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Chapter 0: Introduction

In this thesis we investigate certain properties of group rings. We describe

a procedure for constructing and classifying all uniserial modules for the group

ring of a p-group over a field of characteristic p. We also discuss non-trivial de-

compositions of the regular representation of a group ring into a tensor product

of modules. We begin by explaining the context in which we will work, and we

describe the less familiar notation.

Throughout this work, p is a prime and F is a field of characteristic p. Unless

stated otherwise, G is a p-group, and we study the group ring FG and its modules.

We will almost always consider left modules. The group ring FG acts on itself as

a module by left multiplication. This module is the regular representation of FG,

which we also denote FG.

For a subgroup H of G, we will often wish to refer to the sum of the elements

of H in FG, and we denote this by ‖H‖. The sum of the elements of a coset gH

of H in G is denoted as g‖H‖ or ‖gH‖.

A group ring is a particular type of algebra. Let A be a finite dimensional

algebra. A simple A-module S is a non-zero module which contains no submodules

other than 0 and itself. A semisimple A-module is a module which is a direct sum

of simple modules.

The radical of A, written Rad(A), is the intersection of all the maximal

left (or right) ideals of A. If M is an A-module then we define Rad(M) =

Rad(A)M . Powers of the radical are defined as Rad0(M) = M , and Radn(M) =

Rad(A) Radn−1(M) = Radn(A)M . The socle of M , written Soc(M), is the set

of elements annihilated by Rad(A), i.e. Soc(M) = {m ∈ M
∣

∣ Rad(A)m = 0}.

Powers of the socle are defined as Socn(M) = {m ∈ M
∣

∣ Radn(A)m = 0}.

The radical series of the module M is the series of modules,

M ⊇ Rad(M) ⊇ Rad2(M) ⊇ · · · .

This is the fastest descending series of submodules with semisimple quotients. The

socle series is described similarly, and is the fastest ascending series of submodules

with semisimple quotients.
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The Loewy length of a module M , written ``(M), is the minimal value r

such that Radr(M) = 0, which is also equal to the minimal value r such that

Socr(M) = M . Both the radical series and the socle series of M have length

``(M). The maximum possible Loewy length of an A-module is L = ``(A).

A uniserial module M is a module for which the following equivalent state-

ments hold:

1) M has a unique composition series;

2) The submodules of M are totally ordered under inclusion;

3) The successive quotients of the radical series are simple or zero;

4) The successive quotients of the socle series are simple or zero.

We study uniserial modules for several reasons. They have appeared widely in

the literature on the representation theory of finite-dimensional algebras over many

years. See for example [F, B, ZH, AR&S]. In the context of group representation

they have been studied in [Sh, LG], where they play an essential role in describing

p-group structure. Also they were studied in [P].

In this thesis we show in Lemma 1.4 of Chapter 1 that each uniserial module

is isomorphic to a cyclic submodule of the regular representation. This fact makes

it possible to classify all uniserial modules up to isomorphism for any given finite

dimensional group ring. Our work here can be viewed as treating a special case of

open problems (1)-(4) on page 411 of [AR&S], and we present explicit classifica-

tions of uniserial modules for many groups of order 16. We are able to apply these

results using the fact that uniserial modules are prime candidates for factors in a

tensor decomposition of the regular representation of a group. We describe such

decompositions explicitly in many cases.

In Chapter 1 we focus on classifying uniserial modules. In Section 1 we

cover much of the theory behind the classification of uniserial modules. Some

of the theory applies more broadly to cyclic modules. In Section 2 we outline a

procedure for finding all uniserial submodules of a group ring. Section 3 consists

of an example of the use of this procedure. We determine the set of all uniserial

submodules of FQ8, and classify all uniserial modules of FQ8 up to isomorphism.

Chapter 2 consists of calculation results, using the algorithm described in

Chapter 1. Each section concentrates on a specific non-abelian group G of order

16. We restrict our attention to the groups that may not be written as the direct
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product of non-trivial subgroups of G. For each of these groups, we find the set

of all uniserial submodules of FG, and classify all uniserial modules of FG, where

F is a field of characteristic 2.

In Chapter 3 we address the issue of tensor decompositions of the regular

representation. We may take our motivation for the study of such decompositions

in part from the simple observation for a direct product of groups that F[G×H] ∼=

FG ⊗ FH. One may ask more generally when such a decomposition occurs, and

this question is resolved by Carlson and Kovács [C&K] when G is an abelian p-

group and the decomposition is a tensor product of rings. Such decompositions

also have relevance for the construction of multiple complexes, as considered by

Benson and Carlson [B&C].

In Section 1 we develop some of the theory of tensor decompositions. In

Section 2 we concentrate on permutation modules. This is another important

class of modules which present themselves as factors in tensor decompositions. In

Section 3, we use our results of Chapter 2 and the theory developed earlier in

this chapter to determine all tensor decompositions of FG, where G is a group

considered in Chapter 2.

We will make extensive use of the theory developed by Jennings [J] which we

now summarize. Some of the notation is found in [Al 1].

For a p-group G, Jennings [J, Al 1, Sc] describes a decreasing series of sub-

groups, κλ(G) = {g ∈ G
∣

∣ g ≡ 1 modulo Radλ(FG)}, which is sometimes called

the Jennings series. This series of subgroups has the following properties:

1) [κλ, κµ] ⊆ κλ+µ,

2) gp ∈ κip for all g ∈ κi,

3) κλ/κ2λ is elementary abelian.

Furthermore, we may generate κλ as

κλ = 〈[κλ−1, G], κ
(p)
dλ/pe〉,

where κ1 = G, and dλ/pe is the least integer greater than or equal to λ/p, and

κ
(p)
λ is the set of pth powers of elements of κλ. With this formulation, we have

κ1(G) = G, and it is clear that κ2(G) is the Frattini subgroup of G.

For each i ≥ 1 let di be the dimension of κi/κi+1. Choose any elements xi,s

of G such that the set {xi,sκi+1 | 1 ≤ s ≤ di} forms a basis for κi/κi+1. Let
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x̄i,s = xi,s − 1 ∈ FG. There are |G| products of the form
∏

x̄
αi,s

i,s , where the

factors are listed in lexicographic order, and 0 ≤ αi,s ≤ p − 1. The weight of

such a product is defined to be
∑

iαi,s. Jennings’ theorem states that the set

of products of weight w lie in Radw(FG), and forms a basis modulo Radw+1(G).

Also, the set of products of weight ≥ w forms a basis for Radw(FG).

Alperin comments [Al 1] that the order of the factors is irrelevant, as long

as some order is chosen. After choosing a particular order for these factors, let

{βi,t} be the set of such products with weight i. Writing L = ``(FG), the element

βL−1,1 =
∏

x̄p−1
i,s = ‖G‖ is a generator of the socle of FG, and has weight L− 1.

Often it is possible to choose an element xi,s such that xp
i,s is also one of

our chosen coset representatives for κip+1 in κip, and when this can be done we

make this choice. As we do not need to choose the lexicographic ordering in the

products, we choose an ordering that places xi,s and xp
i,s together.

For example, in the group D8 = 〈x, y|x4 = y2 = 1〉 we have κ1 = D8,

κ2 = 〈x2〉, and κ3 = 1. We choose x1,1 = x, x1,2 = y, and x2,1 = x2. We

choose to write the factors in the order, x̄α1,1 x̄2α2,1 ȳα1,2 = x̄α1,1+2α2,1 ȳα1,2 , where

0 ≤ αi,s < 2. The elements are then of the form x̄iȳj with 0 ≤ i < 4, and

0 ≤ j < 2.
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Chapter 1: Classifying Uniserial Modules

In this chapter, after a few preliminary lemmas, we describe a procedure for

classifying all uniserial modules of the group ring for a p-group. We then present

an example to illustrate the use of this procedure.

§1 Uniserial Modules

The first four lemmas are found in the literature. See, for example, [Al 2],

[H], and [AR&S].

We use the augmentation map of a group ring, which is the map, ε : FG→ F

given by

ε
(

∑

g∈G

gag

)

=
∑

g∈G

ag,

where ag is an element of the field F for each element g of G. The augmentation

ideal IG of FG is the kernel of this map. This ideal has codimension 1, and has

the set {g − 1
∣

∣ g ∈ G, g 6= 1} as a basis. This set together with the element 1

forms a basis for FG.

Lemma 1.1. If the group G is generated by {x1, . . . , xn}, then the augmen-

tation ideal is the two-sided ideal IG of the ring FG generated by the elements

{x̄1, . . . , x̄n}. Thus we may write, IG = FGx̄1 + · · ·+ FGx̄n.

Lemma 1.2. If G is a finite p-group, and F is a field of characteristic p, then

i) the trivial module is the only simple module of FG;

ii) the radical and socle series of FG coincide;

iii) the radical of FG is the augmentation ideal, IG;

iv) the unique indecomposable projective FG-module is FG;

v) the unique indecomposable injective FG-module is FG.

Lemma 1.3. (Nakayama) If J is an ideal in a ring R with identity, then the

following are equivalent.

i) J is contained in the Jacobson radical of R;
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ii) 1R − j is a unit for every j ∈ J

iii) If A is a finitely generated R-module such that JA = A, then A = 0;

iv) If B is a submodule of a finitely generated R-module A such that A = JA+B,

then A = B.

We relate this lemma to our situation where G is a p-group by noting that

the Jacobson radical of the ring FG is the augmentation ideal, IG.

Lemma 1.4. A uniserial module M is a module for which the following

equivalent statements hold:

i) M has a unique composition series;

ii) The submodules of M are totally ordered under inclusion;

iii) The successive quotients of the radical series are simple or zero;

iv) The successive quotients of the socle series are simple or zero.

Lemma 1.5. If M is a uniserial module for FG, and G is a finite group, then

i) M is cyclic (i.e. it can be generated by a single element);

ii) M is a homomorphic image of FG;

iii) M is isomorphic to a submodule of FG.

Proof. Uniserial modules have the unique composition series

M = Rad0(M) ⊃ Rad(M) ⊃ . . . ⊃ RadL(M) = 0.

An element of M must therefore generate a power of the radical as a left module.

If this element is not an element of the radical, then it must generate the module

M .

Any module of an algebra A that is generated by a single element is a homo-

morphic image of A.

The module M has a simple socle, S = Soc(M). The module S is isomorphic

to a submodule of FG. As FG is injective, the inclusion map of S into FG may be

extended to a map φ on the module M . If the kernel of φ were non-zero, it would

intersect the socle of M non-trivially. But φ is an extension of an injection of S,

so the kernel must be 0. Thus φ is one-to-one, and M is isomorphic to its image

in FG.
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As a consequence, we will often assume that a uniserial module is a submodule

of FG, and we designate this uniserial module as the module FGA, where A is an

element of FG that generates the module. The zero module is considered uniserial

with Loewy length 0.

Lemma 1.6. A non-zero module M is uniserial if and only if Rad(M) is

uniserial and M/Rad(M) is simple.

Proof. Let R = Rad(M). If M is a uniserial module, then M/R is simple.

As R is a submodule of M , it too must have a unique composition series, and

must also be uniserial. Conversely, if R is uniserial, and M/R is simple, then the

successive quotients of the radical series of M are simple, so M is uniserial.

Corollary 1.7. Let F be a field of characteristic p and let G be a finite p-group

generated by the elements {x1, x2, . . . , xn}. A non-zero FG-module M is uniserial

if and only if M has a uniserial submodule N with dim(N) = dim(M) − 1 and

FGx̄iM = N for some i.

Proof. In this case, all simple modules of FG are isomorphic to F. If M is a

non-zero FG-module, then

Rad(M) = Rad(FG)M = IGM = (FGx̄1 + · · · + FGx̄n)M.

If M is uniserial, then N = Rad(M) must also be uniserial, and M/N must

be simple. The modules FGx̄jM are all submodules of Rad(M), and generate

Rad(M). Since the submodules of M are totally ordered under inclusion, there

must be an index i such that FGx̄iM contains the modules FGx̄jM for all j. As

Rad(M) = IGM , we must have N = Rad(M) = FGx̄iM . Since dim(M/N) =

dim(F) = 1, we have dim(N) = dim(M) − 1.

Conversely, if N = FGx̄iM is a uniserial module, and dim(N) = dim(M)− 1,

then clearly N ⊆ Rad(M), as x̄ ∈ Rad(FG). We have dim(M/N) = 1, so the

quotient is simple. Thus, by the lemma, M is uniserial.
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In the following proposition we regard HomFG(FGA,FG) as a right FG-

module by means of the action (φ ·C)(z) = φ(z) ·C, where C ∈ FG, and z ∈ FG.

Proposition 1.8. If A is an element of FG then HomFG(FGA,FG) ∼= AFG as

a right FG-module.

Proof. Let ι : FGA→ FG be the inclusion map. Given an FG homomorphism

φ : FGA→ FG, by the injectivity of FG, there is an extension ψ : FG→ FG such

that φ = ψ ◦ ι. Let B = ψ(1). Given an element x ∈ FG, we have ψ(x) =

xψ(1) = xB, as ψ is an FG-homomorphism. Thus the homomorphism acts as

right multiplication by the element B. Restricting this action to FGA, we have

φ(xA) = ψι(xA) = xAB. If ψ′ is another extension of φ, we have φ(x) = xAψ′(1),

so Aψ(1) = Aψ′(1) = AB. Thus we associate the homomorphism φ with the

element AB. We designate this association by writing φ = φA,B .

