MATH 4281: INTRODUCTION À L'ALGÈBRE MODERNE SOLUTION TO PROBLEM 6.1.16

INSTRUCTOR: ALEX VORONOV

Solution: According to Definition 6.1.10, all we need to show is that the map $f(a+b \xi)=(a+b, a-b)$ satisfies the following conditions:
(1) f is bijective;
(2) $f(x+y)=f(x)+f(y)$ for all x and y;
(3) $f(x y)=f(x) f(y)$ for all x and y.
(1) The map f is bijective, because it has an inverse $f^{-1}(u, v)=\frac{1}{2}(u+v)+$ $\frac{1}{2}(u-v) \xi$. (As an alternative, you could show that f is injective and surjective.)
(2) $f\left(a+b \xi+a^{\prime}+b^{\prime} \xi\right)=f\left(\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) \xi\right)=\left(a+a^{\prime}+b+b^{\prime}, a+a^{\prime}-b-b^{\prime}\right)=$ $(a+b, a-b)+\left(a^{\prime}+b^{\prime}, a^{\prime}-b^{\prime}\right)=f(a+b \xi)+f\left(a^{\prime}+b^{\prime} \xi\right)$.
(3) $f\left((a+b \xi)\left(a^{\prime}+b^{\prime} \xi\right)\right)=f\left(\left(a a^{\prime}+b b^{\prime}\right)+\left(a b^{\prime}+b a^{\prime}\right) \xi\right)=\left(a a^{\prime}+b b^{\prime}+a b^{\prime}+b a^{\prime}, a a^{\prime}+\right.$ $\left.b b^{\prime}-a b^{\prime}-b a^{\prime}\right)=(a+b, a-b)\left(a^{\prime}+b^{\prime}, a^{\prime}-b^{\prime}\right)=f(a+b \xi) f\left(a^{\prime}+b^{\prime} \xi\right)$.

