MATH 8211: COMMUTATIVE AND HOMOLOGICAL ALGEBRA PROBLEM SET 3, DUE DECEMBER 12, 2003

SASHA VORONOV

I encourage you to cooperate with each other on the homeworks.
Convention: all rings are commutative with an identity element $1 \neq 0$, all ring homomorphisms carry 1 to 1 , and a subring shares the same identity element with the ring.
Problem 1. Find a ring A and a multiplicative set S such that the relation $(a, s) \sim$ $(b, t) \Longleftrightarrow a t=b s$ is not an equivalence relation.
Problem 2. Let $M_{i} \subset M$ be submodules indexed by some set J, for which $M=$ $\sum_{i \in J} M_{i}$, the sum of the submodules. Suppose that S is a multiplicative set, and $S^{-1} M_{i}=0$ for all $i \in J$. Make an original discovery concerning $S^{-1} M$.
Problem 3. If $S=\left\{1, f, f^{2}, \ldots\right\}$ is a multiplicative set of A, prove that $\operatorname{Spec}\left(A_{f}\right) \subset$ $\operatorname{Spec} A$ is the complement of the closed set $\mathcal{V}(f)$.
Problem 4. Let $A=k[V]=k\left[X_{1}, \ldots, X_{n}\right] / I(V)$ be the coordinate ring of a variety $V \subset k^{n}$ and $f \in A$. Prove that $A[1 / f]$ is the coordinate ring of a variety $V_{f} \subset k^{n+1}$, which is in natural bijective correspondence with the open set $V \backslash V(f)$.
Problem 5. Exercise 2.2 of [E].
Problem 6. Exercise 2.8 of [E].
Problem 7. If M is an A-module, show that M can be identified with a certain subset of the sections of the surjection

$$
\begin{aligned}
\coprod_{P \in \operatorname{Spec} A} M_{P} & \rightarrow \quad \operatorname{Spec} A \\
m & \mapsto P \quad \text { for } m \in M_{P}
\end{aligned}
$$

If S is a multiplicative set, show that $S^{-1} M$ can be identified with a subset of partially defined sections, defined for P with $P \cap S=\emptyset$. By the way, M_{P} is called the stalk of M over P.
Problem 8. Give an example of a ring A and an ideal I which is not primary, but satisfies the condition $f g \in I \Longrightarrow f^{n} \in I$ or $g^{n} \in I$ for some n. [Hint: that is, find a nonprimary ideal whose radical is prime.]
Problem 9 (Fitting's Lemma). Let M be a Noetherian module and $\phi: M \rightarrow M$ a homomorphism. Prove that $\operatorname{ker} \phi^{n} \cap \operatorname{im} \phi^{n}=0$ for some $n>0$. [Hint: use our method of proving that every indecomposable ideal in a Noetherian ring is primary, when we were proving Noether's theorem on the existence of primary decomposition.]
Problem 10. Let $A=k[X, Y, Z]$ and I the ideal $(X Y, X-Y Z)$. Find a primary decomposition of I and determine the corresponding primes. [Hint: to guess the result, draw the variety $V(I)$. To prove it, note that the variety $X=Y Z$ is

[^0]isomorphic to the $Y Z$-plane; consider $A \rightarrow k[Y, Z]$ sending X to $Y Z$ and restriction of primary ideals via this homomorphism.]
Problem 11. Let $A=k[X, Y, Z] /\left(X Z-Y^{2}\right)$ and $P=(x, y)$, and set $M=A / P^{2}$.
(1) Determine Ass M. [Hint: use a primary decomposition of P^{2} in A.]
(2) Find the elements of M annihilated by each assassin.
(3) Find a chain of submodules $0=M_{0} \subset M_{1} \subset \cdots \subset M_{n}=M$ with $M_{i} / M_{i-1} \cong A / P_{i}$, where $P_{i} \in \operatorname{Spec} A, i=1, \ldots, n$.
Problem 12. Exercise 3.1 of [E$]$.
Problem 13. Exercise 3.3 of [E].
Problem 14. Using Nakayama's lemma, show that if (A, m) is a Noetherian local ring, then the maximal ideal m is principal, if and only if m / m^{2} is one-dimensional over $k=A / m$. Show also that A is a DVR, if and only if A is Noetherian, local with Spec $A=\{0, m\}$, and m / m^{2} is one-dimensional over $k=A / m$.
Problem 15 (DVRs and nonsingular curves). This problem says that A is a DVR, if and only if the plane curve $C:=\{f=0\} \subset k^{2}$ is nonsingular at $(0,0)$.

Let k be an algebraically closed field and $f \in k[X, Y]$ an irreducible nonconstant polynomial of the form

$$
f(X, Y)=l(X, Y)+g(X, Y)
$$

with $l(X, Y)=a X+b Y$ and $g \in(X, Y)^{2}$. Set $R=k[X, Y] /(f), P=(X, Y) /(f)$, and $(A, m)=\left(R_{P}, m_{P}\right)$. Prove that A is a DVR, if and only if $l \neq 0$. [Hint: use Problem 14.]

That is it! Happy Thanksgiving!

[^0]: Date: November 26, 2003.