Given an element AC of AFG, let φA,C : FGA → FG be the map given by

φA,C(xA) = xAC. This is an FG-homomorphism on FGA, and φA,B = φA,C if

and only if AB = AC. When adding homomorphisms we have

(φA,B + φA,C)(xA) = xAB + xAC = xA(B + C) = φA,B+C(x), so

φA,B + φA,C = φA,B+C .

Also, φA,B(x) · C = xABC, so φA,B · C = φA,BC .

We have shown that there is a one-to-one correspondence between elements

AB of AFG and homomorphisms φA,B : FGA → FG, and that both sets act as

right FG-modules in the same manner.

Corollary 1.9. Let G be a p-group and let A and B be elements of FG. Then

FGA ∼= FGB if and only if FGB = FGAx, where x ∈ FG is some unit.

Proof. Assume that FGA ∼= FGB. The module FGB is a submodule of FG,

so by Proposition 1.8 we know that there is an isomorphism φA,x : FGA → FGB

whose image is FGAx = FGB. The element x is not an element of Rad(FG)

because the Loewy lengths of FGA and FGB must be the same and the Loewy

length of FGAx is determined by the power of Rad(FG) in which Ax lies. All

elements of FG which are not elements of the radical are units, so x is a unit.
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Conversely, assume that x is a unit of FG, and that FGB = FGAx. Then

by Proposition 1.8, FGB is a homomorphic image of FGA. If we apply the map

φB,x−1 to the module FGB, we see that FGA = FGBx−1, so FGA is also a

homomorphic image of FGB, so the modules are isomorphic.

We now come to our first substantial result.

Theorem 1.10. Let G be a p-group. If A ∈ FG, and the left FG-module FGA

is uniserial of length l, then the right FG-module AFG is also uniserial of length l.

Proof. If FGA is of length 1, then FGA is the trivial module, so A is a multiple

of ‖G‖. The group ring element ‖G‖ is central, so FGA = FG‖G‖ = ‖G‖FG =

AFG, and is uniserial of length 1.

Assume the statement of the theorem is true for all j < l. Then if A

is an element of FG which generates a left FG-module of length j < l, then

Hom(FGA,FG) ∼= AFG, and by induction, these have dimension j.

Let A(l) be an element of FG such that FGA(l) is uniserial of length l. Since

FG is injective and contains every simple module in its socle, every indecomposable

left FG-module whose socle is simple is isomorphic to a submodule of FG. Thus

there is a submodule M of FG that is isomorphic to FGA(l)/ Soc(FGA(l)). Let

φ be the composite homomorphism FGA(l) → FGA(l)/ Soc(FGA(l)) → M . Then

φ corresponds to an element A(l)B ∈ A(l)
FG, for some element B of FG, and φ

has the form φ(gA(l)) = gA(l)B. Thus M = FGA(l)B, and it is uniserial of length

l− 1. By our assumption, A(l)BFG is a uniserial right FG-module of length l− 1.

Given C ∈ FG, let u = ε(C) ∈ F, and r = C − u ∈ Rad(FG). Then

FGA(l)r is a homomorphic image of FGA(l). Since A(l)r is in a higher power of

the radical than A(l), it is in a lower power of the socle of FG (since the radical

and socle series of FG coincide when G is a p-group), and it must be true that

``(FGA(l)r) < ``(FGA(l)). This implies that FGA(l)r has dimension less than l.

This means that it is also a homomorphic image of FGA(l)B, so A(l)r ∈ A(l)BFG.

The element A(l)C = A(l)u+ A(l)r lies in FA(l) +A(l)BFG, since u is an element

of F. Since C was an arbitrary element of FG he have A(l)
FG = FA(l) +A(l)BFG,
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and it has dimension l. Since A(l) ∈ Socl(FG), it must be true that ``(A(l)
FG) = l.

This means that A(l)
FG is a uniserial module of length l.

We have shown that the set of homomorphisms from a uniserial left FG-

module into FG forms a uniserial right FG-module of the same length.

Lemma 1.11. Let G be a p-group and let A and B be two non-zero elements

of FG. The cyclic modules FGA and FGB are equal if and only if B = fA+ r for

some non-zero element f of F and some element r of Rad(FGA).

Proof. Assume FGA = FGB. As B ∈ FGA, we may write B = xA, for some

element x of FG. The radical of FG is a subspace of codimension 1, so we may

write x = f1 + s, for some element f of F, and some element s of Rad(FG). Thus

B = (f1 + s)A = fA + r, where r = sA ∈ Rad(FGA). The element f must be

non-zero because FGr ⊆ Rad(FGA) 6= FGA.

Assume that B = fA+ r, for some non-zero element f ∈ F and some element

r ∈ Rad(FGA). Then A ∈ FGB + Rad(FGA) so FG = FGB + Rad(FGA).

Therefore by Nakayama’s lemma FGA = FGB.

Lemma 1.12. Let G be a p-group. If A and B are elements of FG, λ =

``(FGA), and FGA ∼= FGB, then B = fA+ r for some non-zero element f of F

and some element r ∈ Socλ−1(FG).

Proof. Assume that FGA ∼= FGB. By Corollary 1.9 we know that FGB =

FGAx for some x ∈ FG. We rewrite x = f1 + s1, where 0 6= f1 ∈ F and s1 ∈

Rad(FG). Then FGB = FGA(f1 + s1). Since f1 6= 0, we have Af1 ∈ Socλ(FG) −

Socλ−1(FG). As s1 ∈ Rad(FG), and Socλ(FG) is a two-sided ideal, we have As1 ∈

Socλ−1(FG). By the previous lemma, we must have a non-zero element f2 ∈ F

and an element r2 ∈ Rad(FGA(f1+s1)) such that B = f2A(f1+s1)+r2 = fA+r,

where f = f2f1 and r = f2As1+r2. As A ⊆ Socλ(FG), we have r ∈ Socλ−1(FG).

We use these results to justify the algorithm described in the next section.
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§2 A Procedure for Finding Uniserial Modules

We are about to describe an algorithm for finding uniserial modules of FG.

The algorithm works when G is a finite p-group and F is a field of characteristic p,

and we make these assumptions. We choose a set of generators of G, {x1, . . . , xn}.

Algorithm 2.1. Suppose we are given a uniserial module N ⊆ FG of length

l− 1. We construct all uniserial submodules of FG having length l which contain

N as a submodule by the following procedure:

We find all elements A ∈ FG with the properties

i) x̄iA ∈ N, ∀i

ii) for some i, x̄iA generates N .

Then the module FGA is uniserial of the kind specified. Every uniserial

module may be constructed in this way.

Remark 2.2. Such A must necessarily lie in Socl(FG). If we start with the

submodule 0 of FG, we generate all uniserial submodules of FG by successive use of

Algorithm 2.1. Since every uniserial module is isomorphic to a submodule of FG,

this algorithm produces all isomorphism types of uniserial modules of FG. Note,

however, that distinct uniserial submodules of FG may in fact be isomorphic. We

explain later how to distinguish between isomorphism classes of uniserial modules.

Let A be an element of the kind specified in the algorithm, and let M = FGA.

Then if 0 6= f ∈ F, and r ∈ Rad(M) = N , then fA + r also generates M . We

would like to find one distinguished generating element for each module. We may

then classify all uniserial modules of FG having length l by the set of distinguished

generating elements.

A description of the distinguished generating element of each module will now

be given.

Let B = {bi,λ} be a basis of FG such that Bλ = {bi,µ|µ ≤ λ} is a basis

for Socλ(FG). We will call such a basis a filtered basis of FG. Among the basis

elements with a common second subscript, set up an ordering that is reflected in
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the first subscript. Write elements of FG as linear combinations of these basis

elements.

Lemma 2.3. If M is a uniserial submodule of FG with Loewy length l, then

there are unique sets {A(λ)|1 ≤ λ ≤ l} ⊆M and {biλ,λ|1 ≤ λ ≤ l} ⊆ B such that

i) Socλ(M) = FGA(λ)

ii) iλ is the minimal i such that the coefficient of bi,λ is non-zero in A(λ)

iii) The coefficient of biλ,λ in A(λ) is 1

iv) The coefficient of biλ,λ in A(µ) is 0 for all µ > λ.

Proof. If l = 1, then the only choice is A(1) = b1,1 = ||G||. We use induction

on the Loewy length of M . Assume the statement is true for N = Rad(M) 6= 0.

The unique sets {A(λ)
∣

∣ 1 ≤ λ < l} and {biλ,λ

∣

∣ 1 ≤ λ < l} associated with N

then exist. Let A be a generator of M . As M is uniserial, M/N is isomorphic to

the trivial module. The choice of bil,l must therefore be unique, regardless of the

generator A for M . Let A1 = A/c, where c is the coefficient of bil,l in A. Let cλ

be the coefficient of biλ,λ in A1, where 1 ≤ λ < l. Let

A(l) = A1 −

l−1
∑

λ=1

cλA
(λ).

Then the statement holds for M as well. The construction of bil,l and A(l) did not

depend on the choice of A.

In the algorithm for finding all uniserial modules, Lemma 2.3 may be used to

limit the search for generating elements.

As we are dealing with a p-group, the radical and socle series of FG coincide,

or more precisely, RadL−λ(FG) = Socλ(FG), where L = ``(FG). Thus, it is

convenient to use Jennings’ construction of a filtered basis, filtered with respect

to powers of the radical.

A note on extending the procedure to group rings which have more than one

simple module: finding a series of distinguished generating elements for a uniserial

module and its submodules is a bit more cumbersome. One must deal with G-

orbits of the generators when choosing bλ,iλ
, among other details.
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§3 An Example of the Procedure for Finding Uniserial Submodules of

FG

As a first example of the procedure, let

G = Q8 = 〈x, y|x4 = 1, x2 = y2, yx = x−1〉,

and let F be a field of characteristic 2. The Jennings series of subgroups is κ1 =

Q8 ⊃ κ2 = 〈x2〉 ⊃ κ3 = 〈1〉. By Jennings’ theorem, we may choose generating

sets {x1,1 = x̄, x1,2 = ȳ}, and {x2,1 = x̄2}. Since x̄2 = ȳ2, we may use x̄2ȳ for a

basis element, going against Jennings’ specifications, and still be using the same

elements.

We obtain the following filtered basis for FG:

β0,1 = 1
β1,1 = ȳ β1,2 = x̄
β2,1 = x̄ȳ β2,2 = x̄2

β3,1 = x̄2ȳ β3,2 = x̄3

β4,1 = x̄3ȳ

The notation we wish to use for our basis is bλ,i = β(5−λ),i, emphasizing powers

of the socle, rather than powers of the radical.

The geometric presentation of the basis elements will be exploited to represent

elements of FG. A vector in FG is written with the shape given above, with the

coefficient for each basis element in the corresponding location. This gives a clearer

meaning than the standard linear way to explicitly express a vector.

From the previous section, we let A(1) = b1,1.

Since Soc2(FG)/ Soc(FG) is semisimple, and Rad(Soc2(FG)) is one dimen-

sional, any element of Soc2(FG) − Soc(FG) generates a 2-dimensional uniserial

module. The set of distinguishing generators for 2-dimensional uniserial submod-

ules is {A
(2)
r = b2,1 + rb2,2

∣

∣ r ∈ F} ∪ {B(2) = b2,2}.

It is necessary to take into account the left action of FQ8. As x and y generate

G, the radical of FG is generated by x̄ and ȳ. If M is a module, Rad(M) =

Rad(FG)M = Span(x̄M, ȳM). We need to find the left actions of x̄ and ȳ on the

basis elements.

– 13 –



The left action of x̄ on the basis elements is clear. Remember that x̄4 =

(x− 1)4 = x4 − 1 = 0, as we are dealing with a field of characteristic 2. It may be

calculated that ȳx̄ = x̄ȳ+ (x̄2 + x̄3)(ȳ+ 1), and that ȳ commutes with x̄2 and x̄3.

Also, ȳ2 = x̄2. Thus ȳ x̄ȳ = x̄2ȳ + x̄3 + x̄3ȳ.

In vector notation, as described above, we write an arbitrary element A of

FQ8, as well as x̄A, and ȳA as

A =

a5

a4,1 a4,2

a3,1 a3,2

a2,1 a2,2

a1

, x̄A =

0
0 a5

a4,1 a4,2

a3,1 a3,2

a2,1

,

ȳA =

0
a5 0
a4,2 a4,1 + a4,2

a4,2 + a3,1 + a3,2 a4,2 + a3,1

a4,2 + a3,1 + a2,2

or, more conveniently,

A =

a
b c
d e
f g

h

, x̄A =

·
· a
b c
d e

f

, ȳA =

·
a ·
c b+ c

c+ d+ e c+ d
c+ d+ g

where the character “·” deemphasizes the zero entries.

