LECTURE 17: DEFORMATION QUANTIZATION

ALEXANDER A. VORONOV

1. DEFORMATION QUANTIZATION

Deformation quantization usually refers to a specific deformation quantization
problem in a geometric/physical setting. The following theorem, which solves the
deformation quantization problem posed by Bayen, Flato, Frgnsdal, Lichnerowicz,
and Sternheimer [BFF*t78], is a remarkable breakthrough in pure mathematics
achieved by applying ideas motivated by Feynman diagrams.

Theorem 1 (M. Kontsevich [Kon97]). Every Poisson manifold (M,{,}) may be
deformation quantized, i.e., there exists a formal deformation quantization, see
Remark 2 in Lecture 15,

f*g = mt(fag) = fg+m1(fag)t+m2(fag)t2+ ) fag € COO(M)J

of the Poisson algebra A = C*°(M) of smooth functions, so that all the m;’s are
local, that is, bidifferential operators on M. According to our definition of defor-
mation quantization, the star product must be associative and also recover the Pois-
son algebra of functions in the quasi-classical limit, i.e., (m1(f,g9) — mi(g, f))/2 =

{f.9}

Proof. We will only consider the case of M = R? with an arbitrary Poisson struc-
ture, where the situation is already highly nontrivial. Globalization, which is done
using a Fedosov-type connection, see [Kon97, CFT00], lies outside the main theme
of these notes: no pattern in it has to do with graphs.

First, we will sketch Kontsevich’s original proof, giving an explicit formula for
the star product f xg:

o0

(1.1) Frg=3 00 S WeBi(f.g).

n=0"""TE€G, 2

which is explained in the this paragraph. The interior summation runs over the set
Gn,2 of directed graphs T of a certain type with vertices labeled 1,2,...,n,1,2. The
set Gn 2 of graphs consists of the graphs satisfying the following conditions. Each
vertex of first type, i.e., labeled 1, 2, ..., or n, has exactly two outgoing edges,
labeled the first one and the second, and there are no other edges whatsoever. No
edge may form a loop, i.e., start and end at one and the same vertex. Br(f,g)
is a bidifferential operator defined by an explicit formula [Kon97], which we will
describe using an example.
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For I = ; K I

the corresponding bidifferential operator will be

Br(f,9) = " 9;(™)0:0:(f)i(9),

where o denotes the corresponding component of the Poisson tensor in a fixed
coordinate system (z1,...,z4) in R? and we assume summation over the repeating
indices. Finally, the coefficient Wr is given by another formula:

1
Wr = W/C'+ /\ dé(zr, 2s),

n,2 edges 7 — s of T’

where C:[, , is the configuration space of n distinct points 21,..., 2, in the upper
half-plane and two fixed points 2; = 0 and 23 = 1 on the real line; ¢(z;, z5), r and
s running over {1,2,...,n,1,2}, is the directed angle at z, between the hyperbolic
line through z, and oo and the hyperbolic line through z, and z;. The order in
the wedge product is given by the lexicographic order of the vertices {1,...,n} and
the orders of the set of edges going out of the vertices. Kontsevich proves that this
improper integral is absolutely convergent.

The associativity of the star product may be verified explicitly, see [Kon97].
However, I will sacrifice the rigor for the moral and give a more conceptual, phys-
ical explanation of the associativity, following A. Cattaneo and G. Felder [CF00].
Cattaneo and Felder define the star product as

(1.2) (f *9)(=) :=/P F(X(0)g(X (1))e’*"/ DX Dy,

This is a Feynman integral over the infinite dimensional “path” space, which is the
following space of fields X and 7 on the upper half-plane H:

Po={X:-H-oR,neQH R | X(0) =2z

and 7 vanishes on tangent vectors to the boundary}.

The function S(X,n) is a certain action functional defining a Poisson sigma model
on H, see [CF00]:

S = / (Mui0u X' + 504” (X)Nuinw;)dut du” .
H

A rigorous definition of the Feynman integral would be the very formula (1.1).
However, physics takes the opposite viewpoint and treats (1.1) as the saddle-point
expansion of the integral (1.2) in parameter ¢ obtained by formally applying the
rules by analogy with the finite-dimensional case. The advantage of this approach
is that the mystery of Kontsevich’s formula (1.1) is now replaced by the mystery
of Equation (1.2), which is not so mysterious to a physicist, for whom it represents
a standard integral quantization formula. Another advantage is that it offers the
following explanation of the associativity.
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Consider the integral
(f, 9, )p(z) == /P F(X(0))g(X(1)h(X ()i DX Dy,

where p € (1,00) C R C H is a fixed point on the real line between 1 and oo
and P, is as above in (1.2). This integral is independent of the choice of this
point p, because the action S is diffeomorphism invariant and, roughly speaking,
by integrating over all fields X and 7, we take an average over all possible positions
of p. Thus, the limits of (f,g,h), as p = 1 and p — oo will be the same. On the
other hand, in the moduli space of configurations of four points 0,1, p, and co on
the boundary of H, these configurations will degenerate as follows:

g h f g
which means that
lim(f,g,h), = fx(gxh),
p—1
pgr&(f,g,h)p = (fxg)xh,

yielding the associativity.

In reality, things are more complicated than I have made them appear: the Feyn-
man diagram expansion involves gauge fixing and renormalization, which is achieved
by introducing ghosts and antighosts (and what not) and using the BV formalism,
see [CF00]. The behavior of the Feynman integral with respect to the compactifi-
cation of the configuration spaces is another issue suppressed in the above.

O
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