
LECTURE 13: THE FULTON-MACPHERSON
COMPACTIFICATION

ALEXANDER A. VORONOV

1. The Fulton-MacPherson compactification

The compactification we will be talking may be regarded as a higher dimensional
generalization of the Deligne-Knudsen-Mumford (DKM) compactification M0,n of
the genus zero moduli space M0,n. Start with the configuration space C(X;n) of
points in a complex compact manifold X of dimension d:

C(X;n) := {the space of configurations of n distinct labeled points in X} = Xn\∆,

where ∆ is the large diagonal. To mention immediate connection with the mod-
uli spaces, note that M0,n = C(CP1;n)/PGL2(C) = C(C;n − 1)/Aff(C), where
Aff(C) = C o C

∗ is the affine group of the complex line C, which is at the same
time the stabilizer in PGL2(C) of the ∞ point in CP1.

The configuration space C(X;n) is not compact, even if X is compact, unless
we deal with such uninteresting cases as n = 0 or 1, or d = dimX = 0. Whence we
have the following “big” question.

Question 1. How to compactify C(X;n)?

The answer to this question becomes more and more complicated depending on
how much you expect of it. There is always a topological resort, the one-point
compactification: (Xn \ ∆)•, which is singular. There is a common-sense com-
pactification Xn, which is smooth, but not what is accepted to be smooth as a
compactification. A smooth compactification of a complex manifold U is a com-
pact complex manifold V containing U as an open subset, so that the complement
D := V \ U is a normal-crossing divisor, which in its turn means that each irre-
ducible component of D is smooth and any number of components of D intersect
transversally. These strong conditions are needed for many reasons: it is easier to
describe the rational homotopy type of U , compute the mixed Hodge structure on
it, study the Picard group and the Chow ring of U , if a smooth compactification is
known.

When d = dimX = 1, X2 would serve the purpose: the diagonal ∆ is a complex
curve isomorphic to X, and it is always a normal-crossing divisor, since dimX2 = 2
and X is irreducible, which we assumed by saying that X is a complex manifold.
It turns out that the problem of a smooth compactification in general was not
resolved until the early nineties, when W. Fulton and R. MacPherson took care of
it in [FM94]. Fulton-MacPherson’s answer to this question is a clever sequence of
blowups of the diagonals in Xn. The construction is so canonical and has such a nice
combinatorial description that it makes sense in applying it blindly to a noncompact
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manifold X to get a number of nice things, including a cofibrant module over the
configuration space operad, see M. Markl [Mar99].

1.1. Stable degenerations. The complex points of the Fulton-MacPherson (FM)
compactification C(X;n) may be described as the set of equivalence classes of
stable degenerations of X with n labeled punctures, similar to the case of the DKM
compactification. A stable degeneration here is a copy of the space X along with a
number of labeled punctures and a number of “double points”, all distinct. At each
double point x, a copy of the projective space P(TxX ⊕ C) ∼= CP

d, where TxX is
the holomorphic tangent space, is attached by blowing up the double point x on X
and identifying the resulting exceptional divisor P(TxX) with the same hyperplane
in P(TxX ⊕C). These copies of CPd may be thought of as bubbles attached to X,
see the figure. This is not the whole story yet. On each of these bubbles, there is at
least two distinct marked points, either labeled punctures, or new double points, all
away from that hyperplane P(TxX). Note that the complement to this hyperplane
is naturally identified with TxX. At each of these double points, if any, another copy
of P(TxX ⊕ C) ∼= CP

d is attached through the blowup of the double point. Each
of the new bubbles may have more punctures and bubbles attached, so that the
total number of double points and punctures on each bubble (but not necessarily
X itself) is at least three, and the dual graph of this configuration is a tree, which
has a distinguished vertex, the one corresponding to X. (Fulton and MacPherson
prefer to cut this vertex along with the adjacent edges off this tree and speak about
a forest, which is a disjoint union of a finite number of trees.) This is not it, though.
These stable degenerations are equivalent, so that the FM compactification becomes
the set of equivalence classes of stable degenerations, under the action of the affine
group Aff(Cd) = C

d
o C

∗ on each bubble. This group acts as the stabilizer of the
hyperplane P(TxX) in the group PGLd+1(C).

figure of a degenerate configuration

figure of the corresponding tree

As in the case of the DKM compactification, the FM compactification admits
a “topological” stratification, the one in which the strata correspond to the trees,
which are the dual graphs of stable degenerations. The trees that occur are the
trees with n labeled legs (which one may or may not separate into n − 1 legs and
a root) with a distinguished vertex, so that the valence of each vertex, but the
dsitinguished one, is at least three. The valence of the distinguished vertex may be
arbitrary.

The moral difference from the DKM compactification is that we do not consider
isomorphism classes of stable degenerations. This simple difference turns out to be
quite subtle, should we look for an explicit relation. In fact, for X = CP

1, consider
only the FM strata corresponding to the trees all of whose vertices have valence
at least three. Now we have to take a quotient of this space by identifying those
stable genus zero curves which are isomorphic. This may be achieved by fixing a
distinguished vertex for each isomorphism class of trees, and modding out the union
of the corresponding strata by the action of PGL2(C) which moves double points
and punctures around on the distinguished component.