When multiplying on the right we obtain

Ax̄ =

·
· a
b b+ c

b+ d b+ d+ e
b+ d+ f

, and Aȳ =

·
a ·
c b
e d

g

Using our vector notation, the distinguished generators for two-dimensional

uniserial modules are:

A(2)
r =

·
· ·
· ·
1 r

·

(r ∈ F), B(2) =

·
· ·
· ·
· 1

·
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Assume A is a distinguished generator for a uniserial module of length 3. We

must have a = b = c = 0, since A ∈ Soc3(FG). These restrictions give

A =

·
· ·
d e
f g

h

, x̄A =

·
· ·
· ·
d e

f

, ȳA =

·
· ·
· ·

d+ e d
d+ g

Either x̄A or ȳA must be an element of Soc2(FG)−Soc(FG), so d or e must be

non-zero. This forces the coefficient of b2,1 and b2,2 to be non-zero in at least one

of x̄A and ȳA. As they must both be in the same module, both coefficients must

be non-zero. We must have an extension of FGA
(2)
r , where r 6= 0. By Lemma 2.3

parts ii) and iii), we need d = 1, which forces e = r, and 1+ r = 1/r. This implies

that r must be a primitive third root of unity, as char(F) = 2. By Lemma 2.3iv),

we may assume that f = h = 0. We then have,

A(3)
r,s =

·
· ·
1 r
· s

·

,

x̄A(3)
r,s =

·
· ·
· ·
1 r

·

= A(2)
r , ȳA(3)

r,s =

·
· ·
· ·

1 + r 1
1 + s

=
1

r
A(2)

r + (1 + s)A(1)

where r is a primitive third root of unity and s ∈ F.

Now we show that there is no uniserial module in FG of length 4.

Assume A is a distinguished generator for a uniserial module of length 4. By

the multiplication shown above, we must have a = 0. The element x̄A must have

a non-zero coefficient for either b3,1 or b3,2. Since this must be a generator of a

uniserial module of length 3, both coefficients must be non-zero, so both b and c

must be non-zero. Using Lemma 2.3 parts iii) and iv), we may assume that b = 1
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and d = f = h = 0. These restrictions give

A =

·
1 c
· e
· g

·

, x̄A =

·
· ·
1 c
· e

·

, ȳA =

·
· ·
c 1 + c

c+ e c
c+ g

We must choose c = r and e = s, giving

A =

·
1 r
· s
· g

·

, x̄A =

·
· ·
1 r
· s

·

, ȳA =

·
· ·
r 1 + r

r + s r
r + g

We now have x̄A = A
(3)
r,s . For ȳA to be in FGA

(3)
r,s , we must have

ȳA = rA(3)
r,s + (r + s)A(2)

r + (r + g)A(1) =

·
· ·
r r2

r + s rs+ r2 + rs
r + g

In our field, rs+ r2 + rs = r2 = r+ 1. However, the coefficient for b2,2 needs

to be r, not r + 1, which leads to a contradiction. This leads to the following

theorem.

Theorem 3.1. The isomorphism classes of uniserial modules of FQ8 are in

1-to-1 correspondence with the distinguished generators

{A(1), A(2)
r , B(2), A

(3)
ω,0

∣

∣ r, ω ∈ F, ω2 + ω + 1 = 0}.

(If F does not contain a primitive third root of unity, then there is no uniserial

module of length 3 for FQ8.)

Proof. By Lemma 1.5 we know that all uniserial left modules of FQ8 are

isomorphic to submodules of FQ8, taken as a left module. By Lemma 2.3, and

the work above, all uniserial submodules of FQ8 may be generated by one of the
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elements in the list {A(1), A
(2)
r , B(2), A

(3)
ω,s

∣

∣ r, s, ω ∈ F, ω2 +ω+1 = 0}. The

action of FQ8 on a module characterizes the module.

There is only one isomorphism class of 1-dimensional modules for FQ8. They

are thus isomorphic to FQ8A
(1).

Assume M is a 2-dimensional uniserial module generated by A. If x̄A = 0,

then x̄M = 0, and M ∼= FGB(2). If x̄A 6= 0, then ȳA = rx̄A, for some r ∈ F. This

only occurs when M ∼= FGA
(2)
r .

Two modules M and N are isomorphic over FG if and only if the group

representations of G with respect to M and N are isomorphic.

Assume M is a 3-dimensional uniserial module. For some ω, s ∈ F, M =

FGA
(3)
ω,s. Let A = A

(3)
ω,s − (s + 1)A

(2)
ω . As this element has a non-zero coefficient

for A
(3)
ω,s, it generates M . A basis for M is given by B = {A, x̄A, x̄2A}, where

x̄A = A
(2)
ω − (s + 1)A(1), and x̄2A = A(1). The action of ȳ on this basis is then

ȳA = (1 + ω)A
(2)
ω + (1 + s)A(1) − ω(s + 1)A(1) = (1 + ω)x̄A, and ȳ x̄A = ωx̄2A.

Thus, regardless of s, there is a basis for M such that the action of x and y are

given by the matrices

ρ(x) =





1 0 0
1 1 0
0 1 1



 , ρ(y) =





1 0 0
1 + ω 1 0

0 ω 1





as x = x̄ + 1, y = ȳ + 1. Because Rad(M) = FQ8A
(2)
ω 6∼= FQ8A

(2)
ω+1, there are

exactly two isomorphism classes of uniserial modules of length 3 for FQ8.

We now present an alternative proof of Theorem 3.1 which uses a more practi-

cal method. We use this second method to find the isomorphism classes of uniserial

modules in the next chapter.

Proof. By Lemma 1.5 we know that all uniserial left modules of FQ8 are

isomorphic to submodules of FQ8, taken as a left module. By Lemma 2.3, and

the work above, all uniserial submodules of FQ8 may be generated by one of the

elements in the list {A(1), A
(2)
r , B(2), A

(3)
ω,s

∣

∣ r, s, ω ∈ F, ω2 + ω + 1 = 0}. Let A

be one of these generators, and let M = FQ8A. By Proposition 1.8 we have

Hom(FQ8A,FQ8) ∼= AFQ8, so the set of homomorphisms is spanned by the set

{Aβλ,i}. For each of these distinguished elements we have,
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A1 = A, A(n)βλ,i = 0 (λ > n)

A
(2)
r x̄ = A(1), A

(2)
r ȳ = rA(1)

B(2)x̄ = 0, B(2)ȳ = A(1)

A
(3)
ω,sx̄ = A

(2)
ω2 + A(1), A

(3)
ω,sȳ = ωA

(2)
ω2 + sA(1),

A
(3)
ω,sx̄2 = A(1), A

(3)
ω,sx̄ȳ = ωA(1)

From this information we may list all homomorphic images of each uniserial mod-

ule.

There is only one isomorphism class of 1-dimensional modules for FQ8. They

are thus isomorphic to FQ8A
(1).

Let M
(2)
r = FGA

(2)
r . The homomorphic images of A

(2)
r are of the form αA

(2)
r +

βA(1), where α and β are elements of F. All such elements are elements of M
(2)
r .

The isomorphisms occur precisely when α 6= 0. Thus, for each r ∈ F, the module

M
(2)
r forms its own isomorphism class. Likewise, N (2) = FGB(2) forms its own

isomorphism class.

Let M
(3)
ω,s = FGA

(3)
ω,s. Given an FG-homomorphism φ of M , we wish to find

the distinguished generating element of φ(M). We know that φ(A(3)ω,s) is of the

form αA
(3)
ω,s + βA

(2)
ω2 + γA(1). Writing this in our vector notation, this is

φ











·
· ·
1 ω
· s

·











=

·
· ·
α αω
β αs+ βω2

γ

If α = 0, then φ is not an isomorphism. By using different values for β and γ we

see that M
(2)
ω2 is a homomorphic image of M

(3)
ω,s, as is M (1) = FGA(1).

If α 6= 0, the image of M
(3)
ω,s is 3-dimensional, so φ must be an isomorphism.

We find the elements x̄2/αφ(A
(3)
ω,s) = A(1) and

(

x̄φ(A
(3)
ω,s) − βA(1)

)

/α = A
(2)
ω are

elements in the image of φ. Thus the element

·
· ·
α αω
β αs+ βω2

γ

−

·
· ·
· ·
β βω

γ

=

·
· ·
α αω
· αs+ β

·

is also an element of φ(M
(3)
ω,s).
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If we look at all possible isomorphisms of M
(3)
ω,s, we see that setting α = 1 and

letting β vary over F that M
(3)
ω,s

∼= M
(3)
ω,s′ for all s′ ∈ F. We may choose the module

M
(3)
ω,0 to be the representative of this isomorphism class.

We now display two lattices of all the uniserial submodules of FQ8. The first

lattice shows the sub-module structure of the uniserial modules. A submodule of

another module is listed below it, and there is a vertical or diagonal connection

between them. The horizontal arrow indicates that the module M
(2)
ω is a module

of the type M
(2)
r , where r ∈ F. We define the modules as we did in the proof.

M
(3)
ω,s

M
(2)
r

FFFFFFFF
M

(2)
ω

oo oo N (2)

xx
xx

xx
xx

x

M (1)

The second lattice describes the homomorphism structure of the modules. If

M is a homomorphic image of N then the module M appears at a lower level in

the lattice than the module N , and there is a vertical or diagonal line connecting

them. The horizontal arrow indicates that the module M
(2)
ω2 is a module of the

type M
(2)
r , where r ∈ F. Each isomorphism class is represented by a “bucket”.

The information inside the bucket describes all modules that lie in the same iso-

morphism class. The information outside the bucket describes all isomorphism

classes of this type. Thus the top bucket implies that M
(3)
ω,s

∼= M
(3)
ω′,s′ whenever s

and s′ are elements of F, and only when ω = ω′. These modules exist for all ω ∈ F

such that ω2 + ω = 1.
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M
(3)
ω,s

s∈F

ω2+ω=1

M
(2)
r

r∈F

>>
>>

>>
>>

M
(2)
ω2

ω2+ω=1

oo oo

N (2)

��
��

��
��

M (1)

In the next chapter we use similar notation. For simplicity, we place the name

of the generator of a uniserial module in the bucket, rather than the name of the

module. In doing this, we do not need to name all the modules, and there is less

possibility of confusing the generators of the modules.
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Chapter 2: Classification of Uniserial Modules for Groups of Order 16

In this chapter we explicitly describe the uniserial FG-modules, where F is

a field of characteristic 2, and G is one of a certain collection of 2-groups. We

restrict ourselves to the groups of order 16 that are non-abelian, and may not

be written as the direct product of two non-trivial groups. There are seven such

groups ([H&S, Sc, As]), and we denote these G1, (2 × 4).2, Mod16, D16, SD16,

Q16, and D8Y4. Each group will be considered in its own section.

Each section concentrates on one specific group, G. In each section the pre-

sentation of material follows this pattern:

• A presentation of G is given.

• We describe the partially ordered set of all uniserial submodules of the regular

representation FG, were the ordering is by inclusion.

• We describe the partially ordered set of all isomorphism classes of FGmodules,

where M ≤ N indicates that M is a homomorphic image of N .

The modules are then defined explicitly in the following way:

• A basis is given for the regular representation FG.

• An arbitrary element A of FG is given.

• We give actions of generators of FG on A.

• We list the uniserial submodules U of FG in increasing order of dimension.

We do this for each uniserial submodule by listing a distinguished generator

B of U , along with the left and right action of generators of FG on B.

Each module is denoted by listing its distinguished generator. These genera-

tors are written as symbols such as A
(3)
r,s . Here the letter A denotes the family to

which the module belongs, the superscript denotes the dimension of the module

generated by this element, and the subscripts are parameters which lie in F. If dif-

ferent values are given to these subscripts, then different modules are represented.

The particular definition of each generator is given after the diagrams of inclusion

and homomorphism.

In the diagram that represents the partially ordered set of uniserial modules,

if for example, A
(3)
r,s is above A

(2)
r with a solid line connecting them, this indicates

that, for any fixed r ∈ F and all s ∈ F, the module generated by A
(3)
r,s contains the

module generated by A
(2)
r . In the diagrams, if there is an arrow from, let us say,
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A
(2)
1 to A

(2)
r , this indicates that the module generated by A

(2)
1 is a specific case

of the more generally described module generated by A
(2)
r . A dotted line between

C
(3)
s,t and A

(3)
r,s indicates that there is overlap in the definitions of the modules

generated by these generators. The overlap is described with the dotted lines.

In the homomorphism diagram, isomorphism classes are represented by buck-

ets. Each bucket contains a list of all items which are in a particular isomorphism

class. We describe the general bucket by analogy with the description of the

following specific bucket:
A

(4)
r,s,t

s∈F

r 6= 1

All information pertaining to a specific isomorphism class is contained inside of

the bucket. All information listed outside of the bucket is used to distinguish

different isomorphism classes, or to determine permitted values of variables. Given

r, s, t ∈ F, where r 6= 1, our sample bucket represents the isomorphism class of

FGA
(4)
r,s,t. The variable s is permitted to vary over all the elements of F. Thus

if r 6= 1, then FGA
(4)
r,s,t

∼= FGA
(4)
ρ,σ,τ if and only if ρ = r and τ = t, where all

parameters are elements of F.

