m \pmod 5) := 21m \pmod 35$) and $\psi(n \pmod 7) := 15n \pmod 35$. Observe that these maps are well-defined, that is $\phi(5k) = 0$ and $\psi(7l) = 0$, ring homomorphisms, and have inverses: $\phi^{-1}(21[m]) := [m]$, and $\psi^{-1}(15[n]) := [n]$, which are also well defined and homomorphisms. Thus, ϕ and ψ are isomorphisms, which add to an isomorphism $\mathbb{Z}_5 \oplus \mathbb{Z}_7 \to [21]\mathbb{Z}_{35} \oplus [15]\mathbb{Z}_{35}$.
- **6.3.6:** Solution: Proposition 6.3.7 gives a bijection between ideals in R containing M and ideals in R/M. Thus, if there are no ideals in R strictly in between M and R, then there are no ideals in R/M strictly in between 0 and R/M, and vice versa.
- **6.3.7: Solution**: (a) $n\mathbb{Z}$ is NOT a maximal ideal, if and only if there exists an ideal I such that $n\mathbb{Z} \subset I \subset \mathbb{Z}$. By Proposition 6.2.17(b), $I = m\mathbb{Z}$ for some $m \in \mathbb{Z}$. $n\mathbb{Z} \subset m\mathbb{Z}$, if and only if n = mk, i.e., m|n. This happens, if and only if n is not a prime.
- (b) The same argument, but for K[x] instead of \mathbb{Z} and Proposition 6.2.17(c) instead of (b).

1

(c) Obvious in view of Corollary 6.3.13.

Date: May 4-5, 2011.