SAMPLE MIDTERM EXAM - MATH 5378, SPRING 2013

THIS IS A CLOSED-BOOK, CLOSED-NOTES EXAM. YOU CAN USE IN YOUR SOLUTIONS ANY RESULT THAT WAS COVERED IN CLASS OR THE TEXT. YOU CAN ALSO USE ANY OF THE RESULTS FROM THE HOMEWORK.

Note: This exam is rather a set of sample problems. It is actually longer than an actual one-hour exam.
(1) Let $\alpha: I \longrightarrow \mathbb{R}^{2}$ be a regular parametrized plane curve and $N(t)$ and $\kappa(t)$ be the normal vector, positively oriented with respect to the tanget vector, and the directed curvature of α, respectively. Assume $\kappa(t) \neq 0$ for all $t \in I$. Recall that in this situation the curve

$$
\mathcal{E}(t)=\alpha(t)+\frac{1}{\kappa(t)} N(t)
$$

is called the evolute of α. Show that the tangent line of the evolute is the normal line to α at t.
(2) Show that the knowledge of the vector function $B(s)$ (the binormal vector) of a curve α, with nonzero torsion everywhere, determines the curvature $\kappa(s)$ and the absolute value of the torsion $\tau(s)$ of a unit-speed curve $\alpha(s)$. In other words, if $B(s)$ is given, but $\alpha(s)$ is not, show how to find $|\tau(s)|$ and $\kappa(s)$.
(3) One way to define a coordinate chart for the sphere S^{2}, given as $x^{2}+$ $y^{2}+(z-1)^{2}=1$, is to consider the so-called stereographic projection π : $S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}$ which carries a point $p=(x, y, z)$ on the sphere minus the north pole $N=(0,0,2)$ onto the intersection of the $x y$-plane with the straight line which connects N to p. Let $(u, v)=\pi(x, y, z)$. (1) Show that $\pi^{-1}: \mathbb{R}^{2} \rightarrow S^{2}$ is given by

$$
\begin{aligned}
x & =\frac{4 u}{u^{2}+v^{2}+4} \\
y & =\frac{4 v}{u^{2}+v^{2}+4} \\
z & =\frac{2\left(u^{2}+v^{2}\right)}{u^{2}+v^{2}+4}
\end{aligned}
$$

(2) Use this chart to give another coordinate chart, so as both charts cover the sphere. Write down formulas for the corresponding change of coordinates.
(4) Suppose we have a surface parametrized by coordinates u and v and whose first fundamental form is $E=1, F=0, G=u^{2}+a^{2}$, where a is a constant. Find the area of the triangle on the surface bounded by the curves

$$
u= \pm a v, \quad v=1
$$

[Hint: Use the fact from Multivariable Calculus that the surface area element $d A$ is $\left\|x_{u} \times x_{v}\right\| d u d v$, i.e., use Theorem 7.16.]
(5) Let $\lambda_{1}, \ldots, \lambda_{m}, m>2$, be the normal curvatures of a surface S at $p \in$ S along the directions making angles $0,2 \pi / m, \ldots,(m-1) 2 \pi / m$ with a principal direction. Prove that $\lambda_{1}+\cdots+\lambda_{m}=m H$, where H is the mean curvature at p. [Hint: Use the fact that for $\theta=2 \pi / m$

$$
\left.1+\cos ^{2} \theta+\cdots+\cos ^{2}(m-1) \theta=\frac{m}{2} .\right]
$$

(6) Compute the first fundamental forms for the following surfaces:
(a) $x(u, v)=((a+b \cos v) \cos u,(a+b \cos v) \sin u, b \sin v)$ (the torus);
(b) $x(u, v)=(a v \cos u, a v \sin u, b v)$ (the cone).
(7) Compute the second fundamental form and the Gaussian curvature of the pseudosphere $x(u, v)=\left(a \sin u \cos v, a \sin u \sin v, a\left(\ln \tan \frac{u}{2}+\cos u\right)\right)$.