Assume, for example, that in a diagram the bucket containing A
(4)
r,s,t is above

another bucket containing C
(3)
r,s . This indicates that there is a surjective homo-

morphism from the module generated by A
(4)
r,s,t to the module generated by C

(3)
r,s .

It must be noted that r and s have the same values in each of these generators.

The homomorphism diagram lists all situations where there is a homomor-

phism from one uniserial module onto another uniserial module. If two modules

are isomorphic, then their distinguished generators are listed in the same bucket.

If there is a module homomorphism φ : M → N , then the bucket containing

the distinguished generator of M is above the bucket containing the distinguished

generator of N , and there is a line or series of lines connecting them. There may

also be parameters in each bucket, and these must match.
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§1 Uniserial submodules of FG1

Group: G1 = 〈x, y
∣

∣ x4 = y4 = 1, yx = x−1y−1, {x2, y2} ⊂ Z〉, where Z is the

center of the group.

This is the partially ordered set of uniserial FG1 submodules:

D
(4)
s,t,u C

(4)
s,t,u,v

s=1,u=0

r=1
A

(4)
r,t,v B

(4)
s,t

D
(3)
s

GGG
GGG

GG
G

C
(3)
s,t

s=1

r=1
A

(3)
r,t B

(3)
s

A
(2)
1

//// A
(2)
r B(2)

yy
yy

yy
yy

y

A(1)

This is the homomorphism diagram for uniserial FG1 modules:

A
(4)
r+1,s,t

rs+rt+s2=α

r,α∈F;r 6=0

C
(4)
1,t,u,v+λu

λ∈F

C
(4)
s+1,t,u,v

sv+t2+tu=α

s,u,α∈F;s6=0

D
(4)
s,t,u

s2+st+u=α

α,t∈F

B
(4)
s,t

s+s2+t=α

α∈F

C
(3)
r+1,λ

λ∈F

r 6=0

A
(3)
1,t+u

??
??

??
??

??

A
(3)
s+1,λ

λ∈F

s6=0

B
(3)
λ

λ∈F

��
��

��
��

��
�

D
(3)
λ

λ∈F

A
(2)
r+1

r 6=0

QQQQQQQQQQQQQQQQQQQQQQQQ

A
(2)
1

B(2)

nnnnnnnnnnnnnnnnnnnnnnn

A(1)
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A basis for FG1 is:

1
x̄ ȳ

x̄2 x̄ȳ ȳ2

x̄3 x̄2ȳ x̄ȳ2 ȳ3

x̄3ȳ x̄2ȳ2 x̄ȳ3

x̄3ȳ2 x̄2ȳ3

x̄3ȳ3

We denote an arbitrary element of FG1 by specifying its coefficients as follows:

A =

a
b c

d e f
g h i j

k l m
n p

q

The left and right action of the generators x̄ and ȳ on such an element are:

x̄A =

·
a ·

b c ·
d e f ·

h i j
l m

p

ȳA =
·

· a
b b b+c

b b+d+e b+e b+e+f
b+e+g b+e+g+h+i b+e+i

b+e+g+i+k b+e+g+i+k+l+m
b+e+g+i+k+m+n

Ax̄ =
·

a ·
b+c c c

c+d+e c+e c+e+f c
c+e+h c+e+h+i+j c+e+j

c+e+h+j+k+l+m c+e+h+j+m
c+e+h+j+k+m+p
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Aȳ =

·
· a

· b c
· d e f
g h i

k l
n

The uniserial module of length 1:

A(1) =
·

· ·
· · ·

· · · ·
· · ·

· ·
1

,

x̄A(1) = ȳA(1) = A(1)x̄ = A(1)ȳ =
·

· ·
· · ·

· · · ·
· · ·

· ·
·

‖G1‖ = A(1)

The uniserial modules of length 2:

A
(2)
r =
·

· ·
· · ·

· · · ·
· · ·
r 1

·

,

x̄A
(2)
r =
·

· ·
· · ·

· · · ·
· · ·

· ·
1

,

ȳA
(2)
r =
·

· ·
· · ·

· · · ·
· · ·

· ·
r

FG1‖〈x
2, y2, xy〉‖ = FG1A

(2)
1 , ‖〈y, x2〉‖ = A

(2)
0

B(2) =
·

· ·
· · ·

· · · ·
· · ·

1 ·
·

,

x̄B(2) =
·

· ·
· · ·

· · · ·
· · ·

· ·
·

,

ȳB(2) =
·

· ·
· · ·

· · · ·
· · ·

· ·
1

FG1‖〈x, y
2〉‖ = FG1B

(2)
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The uniserial modules of length 3:

A
(3)
r,s =
·

· ·
· · ·

· · · ·
r r 1

s ·
·

,

x̄A
(3)
r,s =
·

· ·
· · ·

· · · ·
· · ·
r 1

·

,

ȳA
(3)
r,s =
·

· ·
· · ·

· · · ·
· · ·
r 1
r + 1 + s

A(3)
r,s x̄ =

·
· ·

· · ·
· · · ·

· · ·
1 1

r + 1

, A(3)
r,s ȳ =

·
· ·

· · ·
· · · ·

· · ·
r r

s

Homomorphic images: FG1A
3
r,s/FG1A

1 ∼= FG1A
2
1.

Isomorphisms: If r 6= 1 then FG1A
3
r,s

∼= FG1A
3
r,0, ∀s ∈ F. FG1A

3
1,s forms its own

isomorphism class.

C
(3)
s,t =
·

· ·
· · ·

· · · ·
s 1 1

t ·
·

,

x̄C
(3)
s,t =
·

· ·
· · ·

· · · ·
· · ·

1 1
·

,

ȳC
(3)
s,t =
·

· ·
· · ·

· · · ·
· · ·
s s
s+ 1 + t

C
(3)
s,t x̄ =

·
· ·

· · ·
· · · ·

· · ·
s 1

s+ 1

, C
(3)
s,t ȳ =

·
· ·

· · ·
· · · ·

· · ·
s 1

t

Note: C
(3)
1,s = A

(3)
1,s.

Homomorphic images: FG1C
3
s,t/FG1A

1 ∼= FG1A
2
s.
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Isomorphisms: If s 6= 1 then FG1C
3
s,t

∼= FG1C
3
s,0. FG1C

3
1,t has been mentioned

above.

D
(3)
s =
·

· ·
· · ·

· · · ·
1 · ·

· s
·

,

x̄D
(3)
s =
·

· ·
· · ·

· · · ·
· · ·

· ·
s

,

ȳD
(3)
s =
·

· ·
· · ·

· · · ·
· · ·

1 1
1

D(3)
s x̄ =

·
· ·

· · ·
· · · ·

· · ·
1 ·

1 + s

, D(3)
s ȳ =

·
· ·

· · ·
· · · ·

· · ·
1 ·

·

Homomorphic images: FG1D
3
s/FG1A

1 ∼= FG1B
2.

Isomorphisms: FG1D
3
s
∼= FG1D

3
0

B
(3)
s =
·

· ·
· · ·

· · · ·
1 1 ·

· s
·

,

x̄B
(3)
s =
·

· ·
· · ·

· · · ·
· · ·

1 ·
s

,

ȳB
(3)
s =
·

· ·
· · ·

· · · ·
· · ·

1 ·
1

B(3)
s x̄ =

·
· ·

· · ·
· · · ·

· · ·
· ·

1 + s

, B(3)
s ȳ =

·
· ·

· · ·
· · · ·

· · ·
1 1

·

Homomorphic images: FG1B
3
s/FG1A

1 ∼= FG1A
2
1.
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Isomorphisms: FG1B
3
s
∼= FG1B

3
0

The uniserial modules of length 4:

A
(4)
r,s,t =

·
· ·

· · ·
r2 r r 1
r2+r s ·

t ·
·

,

x̄A
(4)
r,s,t =
·

· ·
· · ·

· · · ·
r r 1

s ·
·

,

ȳA
(4)
r,s,t =
·

· ·
· · ·

· · · ·
r2 r2 r

· s
t

A
(4)
r,s,tx̄ =

·
· ·

· · ·
· · · ·
r 1 1

1 + r2 + s r + 1
1 + r2

,

A
(4)
r,s,tȳ =

·
· ·

· · ·
· · · ·
r2 r r

r2 + r s
t

Homomorphic images: FG1A
(4)
r,s,t/FG1A

1 ∼= FG1C
(3)
r,r2+r+s.

Isomorphisms: If r 6= 1, then FG1A
(4)
r,s,t

∼= FG1A
(4)
r,0,s+t+s2/(r+1). FG1A

(4)
1,s,t forms

its own isomorphism class.

FG1‖〈x
−1y, x2y2〉‖ = FG1A

(4)
1,0,0 = FG1C

(4)
1,0,0,0

FG1‖〈xy, x
2y2〉‖ = FG1A

(4)
1,1,1 = FG1C

(4)
1,1,0,1

‖〈y〉‖ = A
(4)
0,0,0, FG1‖〈x

2y〉‖ = FG1A
(4)
0,1,0

C
(4)
s,t,u,v =

·
· ·

· · ·
s s 1 1

u t ·
v ·

·

, x̄C
(4)
s,t,u,v =

·
· ·

· · ·
· · · ·
s 1 1

t ·
·

,

ȳC
(4)
s,t,u,v =

·
· ·

· · ·
· · · ·
s 1 1

s+ 1 + u s+ 1 + u+ t
s+ 1 + u+ v
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C
(4)
s,t,u,vx̄ =

·
· ·

· · ·
· · · ·
s s 1

s+ 1 + u+ t s+ 1
s+ 1 + u

,

C
(4)
s,t,u,vȳ =

·
· ·

· · ·
· · · ·
s s 1

u t
v

Note: C
(4)
1,t,0,v = A

(4)
1,t,v

Homomorphic images: FG1C
(4)
s,t,u,v/FG1A

1 ∼= FG1A
(3)
s,1+u+s2+t

∼= FG1A
(3)
s,t+u.

Isomorphisms: For any λ ∈ F, FG1C
(4)
s+1,t,u,v

∼= FG1C
(4)
s+1,t+λs,u,v+λu+λ2s. If s = 0,

this simplifies to FG1C
(4)
s+1,t,u,v = FG1C

(4)
1,t,u,v

∼= FG1C
(4)
1,t,u,v+λu for all λ ∈ F.

FG1‖〈x
−1y, y2〉‖ = FG1C

(4)
0,0,0,0, FG1‖〈xy, y

2〉‖ = FG1C
(4)
0,1,0,1

D
(4)
s,t,u =
·

· ·
· · ·

1 1 · ·
· s+t t

· u
·

x̄D
(4)
s,t,u =
·

· ·
· · ·

· · · ·
1 · ·
s+t t

u

ȳD
(4)
s,t,u =
·

· ·
· · ·

· · · ·
1 · ·

1 1+s
1+t

D
(4)
s,t,ux̄ =

·
· ·

· · ·
· · · ·

1 1 ·
1 + s 1 + t

1 + t+ u

,

D
(4)
s,t,uȳ =
·

· ·
· · ·

· · · ·
1 1 ·

· s+ t
·

Homomorphic images: FG1D
(4)
s,t,u/FG1A

1 ∼= FG1B
(3)
s+t

∼= FG1B
(3)
0 .

Isomorphisms: For all λ ∈ F, FG1D
(4)
s,t,u

∼= FG1D
(4)
λ+s,t,u+λt+λ2 .

FG1‖〈xy, x
2〉‖ = FG1D

(4)
0,0,0, FG1‖〈xy

−1, x2〉‖ = FG1D
(4)
1,0,1
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B
(4)
s,t =
·

· ·
· · ·

1 · · ·
· 1+s ·

· t
·

,

x̄B
(4)
s,t =
·

· ·
· · ·

· · · ·
· · ·

1+s ·
t

,

ȳB
(4)
s,t =
·

· ·
· · ·

· · · ·
1 1 ·

1 s
1

B
(4)
s,t x̄ =

·
· ·

· · ·
· · · ·

· · ·
1 + s ·

t

,

B
(4)
s,t ȳ =
·

· ·
· · ·

· · · ·
1 · ·

· 1 + s
·

Homomorphic images: FG1B
(4)
s,t /FG1A

1 ∼= FG1D
(3)
1+s

∼= FG1D
(3)
0 .

Isomorphisms: for any λ ∈ F, FG1B
(4)
s,t

∼= FG1B
(4)
s+λ,t+λ+λ2

∼= FG1B
(4)
0,s+s2+t.