Another relation with DKM is that for X = C the union of the strata corre-
sponding to all trees with a distinguished vertex of valence one is a direct product
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M0,n+1 ×C. Also, if we mod out these strata by the free action of the group R of
translations by moving the attachment point on C around, we will just getM0,n+1.

Still other relation: for X = C the union of the strata corresponding to the trees
with a distinguished vertex of valence at least two, modded out by the affine group
Co C

∗, is again M0,n+1.
Remark 1. In fact, one can formally apply the FM compactification to any complex
manifold X, whether it is compact or not. We will use the same notation then and
abuse the terminology by still calling C(X;n) the FM compactification.

1.2. Construction of the FM compactification. The FM compactification is
constructed as a sequence of blowups of the diagonals in Xn and their proper
transoforms. These diagonals correspond to subsets S ⊂ {1, 2, . . . , n} having at
least two elements: the corresponding diagonal ∆S = {(x1, . . . , xn) ∈ Xn | xi =
xj for all i, j ∈ S}.

The construction is inductive with respect to n. The FM compactification
C(X;n) of C(X;n) will be denoted X[n] here and will come with a universal family
X[n]+ → X[n]. For n = 1, X[1] := X — there is nothing to compactify. The uni-
versal family will be X[1]+ := X2 → X with the natural projection onto the first
factor. For n = 2, X[2] is the blowup of X2 along the only diagonal ∆ = ∆1,2. The
universal family X[2]+ → X[2] and the next step X[3] are constructed as follows.

(1) Take the exceptional divisor D in X[2]. This is the preimage of the diagonal
X = ∆1,2 ⊂ X2. Embed D in X[2]×X as the graph in D×X ⊂ X[2]×X
of the map D → ∆1,2 = X. This graph D is of dimension dimD, which
means it will be of codimension d + 1 in X[2] × X. Under the natural
projection to X3, D will obviously map onto ∆1,2,3. Blow up X[2] × X
along D and let X[2]+ denote the result. As a universal family, take the
natural composition X[2]+ → X[2]×X → X[2].

(2) Embed X[2] into X[2]×X as the graphs of the two projections X[2]→ X.
When projected to X3, these graphs will map onto the diagonals ∆1,3 and
∆2,3. These graphs are of codimension d in X[2] × X. Take the proper
transforms of these two submanifolds under the blowup X[2]+. They will
now become disjoint. Blow up X[2]+ along these two proper transforms.
This is X[3].

In general, this inductive procedure works as follows, if we assume X[n] has
already been constructed.

(1) Take the exceptional divisor D1,...,n in X[n] which is the preimage of the
diagonal ∆1,...,n ⊂ Xn. Embed this divisor D1,...,n into X[n] × X as the
graph in D1,...,n × X ⊂ X[n] × X of the map D1,...,n → ∆1,...,n = X.
This graph D1,...,n is of codimension d+ 1 in X[n]×X. Under the natural
projection to Xn, this graph will obviously map onto ∆1,...,n. Blow up
X[n]×X along D1,...,n.

(2) For each n − 1-element subset S ⊂ {1, . . . , n}, take the corresponding ex-
ceptional divisor DS in X[n] and embed it into X[n] ×X as the graph in
DS × X ⊂ X[n] × X of the map DS → ∆S → X, the last arrow taking
(x1, . . . , xn) ∈ ∆S to xi ∈ X for all i ∈ S. Then take the proper trans-
form of this graph in the previous blowup of X[n]×X. These codimension
d+ 1 submanifolds are now separated, because of the previous blowup, and
therefore it does not matter in which order you blowup along them. Blow
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up along each of these submanifolds then. The image of the corresponding
exceptional divisor under the projection to Xn+1 is the diagonal ∆S∪{n+1}.

(3) Repeat this construction consecutively, for each n − 2-element subset S ⊂
{1, . . . , n}, etc., down to the two element subsets S. Let X[n]+ denote the
resulting blowup space.

(4) Embed X[n] into X[n]×X as the graphs of the n projections X[n] → X.
When projected to Xn+1, these graphs will map onto the diagonals ∆k,n+1

for k = 1, . . . , n. These graphs are of codimension d in X[2] × X. Take
the proper transforms of these two submanifolds under the blowup X[n]+.
They will now become disjoint. Blow up X[n]+ along these two proper
transforms. This is X[n+ 1].

1.3. Universality properties. The description of complex points of the FM com-
pactification in Section 1.1 suggests that it may represent a certain “point” functor,
that is, the functor that to each scheme S assignes the set of some kind of isomor-
phism classes of families of stable degenerations of X over the base S.
Question 2 (really, to Fulton). Is this the case?

Another universality property would concern the questions of minimality of the
FM compactification and uniqueness of a minimal model of it.
Question 3. Is the FM compactification minimal? By minimality here we mean
that it cannot be blown down to another compactification of the configuration space
C(X;n) with a normal-crossing divisor.
Question 4. If it is minimal, is it unique, that is, if there is another compactifica-
tion of C(X;n) with a normal-crossing divisor, does it blow down to C(X;n)?

Surprisingly enough, none of these questions seems to have been addressed by
the founding fathers [FM94].
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