‖〈x〉‖ = B
(4)
1,0, FG1‖〈xy

2〉‖ = FG1B
(4)
0,0

There are no uniserial modules of length 5.
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§2 Uniserial submodules of F(2 × 4).2

Group: (2 × 4).2 = 〈x, y
∣

∣ x4 = y4 = 1, xy = y−1〉

This is the partially ordered set of uniserial F(2 × 4).2 submodules:

A
(4)
r,s,t B

(4)
s,t

A
(3)
r,s B

(3)
s

A
(2)
r

FFF
FF

FFF
B(2)

zz
zz

zz
zz

z

A(1)

This is the homomorphism diagram for uniserial F(2 × 4).2 modules:

A
(4)
r,s+λ,t+λ(1+r+λ)

λ∈F

B
(4)
s,t

A
(3)
r+1,λ

λ∈F

B
(3)
s

A
(2)
r

CC
CC

CC
CC

CC
CC

CC
C

B(2)

��
��

��
��

A(1)
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A basis for F(2 × 4).2 is:

1
x̄ ȳ

x̄2 x̄ȳ ȳ2

x̄3 x̄2ȳ x̄ȳ2 ȳ3

x̄3ȳ x̄2ȳ2 x̄ȳ3

x̄3ȳ2 x̄2ȳ3

x̄3ȳ3

A =

a
b c

d e f
g h i j

k l m
n p

q

, x̄A =

·
a ·

b c ·
d e f ·

h i j
l m

p

,

ȳA =

·
· a

· b b+ c
· d b+ e b+ e+ f
g g + h b+ e+ i

g + k g + k + l
g + k + n

Ax̄ =

·
a ·

b c c
d e c+ e+ f c

h e+ h+ i c+ e+ j
h+ k + l e+ h+m

h+ k + p

Aȳ =

·
· a

· b c
· d e f
g h i

k l
n
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The uniserial module of length 1:

A(1) =
·

· ·
· · ·

· · · ·
· · ·

· ·
1

,

x̄A(1) = ȳA(1) = A(1)x̄ = A(1)ȳ =
·

· ·
· · ·

· · · ·
· · ·

· ·
·

‖(2x4).2‖ = A(1)

The uniserial modules of length 2:

A
(2)
r =
·

· ·
· · ·

· · · ·
· · ·

1 r
·

,

x̄A
(2)
r = A

(2)
r x̄ =

·
· ·

· · ·
· · · ·

· · ·
· ·
r

,

ȳA
(2)
r = A

(2)
r ȳ =

·
· ·

· · ·
· · · ·

· · ·
· ·

1

‖〈x, y2〉‖ = A
(2)
0 , ‖〈xy, y2〉‖ ∈ F(2 × 4).2A

(2)
1

B(2) =
·

· ·
· · ·

· · · ·
· · ·

· 1
·

,

x̄B(2) = B(2)x̄ =
·

· ·
· · ·

· · · ·
· · ·

· ·
1

,

ȳB(2) = B(2)ȳ =
·

· ·
· · ·

· · · ·
· · ·

· ·
·

‖〈y, x2〉‖ = B(2)

The uniserial modules of length 3:

A(3)
r,s =

·
· ·

· · ·
· · · ·

1 r + 1 r2 + r
· s

·

,
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x̄A(3)
r,s =

·
· ·

· · ·
· · · ·

· · ·
r + 1 r2 + r

s

, ȳA(3)
r,s =

·
· ·

· · ·
· · · ·

· · ·
1 r

1

A(3)
r,s x̄ =

·
· ·

· · ·
· · · ·

· · ·
r r2 + r

s+ 1

, A(3)
r,s ȳ =

·
· ·

· · ·
· · · ·

· · ·
1 r + 1

·

B
(3)
s =
·

· ·
· · ·

· · · ·
· · 1
s ·

·

,

x̄B
(3)
s = B

(3)
s x̄ =

·
· ·

· · ·
· · · ·

· · ·
· 1

·

,

ȳB
(3)
s = B

(3)
s ȳ =

·
· ·

· · ·
· · · ·

· · ·
· ·
s

The uniserial modules of length 4:

A
(4)
r,s,t =

·
· ·

· · ·
1 r r2 + r r3 + r2

· 1 + r + s r2 + r
· t

·

,

x̄A
(4)
r,s,t =
·

· ·
· · ·

· · · ·
r r2+r r3+r2

1+r+s r2+r
t

,

ȳA
(4)
r,s,t =

·
· ·

· · ·
· · · ·

1 1+r r2+r
1 r+s

·
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A
(4)
r,s,tx̄ =
·

· ·
· · ·

· · · ·
r r2 r3 + r2

s+ 1 r2

r + t

,

A
(4)
r,s,tȳ =

·
· ·

· · ·
· · · ·

1 r r2 + r
· r + s+ 1

·

‖〈x〉‖ ∈ F(2 × 4).2A
(4)
0,1,0

∼= F(2 × 4).2A
(4)
0,0,0 3 ‖〈xy2〉‖

‖〈xy〉‖ ∈ F(2 × 4).2A
(4)
1,0,0

∼= F(2 × 4).2A
(4)
1,1,1 3 ‖〈xy−1〉‖

B
(4)
s,t =
·

· ·
· · ·

· · · 1
· s ·
t ·

·

,

x̄B
(4)
s,t = B

(4)
s,t x̄ =

·
· ·

· · ·
· · · ·

· · 1
s ·

·

,

ȳB
(4)
s,t = B

(4)
s,t ȳ =

·
· ·

· · ·
· · · ·

· · ·
· s
t

‖〈y〉‖ = B
(4)
0,0, ‖〈x2y〉‖ = B

(4)
1,0

There are no uniserial modules of length 5.
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§3 Uniserial submodules of FMod16

Group: Mod16 = 〈x, y
∣

∣ x8 = y2 = 1, yx = x5〉

This is the partially ordered set of uniserial FMod16 submodules:

B
(8)
u,v,w,x

B
(7)
0,u,v,w

//// B
(7)
δ,u,v,w

B
(6)
t,u,v B

(6)
δ,u,v

oo oo

B
(5)
t,u

B
(4)
0,t

//// B
(4)
s,t

B
(3)
s

A
(2)
r

HH
HH

HH
HH

H
B(2)

vvvvvvvvv

A(1)

where δ = 0 or 1
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This is the homomorphism diagram for uniserial FMod16 modules:

B
(8)
u+λ,v+λ+λ2,w+ν+λ2,x+ν+λ4

λ,ν∈F

B
(7)
1,u+1+λ,v+λ+λ2,ν

λ,ν∈F

////

B
(7)
δ,u+1+λ,v+λ+λ2,ν

λ,ν∈F

δ∈{0,1}

B
(6)
t,u+λ,v+λ+λ2

λ∈F

B
(6)
δ+1,u+λ,v+λ+λ2

λ∈F

δ∈{0,1}

oo oo

B
(5)
t+1,µ

µ∈F

B
(4)
0,t

////

B
(4)
s,t

B
(3)
s

A
(2)
r

NNNNNNNNNNNNNNNNNN

B(2)

ttttttttttttt

A(1)

– 37 –



A basis for FMod16 is

1
x̄ ȳ
x̄2 x̄ȳ
x̄3 x̄2ȳ
x̄4 x̄3ȳ
x̄5 x̄4ȳ
x̄6 x̄5ȳ
x̄7 x̄6ȳ

x̄7ȳ

A =

a
b c
d e
f g
h i
j k
l m
n p

q

, x̄A =

·
a ·
b c
d e
f g
h i
j k
l m

p

, ȳA =

·
· a
· b
· d
b f
b b+e+h
f b+e+j
f f+i+l
f+i+n

Ax̄ =

·
a ·
b c
d e

c+f g
c+e+h c+i
e+ g + j c+ e+ k
g + i+ l e+ g +m

g + i+ p

, Aȳ =

·
· a
· b
· d
· f
· h
· j
· l
n

The uniserial module of length 1:

A(1) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

, x̄A(1) = ȳA(1) = A(1)x̄ = A(1)ȳ =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·
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The uniserial modules of length 2:

A(2)
r =

·
· ·
· ·
· ·
· ·
· ·
· ·
1 r

·

, x̄A(2)
r =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·
r

, ȳA(2)
r =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

A(2)
r x̄ =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·
r

, A(2)
r ȳ =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

B(2) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· 1

·

, x̄B(2) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

, ȳB(2) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·

B(2)x̄ =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

, B(2)ȳ =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·
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The uniserial modules of length 3:

B(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· 1
s ·

·

, x̄B(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· ·
· 1

·

, ȳB(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·
s

B(3)
s x̄ =

·
· ·
· ·
· ·
· ·
· ·
· ·
· 1

·

, B(3)
s ȳ =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·
s

The uniserial modules of length 4:

B
(4)
s,t =

·
· ·
· ·
· ·
· ·
· 1
s ·
t ·

·

, x̄B
(4)
s,t =

·
· ·
· ·
· ·
· ·
· ·
· 1
s ·

·

, ȳB
(4)
s,t =

·
· ·
· ·
· ·
· ·
· ·
· ·
· s
t

B
(4)
s,t x̄ =

·
· ·
· ·
· ·
· ·
· ·
· 1
s ·

·

, B
(4)
s,t ȳ =

·
· ·
· ·
· ·
· ·
· ·
· ·
· s
t
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The uniserial modules of length 5:

B
(5)
t,u =

·
· ·
· ·
· ·
· 1
· ·
t ·
u ·

·

, x̄B
(5)
t,u =

·
· ·
· ·
· ·
· ·
· 1
· ·
t ·

·

, ȳB
(5)
t,u =

·
· ·
· ·
· ·
· ·
· ·
· ·
· 1 + t

1 + u

B
(5)
t,u x̄ =

·
· ·
· ·
· ·
· ·
· 1
· ·

t+ 1 ·
1

, B
(5)
t,u ȳ =

·
· ·
· ·
· ·
· ·
· ·
· ·
· t
u

The uniserial modules of length 6:

B
(6)
t,u,v =

·
· ·
· ·
· 1
· ·
t ·
u ·
v ·

·

, x̄B
(6)
t,u,v =

·
· ·
· ·
· ·
· 1
· ·
t ·
u ·

·

, ȳB
(6)
t,u,v =

·
· ·
· ·
· ·
· ·
· ·
· t
· u
v

B
(6)
t,u,vx̄ =

·
· ·
· ·
· ·
· 1
· ·

t+ 1 ·
u+ 1 1

1

, B
(6)
t,u,vȳ =

·
· ·
· ·
· ·
· ·
· ·
· t
· u
v

The uniserial modules of length 7:
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Note: δ = 0 or 1.

B
(7)
δ,u,v,w =

·
· ·
· 1
· ·
δ ·
u ·
v ·
w ·

·

, x̄B
(7)
δ,u,v,w =

·
· ·
· ·
· 1
· ·
δ ·
u ·
v ·

·

, ȳB
(7)
δ,u,v,w =

·
· ·
· ·
· ·
· ·
· 1 + δ
· 1 + u
· v
w

B
(7)
δ,u,v,wx̄ =

·
· ·
· ·
· 1
· ·

δ + 1 ·
u+ 1 1
v 1

·

, B
(7)
δ,u,v,wȳ =

·
· ·
· ·
· ·
· ·
· δ
· u
· v
w

The uniserial modules of length 8:

B(8)
u,v,w,x =

·
· 1
· ·
· ·
u ·
v ·
w ·
x ·

·

, x̄B(8)
u,v,w,x =

·
· ·
· 1
· ·
· ·
u ·
v ·
w ·

·

, ȳB(8)
u,v,w,x =

·
· ·
· ·
· ·
· ·
· u
· v
· w
x

B(8)
u,v,w,xx̄ =

·
· ·
· 1
· ·
1 ·

u+ 1 1
v 1
w ·

·

, B(8)
u,v,w,xȳ =

·
· ·
· ·
· ·
· ·
· u
· v
· w
x

There are no uniserial modules of length 9.
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§4 Uniserial submodules of FD16

Group: D16 = 〈x, y
∣

∣ x2 = y2 = (xy)8 = 1〉

This is the partially ordered set of uniserial FD16 submodules:

A
(8)
s,u,w,x B

(8)
s,u,w,x

A
(7)
s,u,w B

(7)
s,u,w

A
(6)
s,u,0

//// A
(6)
s,u,v B

(6)
s,u,v B

(6)
s,u,0

oo oo

A
(5)
s,u B

(5)
s,u

A
(4)
s,t A

(4)
s,0

oo oo B
(4)
s,0

//// B
(4)
s,t

A
(3)
s B

(3)
s

A
(2)
0

//// A
(2)
r

GG
GG

GG
GG

G
B(2)

uuuu
uuu

uuu

A(1)
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This is the homomorphism diagram for uniserial FD16 modules:

B
(8)
λ,µ,ν,x

λ,µ,ν∈F

A
(8)
λ,µ,ν,x

λ,µ,ν∈F

A
(7)
λ,µ,ν

λ,µ,ν∈F

~~
~~

~~
~~

B
(7)
λ,µ,ν

λ,µ,ν∈F

@@
@@

@@
@@

B
(6)
λ,µ,0

λ,µ∈F

////

B
(6)
λ,µ,v

λ,µ∈F

A
(6)
λ,µ,v

λ,µ∈F

A
(6)
λ,µ,0

λ,µ∈F

oo oo

A
(5)
λ,µ

λ,µ∈F

~~
~~

~~
~~

~~

B
(5)
λ,µ

λ,µ∈F

@@
@@

@@
@@

@@

B
(4)
λ,0

λ∈F

////

B
(4)
λ,t

λ∈F

A
(4)
λ,t

λ∈F

A
(4)
λ,0

λ∈F

oo oo

A
(3)
λ

λ∈F

B
(3)
λ

λ∈F

BB
BB

BB
BB

BB

B(2)

GGGGGGGGGG

A
(2)
r A

(2)
0

oo oo

A(1)
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For this group ring we use a basis which is not in Jennings’ form. The group

G = D2n =
〈

x, y
∣

∣ x2 = y2 = (xy)n = 1
〉

is the dihedral group of order 2n. We

write x̄ = x−1 and ȳ = y−1. Let n be a power of 2, and F a field of characteristic

2. Let am = x̄ȳx̄ · · · be an element of FD2n, where x̄ and ȳ appear alternately in

the product, starting with x̄, and the total number of terms in this product is m.

Let bm = ȳx̄ȳ · · · be defined in a like manner, where the product starts with ȳ.

We define a0 = b0 = 1. It may be shown that

i) an = bn = ‖D2n‖

ii) am = bm = 0 when m > n

iii) am and bm are elements of Radm(FD2n

iv) am and bm are not elements of Radm+1(FD2n if m ≤ n

v) The set {a0, ai, bi, an

∣

∣ 0 < i < n} forms a basis for FD2n filtered with respect

to the powers of the radical, where the subscript indicates the appropriate

power of the radical.

We choose not to prove these statements here.

The following results may be quickly generalized to other dihedral 2-groups.

A basis for FD16 is

1
x̄ ȳ
ȳx̄ x̄ȳ
x̄ȳx̄ ȳx̄ȳ
ȳx̄ȳx̄ x̄ȳx̄ȳ
x̄ȳx̄ȳx̄ ȳx̄ȳx̄ȳ
ȳx̄ȳx̄ȳx̄ x̄ȳx̄ȳx̄ȳ
x̄ȳx̄ȳx̄ȳx̄ ȳx̄ȳx̄ȳx̄ȳ

ȳx̄ȳx̄ȳx̄ȳ

A =

a
b c
d e
f g
h i
j k
l m
n p

q

x̄A =

·
a ·
· c
d ·
· g
h ·
· k
l ·

p

ȳA =

·
· a
b ·
· e
f ·
· i
j ·
· m

n
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Ax̄ =

·
a ·
c ·
e ·
g ·
i ·
k ·
m ·

p

Aȳ =

·
· a
· b
· d
· f
· h
· j
· l
n

The Uniserial module of length 1:

A(1) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

x̄A(1) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·

ȳA(1) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·

The Uniserial modules of length 2:

A(2)
r =

·
· ·
· ·
· ·
· ·
· ·
· ·
1 r

·

x̄A(2)
r =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·
r

ȳA(2)
r =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

B(2) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· 1

·

x̄B(2) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

ȳB(2) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·
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The Uniserial modules of length 3:

A(3)
s =

·
· ·
· ·
· ·
· ·
· ·
1 ·
· s

·

x̄A(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· ·
1 ·

s

ȳA(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·

B(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· 1
s ·

·

x̄B(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·

ȳB(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· ·
· 1
s

The Uniserial modules of length 4:

A
(4)
s,t =

·
· ·
· ·
· ·
· ·
1 ·
· s
· t

·

x̄A
(4)
s,t =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·
t

ȳA
(4)
s,t =

·
· ·
· ·
· ·
· ·
· ·
1 ·
· s

·

B
(4)
s,t =

·
· ·
· ·
· ·
· ·
· 1
s ·
t ·

·

x̄B
(4)
s,t =

·
· ·
· ·
· ·
· ·
· ·
· 1
s ·

·

ȳB
(4)
s,t =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·
t
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The Uniserial modules of length 5:

A(5)
s,u =

·
· ·
· ·
· ·
1 ·
· s
· ·
· u

·

x̄A(5)
s,u =

·
· ·
· ·
· ·
· ·
1 ·
· s
· ·

u

ȳA(5)
s,u =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·

B(5)
s,u =

·
· ·
· ·
· ·
· 1
s ·
· ·
u ·

·

x̄B(5)
s,u =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·

ȳB(5)
s,u =

·
· ·
· ·
· ·
· ·
· 1
s ·
· ·

u

The Uniserial modules of length 6:

A(6)
s,u,v =

·
· ·
· ·
1 ·
· s
· ·
· u
· v

·

x̄A(6)
s,u,v =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·
v

ȳA(6)
s,u,v =

·
· ·
· ·
· ·
1 ·
· s
· ·
· u

·

B(6)
s,u,v =

·
· ·
· ·
· 1
s ·
· ·
u ·
v ·

·

x̄B(6)
s,u,v =

·
· ·
· ·
· ·
· 1
s ·
· ·
u ·

·

ȳB(6)
s,u,v =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·
v
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The Uniserial modules of length 7:

A(7)
s,u,w =

·
· ·
1 ·
· s
· ·
· u
· ·
· w

·

x̄A(7)
s,u,w =

·
· ·
· ·
1 ·
· s
· ·
· u
· ·

w

ȳA(7)
s,u,w =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·

B(7)
s,u,w =

·
· ·
· 1
s ·
· ·
u ·
· ·
w ·

·

x̄B(7)
s,u,w =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·

ȳB(7)
s,u,w =

·
· ·
· ·
· 1
s ·
· ·
u ·
· ·

w

The Uniserial modules of length 8:

A(8)
s,u,w,x =

·
1 ·
· s
· ·
· u
· ·
· w
· x

·

x̄A(8)
s,u,w,x =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·
x

ȳA(8)
s,u,w,x =

·
· ·
1 ·
· s
· ·
· u
· ·
· w

·

B(8)
s,u,w,x =

·
· 1
s ·
· ·
u ·
· ·
w ·
x ·

·

x̄B(8)
s,u,w,x =

·
· ·
· 1
s ·
· ·
u ·
· ·
w ·

·

ȳB(8)
s,u,w,x =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·
x

There is no uniserial module of length 9.

– 49 –



§5 Uniserial submodules of FSD16

Group: SD16 = 〈x, y
∣

∣ x8 = y2 = 1, yx = x3〉

This is the partially ordered set of uniserial FSD16 submodules:

B
(8)
s,u,w,x

B
(7)
s,u,w A

(7)
s,u,w

B
(6)
s,u,s4+s3

//// B
(6)
s,u,v A

(6)
s,u,v A

(6)
s,u,u

oo oo

B
(5)
s,u A

(5)
s,u

B
(4)
s,t B

(4)
s,s2+s

oo oo A
(4)
s,1

//// A
(4)
s,t

B
(3)
s A

(3)
s

B(2)

LLLLLLLLLLL A
(2)
r

uuuuuuuuu
A

(2)
1

oo oo

A(1)
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This is the homomorphism diagram for uniserial FSD16 modules:

B
(8)
s,u,w,x

s2+s3+s4+s5+s2u+u+u2+w+x=α

α∈F

A
(7)
λ,µ,ν

λ,µ,ν∈F

qqqqqqqqqqqqqqq

B
(7)
λ,µ,ν

λ,µ,ν∈F

??
??

??
?

B
(6)
λ,µ,λ3+λ4

λ,µ∈F

////

B
(6)
s+λ,µ,v+sλ2+s2λ+λ3+λ4

λ,µ∈F

A
(6)
λ,u+µ,v+µ

λ,µ∈F

A
(6)
λ,µ,µ

λ,µ∈F

oo oo

A
(5)
λ,µ

λ,µ∈F

qqqqqqqqqqqqqqqqq

B
(5)
λ,µ

λ,µ∈F

??
??

??
??

?

B
(4)
λ,λ+λ2

λ∈F

////

B
(4)
s+λ,λ+λ2+t

λ∈F

A
(4)
λ,t

λ∈F

A
(4)
λ,1

λ∈F

oo oo

A
(3)
λ

λ∈F

B
(3)
λ

λ∈F

ooooooooooooooooooo

A
(2)
r

QQQQQQQQQQQQQQQQQQ

A
(2)
1

oo oo

B(2)

mmmmmmmmmmmmmmmmmm

A(1)
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A basis for FSD16 is

1
x̄ ȳ
x̄2 x̄ȳ
x̄3 x̄2ȳ
x̄4 x̄3ȳ
x̄5 x̄4ȳ
x̄6 x̄5ȳ
x̄7 x̄6ȳ

x̄7ȳ

A =

a
b c
d e
f g
h i
j k
l m
n p

q

, x̄A =

·
a ·
b c
d e
f g
h i
j k
l m

p

,

ȳA =

·
· a
b b
b b+ d+ e

d+ f b+ e+ f
· d+ f + g + h+ i

d+ f + j j
j d+ f + g + i+ j + l +m

j +m+ n

The Uniserial modules of length 1:

A(1) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

, x̄A(1) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·

, ȳA(1) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·
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The Uniserial modules of length 2:

A(2)
r =

·
· ·
· ·
· ·
· ·
· ·
· ·
1 r

·

, x̄A(2)
r =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·
r

, ȳA(2)
r =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

B(2) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· 1

·

, x̄B(2) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

, ȳB(2) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·

The Uniserial modules of length 3:

A(3)
s =

·
· ·
· ·
· ·
· ·
· ·
1 1
· s

·

, x̄A(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· ·
1 1

s

, ȳA(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

B(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· 1
s ·

·

, x̄B(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· ·
· 1

·

, ȳB(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· ·
· 1

1 + s
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The Uniserial modules of length 4:

A
(4)
s,t =

·
· ·
· ·
· ·
· ·
1 1
· s
· t

·

, x̄A
(4)
s,t =

·
· ·
· ·
· ·
· ·
· ·
1 1
· s

t

, ȳA
(4)
s,t =

·
· ·
· ·
· ·
· ·
· ·
1 1
1 1 + s

1 + s

B
(4)
s,t =

·
· ·
· ·
· ·
· ·
· 1
s ·
t ·

·

, x̄B
(4)
s,t =

·
· ·
· ·
· ·
· ·
· ·
· 1
s ·

·

, ȳB
(4)
s,t =

·
· ·
· ·
· ·
· ·
· ·
· ·
· s
t

The Uniserial modules of length 5:

A(5)
s,u =

·
· ·
· ·
· ·
1 1
· s
· 1
· u

·

, x̄A(5)
s,u =

·
· ·
· ·
· ·
· ·
1 1
· s
· 1

u

, ȳA(5)
s,u =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

B(5)
s,u =

·
· ·
· ·
· ·
· 1
s ·

s2 + s ·
u ·

·

, x̄B(5)
s,u =

·
· ·
· ·
· ·
· ·
· 1
s ·

s2 + s ·
·

, ȳB(5)
s,u =

·
· ·
· ·
· ·
· ·
· 1
s s
s 1 + s2

s+ u
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The Uniserial modules of length 6:

A(6)
s,u,v =

·
· ·
· ·
1 1
· s
· 1
· u
· v

·

, x̄A(6)
s,u,v =

·
· ·
· ·
· ·
1 1
· s
· 1
· u

v

, ȳA(6)
s,u,v =

·
· ·
· ·
· ·
1 1
· s
1 ·
· s+ u

u

B
(6)
s,u,v =

·
· ·
· ·
· 1
s ·

s2 + s ·
u ·
v ·

·

,

x̄B
(6)
s,u,v =

·
· ·
· ·
· ·
· 1
s ·

s2 + s ·
u ·

·

,

ȳB
(6)
s,u,v =

·
· ·
· ·
· ·
· ·
· 1 + s

s2 + s s2 + s
s2 + s 1 + s2 + s+ u

s2 + s+ v

The Uniserial modules of length 7:

A(7)
s,u,w =

·
· ·
1 1
· s
· 1
· u
· u
· w

·

, x̄A(7)
s,u,w =

·
· ·
· ·
1 1
· s
· 1
· u
· u

w

, ȳA(7)
s,u,w =

·
· ·
· ·
· ·
1 1
· s
1 ·
· s+ u

u

B
(7)
s,u,w =

·
· ·
· 1
s ·

s2 + s ·
u ·

s4 + s3 ·
w ·

·

,

x̄B
(7)
s,u,w =

·
· ·
· ·
· 1
s ·

s2 + s ·
u ·

s4 + s3 ·
·

,

ȳB
(7)
s,u,w =

·
· ·
· ·
· 1
s 1 + s
· s2

s+ u u
u s+ u+ s4 + s3

u+ w
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The Uniserial modules of length 8:

B(8)
s,u,w,x =

·
· 1
s ·

s2 + s ·
u ·

s4 + s3 ·
w ·
x ·

·

, x̄B(8)
s,u,w,x =

·
· ·
· 1
s ·

s2 + s ·
u ·

s4 + s3 ·
w ·

·

,

ȳB(8)
s,u,w,x =

·
· ·
· ·
· s
s2 s2 + s
· s2 + u

s2 + s4 + s3 s4 + s3

s4 + s3 s2 + s4 + s3 + w
s4 + s3 + x

There is no uniserial module of length 9.
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§6 Uniserial submodules of FQ16

Group: Q16 = 〈x, y
∣

∣ x8 = 1, x4 = y2, yx = x−1〉

This is the partially ordered set of uniserial FQ16 submodules:

A
(7)
s,u,w B

(7)
s,u,w

A
(6)
s,u,s2+s+u+1

//// A
(6)
s,u,v B

(6)
s,u,v B

(6)
s,u,s4+s3+s2+1

oo oo

A
(5)
s,t,u A

(5)
s,1,u

oo oo B
(5)
s,u

A
(4)
s,t B

(4)
s,s2+s+1

//// B
(4)
s,t

A
(3)
s B

(3)
s

A
(2)
1

//// A
(2)
r

JJJJJJJJJJ B(2)

oooooooooooooo

A(1)
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This is the homomorphism diagram for uniserial FQ16 modules:

B
(7)
λ,µ,ν

λ,µ,ν∈F

{{
{{

{{
{{

{{

A
(7)
λ,µ,ν

λ,µ,ν∈F

EEE
EE

EEE
EE

E

A
(6)
s,u,v

s+s2+u+v=1

////

A
(6)
s,u,v

s+s2+u+v=α

α∈F

B
(6)
s,u,v

s2+s3+s4+v=α

α∈F

B
(6)
s,u,v

s2+s3+s4+v=1

oo oo

B
(5)
λ,µ

λ,µ∈F

{{
{{

{{
{{

{{
{{

{{
{

A
(5)
λ,µ

λ,µ∈F

EE
EE

EE
EE

EE
EE

EE

A
(4)
λ,1

λ∈F

////

A
(4)
λ,t

λ∈F

B
(4)
s,t

s+s2+t=α

α∈F

B
(4)
s,t

s+s2+t=1

oo oo

B
(3)
λ

λ∈F

xxxxxxxxxxxxxx

A
(3)
λ

λ∈F

A
(2)
1

////

A
(2)
r B(2)

uuuuuuuuuuuuuuu

A(1)
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A basis for FQ16 is

1
x̄ ȳ
x̄2 x̄ȳ
x̄3 x̄2ȳ
x̄4 x̄3ȳ
x̄5 x̄4ȳ
x̄6 x̄5ȳ
x̄7 x̄6ȳ

x̄7ȳ

A =

a
b c
d e
f g
h i
j k
l m
n p

q

, x̄A =

·
a ·
b c
d e
f g
h i
j k
l m

p

,

ȳA =

·
· a
b b
b b+ d+ e

b+ c+ d+ f b+ e+ f
b+ e b+ d+ e+ f + g + h+ i

b+ d+ e+ g + j b+ e+ j
b+ e+ f + i+ j b+ d+ e+ g + j + l +m

b+ e+ f + i+ j +m+ n

The Uniserial modules of length 1:

A(1) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

, x̄A(1) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·

, ȳA(1) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·
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The Uniserial modules of length 2:

A(2)
r =

·
· ·
· ·
· ·
· ·
· ·
· ·
1 r

·

, x̄A(2)
r =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·
r

, ȳA(2)
r =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

B(2) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· 1

·

, x̄B(2) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

, ȳB(2) =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

·

The Uniserial modules of length 3:

A(3)
s =

·
· ·
· ·
· ·
· ·
· ·
1 1
· s

·

, x̄A(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· ·
1 1

s

, ȳA(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· ·
· ·

1

B(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· 1
s ·

·

, x̄B(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· ·
· 1

·

, ȳB(3)
s =

·
· ·
· ·
· ·
· ·
· ·
· ·
· 1

1 + s
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The Uniserial modules of length 4:

A
(4)
s,t =

·
· ·
· ·
· ·
· ·
1 1
· s
· t

·

, x̄A
(4)
s,t =

·
· ·
· ·
· ·
· ·
· ·
1 1
· s

t

, ȳA
(4)
s,t =

·
· ·
· ·
· ·
· ·
· ·
1 1
1 1 + s

1 + s

B
(4)
s,t =

·
· ·
· ·
· ·
· ·
· 1
s ·
t ·

·

, x̄B
(4)
s,t =

·
· ·
· ·
· ·
· ·
· ·
· 1
s ·

·

, ȳB
(4)
s,t =

·
· ·
· ·
· ·
· ·
· ·
· ·
· s
t

The Uniserial modules of length 5:

A(5)
s,u =

·
· ·
· ·
· ·
1 1
· s
· 1
· u

·

, x̄A(5)
s,u =

·
· ·
· ·
· ·
· ·
1 1
· s
· 1

u

, ȳA(5)
s,u =

·
· ·
· ·
· ·
· ·
· ·
· ·
1 1

·

B
(5)
s,u =

·
· ·
· ·
· ·
· 1
s ·

s2 + s+ 1 ·
u ·

·

,

x̄B
(5)
s,u =

·
· ·
· ·
· ·
· ·
· 1
s ·

s2 + s+ 1 ·
·

,

ȳB
(5)
s,u =
·

· ·
· ·
· ·
· ·
· 1
s s

1 + s s2 + 1
1 + s+ u
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The Uniserial modules of length 6:

A(6)
s,u,v =

·
· ·
· ·
1 1
· s
· 1
· u
· v

·

, x̄A(6)
s,u,v =

·
· ·
· ·
· ·
1 1
· s
· 1
· u

v

, ȳA(6)
s,u,v =

·
· ·
· ·
· ·
1 1
· s
1 ·

1+s 1+u
1+s+u

B
(6)
s,u,v =

·
· ·
· ·
· 1
s ·

s2 + s+ 1 ·
u ·
v ·

·

,

x̄B
(6)
s,u,v =

·
· ·
· ·
· ·
· 1
s ·

s2 + s+ 1 ·
u ·

·

,

ȳB
(6)
s,u,v =
·

· ·
· ·
· ·
· ·
· 1 + s

s2 + s s2 + s+ 1
s2 + s+ 1 s2 + s+ u

s2 + s+ 1 + v

The Uniserial modules of length 7:

A(7)
s,u,w =

·
· ·
1 1
· s
· 1
· u
· s2 + s+ 1 + u
· w

·

,

x̄A(7)
s,u,w =

·
· ·
· ·
1 1
· s
· 1
· u
· s2 + s+ 1 + u

w

, ȳA(7)
s,u,w =

·
· ·
· ·
· ·
1 1
1 s+ 1
s 1
· s2 + 1 + u

s2 + s+ 1 + u
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B(7)
s,u,w =

·
· ·
· 1
s ·

s2 + s+ 1 ·
u ·

1 + s2 + s3 + s4 ·
w ·

·

, x̄B(7)
s,u,w =

·
· ·
· ·
· 1
s ·

s2 + s+ 1 ·
u ·

1 + s2 + s3 + s4 ·
·

,

ȳB(7)
s,u,w =

·
· ·
· ·
· 1
s 1 + s
1 s2

1 + u 1 + u
1 + s+ u u+ s2 + s3 + s4

1 + s+ u+ w

There are no uniserial modules of length 8.
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§7 Uniserial submodules of FD8Y4

Group: D8Y4 = 〈x, y, z
∣

∣ x4 = y2 = z2 = 1, x ∈ Z, (yz)2 = x2〉, where Z is

the center of the group.

This is the partially ordered set of uniserial FD8Y4 submodules:

A
(2)
r,s

DD
DD

DD
DD

B
(2)
r C(2)

zz
zz

zz
zz

z

A(1)

This is the homomorphism diagram for uniserial FD8Y4 modules:

A
(2)
r,s

<<
<<

<<
<<

B
(2)
r C(2)

��
��

��
��

A(1)

As there are no uniserial modules of a length greater than 2, all uniserial

modules are mutually non-isomorphic.

A basis for FD8Y4 is:

1
x̄ ȳ z̄
x̄2 x̄ȳ x̄z̄ ȳz̄
x̄3 x̄2ȳ x̄2z̄ x̄ȳz̄

x̄3ȳ x̄3z̄ x̄2ȳz̄
x̄3ȳz̄

A =

a
b c d
e f g h
i j k l

m n p
q

, x̄A =

·
a · ·
b c d ·
e f g h

j k l
p

,
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ȳA =

·
· a ·
· b · d
· e · g
i · k

n

z̄A =

·
· · a
c · b c
f c c+ e+ h f

f f + i+ l c+ h+ j
f + l +m

The Uniserial module of length 1:

A(1) =

·
· · ·
· · · ·
· · · ·

· · ·
1

, x̄A(1) =

·
· · ·
· · · ·
· · · ·

· · ·
·

,

ȳA(1) =

·
· · ·
· · · ·
· · · ·

· · ·
·

z̄A(1) =

·
· · ·
· · · ·
· · · ·

· · ·
·

The Uniserial modules of length 2:

A(2)
r,s =

·
· · ·
· · · ·
· · · ·
r s 1

·

, x̄A(2)
r,s =

·
· · ·
· · · ·
· · · ·

· · ·
1

,

ȳA(2)
r,s =

·
· · ·
· · · ·
· · · ·

· · ·
s

z̄A(2)
r,s =

·
· · ·
· · · ·
· · · ·

· · ·
r
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B(2)
r =

·
· · ·
· · · ·
· · · ·

1 r ·
·

, x̄B(2)
r =

·
· · ·
· · · ·
· · · ·

· · ·
·

,

ȳB(2)
r =

·
· · ·
· · · ·
· · · ·

· · ·
r

z̄B(2)
r =

·
· · ·
· · · ·
· · · ·

· · ·
1

C(2) =

·
· · ·
· · · ·
· · · ·

· 1 ·
·

, x̄C(2) =

·
· · ·
· · · ·
· · · ·

· · ·
·

,

ȳC(2) =

·
· · ·
· · · ·
· · · ·

· · ·
1

, z̄C(2) =

·
· · ·
· · · ·
· · · ·

· · ·
·

There are no uniserial modules of length 3.
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Chapter 3: Tensor decompositions of the Regular Representation

In this chapter we present several theorems related to tensor decompositions

of group rings, culminating in a description of tensor decompositions of the group

rings of particular groups of order 16. Throughout, F is a field of characteristic

p, where p is a prime. Unless otherwise noted, G is a p-group, and H and K are

subgroups of G. We define M and N to be left FG-modules, and we denote the

Loewy length of the module M by ``(M).

The tensor product M ⊗N is the set of F-linear combinations of the elements

m ⊗F n, where m ∈ M and n ∈ N . The group G acts on M ⊗N by g ·m ⊗ n =

gm ⊗ gn, for any element g of G. Extending F-linearly gives M ⊗ N a left FG-

module structure. To distinguish multiplication of m⊗n by g from multiplication

of m by g, we will write g ·m⊗ n and gm respectively.

Two of the more important results of this section deal with the particular

situation where FG = M ⊗ N , and ``(FG) = ``(M) + ``(N) − 1. Under these

circumstances, Theorem 1.6 states that the radical and socle series of M coincide,

as do those of N . In Theorem 1.7 we see that the quotient of consecutive powers

of the radical of FG may be written entirely in terms of M and N .

We note here that Theorems 1.5 through 1.7, and Corollary 1.8 have imme-

diate generalizations, without significantly changing the proofs. We may replace

the supposition that FG ∼= M ⊗N with the supposition that M ⊗N is a module

for which the radical series and the socle series coincide. The conjecture after

Corollary 1.8 may likewise be broadened in a number of ways.
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§1 Tensor Decompositions

In the following two lemmas we do not require G to be a p-group.

Lemma 1.1. If g is an element of the group G, and m and n are elements of

left FG-modules, then

(g − 1) ·m⊗ n = (g − 1)m⊗ n+m⊗ (g − 1)n+ (g − 1)m⊗ (g − 1)n.

Proof. Care must be taken in noting the differences between the two defini-

tions of multiplication.

(g − 1) ·m⊗ n = g ·m⊗ n−m⊗ n = gm⊗ gn−m⊗ n

= gm⊗ gn−m⊗ n − gm⊗ n+ gm⊗ n

= gm⊗ (g − 1)n+ (g − 1)m⊗ n−m⊗ (g − 1)n+m⊗ (g − 1)n

= (g − 1)m⊗ (g − 1)n+ (g − 1)m⊗ n+m⊗ (g − 1)n

Lemma 1.2. The product of the augmentation ideal and M⊗N , IG ·M⊗N ,

is contained in IG M ⊗N +M ⊗ IG N .

Proof. An element of M ⊗N is a linear combination of elements of the form

m⊗n, where m and n are elements of some fixed bases for M and N , respectively.

A basis for the augmentation ideal IG is the set {g−1 | 1 6= g ∈ G}, so IG ·M⊗N

consists of linear combinations of elements of the form (g − 1) ·m ⊗ n. From the

previous lemma, (g−1) ·m⊗n = (g−1)m⊗n+m⊗ (g−1)n+(g−1)m⊗ (g−1)n,

which is the sum of elements of IG M ⊗N , M ⊗ IG N , and IG M ⊗ IG N . Since

IG M ⊗ IG N is contained in both IG M ⊗ N and M ⊗ IG N , the lemma is

proved.

If we again require G to be a p-group, then the radical and the augmentation

ideal coincide. The following results are obtained.
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Lemma 1.3. If M and N are left FG-modules, then

1) Radk(M ⊗N) ⊆

k
∑

i=0

Radi(M) ⊗ Radk−i(N)

2) Sock(M ⊗N) ⊇
k
∑

i=0

Soci(M) ⊗ Sock+1−i(N)

Proof. For statement 1), when k = 0 we have equality. Assume that statement

1) is true for all k ≤ K. Then

RadK+1(M ⊗N) = IG · RadK(M ⊗N)

⊆

K
∑

i=0

IG · Radi(M) ⊗ RadK−i(N)

⊆
K
∑

i=0

Radi+1(M) ⊗ RadK−i(N) + Radi(M) ⊗ RadK+1−i(N)

=

K+1
∑

i=0

Radi(M) ⊗ RadK+1−i(N).

As for statement 2), it is evidently true when k = 0. Assume that statement

2) is true for all k < K. With k = K, we work with the radical of any summand

of the right side.

Rad(Soci(M) ⊗ SocK+1−i(N)) = IG · Soci(M) ⊗ SocK+1−i(N)

⊆ IG Soci(M) ⊗ SocK+1−i(N) + Soci(M) ⊗ IG SocK+1−i(N)

⊆ Soci−1(M) ⊗ SocK+1−i(N) + Soci(M) ⊗ SocK−i(N)

⊆ SocK−1(M ⊗N).

Since the radical of Soci(M)⊗ SocK+1−i(N) is contained in SocK−1(M ⊗N), we

see that Soci(M) ⊗ SocK+1−i(N) is contained in SocK(M ⊗N).

Lemma 1.4. The Loewy length of the tensor product of FG-modules M ⊗N

has an upper bound, ``(M ⊗N) ≤ ``(M) + ``(N)− 1.

Proof. The Loewy length of a module M is defined as the minimum power k

such that Radk(M) = 0. Using the previous lemma, any element of Radk(M⊗N)
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is a sum of elements in the modules Radi(M)⊗Radk−i(N). To obtain a non-zero

element in the latter tensor product we must have i < ``(M) and k − i < ``(N).

Thus ``(M ⊗N) − 1 ≤ ``(M) − 1 + ``(N)− 1.

Theorem 1.5. Assume FG ∼= M ⊗N . Then ``(FG) = ``(M) + ``(N) − 1 if

and only if the inclusions of Lemma 1.3 become equalities.

Proof. Let λ = ``(FG), µ = ``(M), and ν = ``(N). By Lemma 1.4, λ ≤

µ+ ν − 1. As G is a p-group, the radical and socle series of FG coincide. In other

words, Soci(FG) = Radλ−i(FG). Using this, Lemma 1.3 implies

k
∑

i=0

Soci(M) ⊗ Sock+1−i(N) ⊆ Sock(FG) = Radλ−k(FG)

⊆

λ−k
∑

j=0

Radλ−k−j(M) ⊗ Radj(N),

(∗)

for any k between 0 and λ. As Radµ(M) = 0, and Radν(N) = 0, we know that

Radλ−k−j(M) ⊗ Radj(N) ⊆ Socµ+k+j−λ(M) ⊗ Socν−j(N). (∗∗)

First, we assume that λ = µ+ ν − 1. Inclusion (∗∗) becomes

Radµ+ν−1−k−j(M) ⊗ Radj(N) ⊆ Socj+k+1−ν(M) ⊗ Socν−j(N),

which, when combined with the inclusions (∗) gives

k
∑

i=0

Soci(M) ⊗ Sock+1−i(N) ⊆

µ+ν−1−k
∑

j=0

Radµ+ν−1−k−j(M) ⊗ Radj(N)

⊆

µ+ν−1−k
∑

j=0

Socj+k+1−ν(M) ⊗ Socν−j(N).

Replacing j with i+ ν − k − 1, the last module becomes

µ
∑

i=k+1−ν

Soci(M) ⊗ Sock+1−i(N).
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We know that Sock(M) = 0 if k ≤ 0, and Sock(M) = M if k ≥ ``(M), for any

module M . Thus we have

k
∑

i=0

Soci(M) ⊗ Sock+1−i(N) =

µ
∑

i=k+1−ν

Soci(M) ⊗ Sock+1−i(N),

which implies that the inclusions of (∗) are equalities.

Now we assume that the set inclusions of (∗) are equalities. With k = 0 we

obtain

0 = Radλ(FG) =
λ
∑

j=0

Radλ−j(M) ⊗ Radj(N).

But if λ− j ≤ µ− 1 and j ≤ ν − 1, the summation on the right can not be zero.

Thus µ− 1 + ν − 1 ≤ λ− 1. But we know from Lemma 1.4 that λ ≤ µ+ ν − 1, so

we must have equality.

Remark: We see from the proof of Theorem 1.5 that equality in condition 1)

of Lemma 1.3, when k = λ by itself is enough to imply that ``(FG) = ``(M) +

``(N) − 1, which in turn implies equality in conditions 1) and 2) of Lemma 1.3.

Thus, if FG ∼= M ⊗ N , and 0 = Radλ(M ⊗N) =
∑λ

j=0 Radλ−j(M) ⊗ Radj(N),

where λ = ``(M ⊗ N), then ``(FG) = ``(M) + ``(N) − 1, and equality holds in

the inclusions of Lemma 1.3.

Theorem 1.6. If FG ∼= M ⊗N , and ``(FG) = ``(M) + ``(N) − 1, then the

socle series and radical series of M coincide, as do those of N .

Proof. We are given that FG ∼= M ⊗ N . Let µ = ``(M), ν = ``(N), and

λ = ``(FG) = µ+ ν − 1. By Theorem 1.5 we have

Soc1(M) ⊗ Soc1(N) = Soc1(M ⊗N)

= Radλ−1(M ⊗N) =

λ−1
∑

j=0

Radλ−1−j(M) ⊗ Radj(N).

As Radν(N) = 0, any summand with j ≥ ν is zero. Also, as Radµ(M) = 0, the

non-zero terms in the sum occur when µ − 1 ≥ λ− 1 − j = µ+ ν − 2 − j, which
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gives j ≥ ν − 1. Thus the only non-zero term in this sum occurs when j = ν − 1,

and we have

Soc1(M) ⊗ Soc1(N) = Radµ−1(M) ⊗ Radν−1(N).

We must have Soc1(M) = Radµ−1(M) and Soc1(N) = Radν−1(N).

Assume that Sock(M) = Radµ−k(M) and Sock(N) = Radν−k(N), for all

k < K. We know that

SocK(M) ⊗ Soc1(N) ⊆

µ+ν−1−K
∑

j=0

Radµ+ν−1−K−j(M) ⊗ Radj(N).

Each summand with j ≥ ν is zero. The summand with j = ν − 1 is

Radµ−K(M) ⊗ Radν−1(N) ⊆ SocK(M) ⊗ Soc1(N). (†)

The summands with values of j less than ν − 1 are contained in the module

Radµ−K+1(M) ⊗ Rad0(N) = SocK−1(M) ⊗N.

Given m ⊗ n ∈ SocK(M) ⊗ Soc1(N), we may write m ⊗ n = a + b, where

a ∈ Radµ−K(M)⊗Soc1(N), and b ∈ SocK−1(M)⊗N . As a ∈ SocK(M)⊗Soc1(N),

b = m ⊗ n − a must also be an element of SocK(M) ⊗ Soc1(N). Thus, as these

are tensor products of vector spaces,

b ∈ (SocK−1(M) ⊗N) ∩ (SocK(M) ⊗ Soc1(N)) = SocK−1(M) ⊗ Soc1(N)

= Radµ+1−K(M) ⊗ Radν−1(N) ⊆ Radµ−K(M) ⊗ Radν−1(N).

Thusm⊗n ∈ Radµ−K(M)⊗Soc1(N), for all elementsm⊗n of SocK(M)⊗Soc1(N),

and the inclusion of (†) is reversed, so

SocK(M) ⊗ Soc1(N) = Radµ−K(M) ⊗ Radν−1(N).

From this we deduce that SocK(M) = Radµ−K(M). By a symmetric argument,

SocK(N) = Radµ−K(N) for all K.
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Theorem 1.7. If FG ∼= M ⊗N and ``(FG) = ``(M) + ``(N) − 1, then

Radk(FG)/Radk+1(FG) ∼=

k
⊕

i=0

(

Radi(M)/Radi+1(M)
)

⊗
(

Radk−i(N)/Radk−i+1(N)
)

.

Proof. We start by creating a homomorphism between the modules. We

represent elements of Radi(M) and Radk−i(N) by mi and nk−i respectively. Let

φ be the map from the direct sum on the right to Radk(M ⊗N)/Radk+1(M ⊗N)

defined on each term of each summand by

φ
(

(

mi + Radi+1(M)
)

⊗
(

nk−i + Radk−i+1(N)
)

)

= mi ⊗nk−i +Radk+1(M⊗N).

We extended φ F-linearly to the entire sum. This map is clearly a well defined

FG-homomorphism. Every element of Radk(M ⊗N) is the sum of elements of the

form mi ⊗ nk−i by Theorem 1.5, so φ is surjective.

We know that the dimensions of the quotients Radk(FG)/Radk+1(FG) must

add up to dim(FG) = |G|. Let ri = dim
(

Radi(M)/Radi+1(M)
)

, and let sj =

dim
(

Radj(N)/Radj+1(N)
)

. Let L = ``(FG), µ = ``(M), and ν = ``(N). We

have

L
∑

k=0

dim

(

k
⊕

i=0

(

Radi(M)/Radi+1(M)
)

⊗
(

Radk−i(N)/Radk−i+1(N)
)

)

=

L
∑

k=0

k
∑

i=0

(risk−i) =

µ
∑

i=0

ν
∑

j=0

risi = dim(M) dim(N) = |G|.

The homomorphism φ is a surjection of one module to another where both modules

have the same dimension. This implies that φ is an isomorphism.

For an FG-module M , the Poincaré polynomial associated to the filtration of

M by its radical powers is defined as the polynomial

PM (t) =

∞
∑

i=0

ti dim(Radi(M)/Radi+1(M).

We note that if PM (t) is a polynomial of degree k, then there is no power of

t less than k for which the coefficient is 0. In terms of Poincaré polynomials,

Theorem 1.7 may be restated as,
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Corollary 1.8. If FG ∼= M ⊗ N and ``(FG) = ``(M) + ``(N) − 1, then

PFG(t) = PM (t)PN (t).

Conjecture. If FG ∼= M ⊗N , then ``(FG) = ``(M) + ``(N)− 1.

This conjecture holds true for all cases where |G| ≤ 16.

Lemma 1.9. Let M and N be left FG-modules. The following statements

are equivalent:

1) M ⊗N ∼= FG

2) dim(M ⊗N) = |G| and M ⊗N may be generated by a single element,

3) dim(M ⊗N) = |G| and ‖G‖ ·M ⊗N 6= 0,

4) dim(M ⊗N) = |G| and ``(M ⊗N) = ``(FG).

Proof. We start by showing that 2), 3) and 4) follow immediately from 1).

Assume that M ⊗ N ∼= FG. The dimension of FG is |G|, and as M ⊗ N ∼= FG,

dim(M ⊗ N) = |G|. Let φ be an isomorphism, φ : FG → M ⊗ N . Since 1

generates FG as a left FG-module, the element φ(1) also generates M ⊗ N as a

left FG-module. The product ‖G‖ · 1 = ‖G‖ 6= 0, so likewise ‖G‖ · φ(1) 6= 0.

Isomorphic modules have the same Loewy length.

Assume that dim(M ⊗ N) = |G|, and that there is an element a which gen-

erates M ⊗ N . Let φ be the left FG-module homomorphism φ : FG → M ⊗ N

given by φ(x) = x · a. As φ(FG) = M ⊗ N , and dim(M ⊗ N) = dim(FG), the

homomorphism must be an isomorphism. Thus condition 2) implies condition 1).

Assume that dim(M⊗N) = |G|, and that ‖G‖·M⊗N 6= 0. This implies that

there must exist an element m⊗n of M⊗N for which ‖G‖·m⊗n 6= 0. Let φ be the

left FG-module homomorphism φ : FG→M ⊗N given by φ(x) = x ·m⊗n. Then

φ(‖G‖) = ‖G‖ ·m⊗ n 6= 0. Since G is a p-group, the socle of FG is generated by

the element ‖G‖. The kernel of φ must be 0, as any larger kernel would intersect

the socle non-trivially. As the dimensions of FG and M ⊗ N are the same, the

homomorphism φ must be an isomorphism. Thus condition 3) implies condition

1).
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Assume that dim(M ⊗ N) = |G|, and that ``(M ⊗ N) = ``(FG). Let l =

``(M⊗N). We have Radl(FG) ·M⊗N = 0, but Radl−1(FG) ·M⊗N 6= 0. Since G

is a p-group, the radical and socle series coincide, and Radl−1(FG) = Soc(FG) =

F‖G‖. Thus condition 4) implies condition 3).

Note: Conditions 1) and 2) are equivalent even if G is not a p-group.

We now observe certain characteristics of possible factors in a tensor decom-

position.

Lemma 1.10. If FG ∼= M ⊗N then both M and N are cyclic modules.

Proof. We assume that FG ∼= M ⊗ N . By Lemma 1.9, there must be an

element m⊗ n which generates M ⊗N . Since the dimensions of FG and M ⊗N

is |G|, the set {g ·m⊗ n = gm⊗ gn | g ∈ G} forms a basis for M ⊗N . This set is

contained in the set {gm⊗ hn | g, h ∈ G}. The modules spanned by {gm|g ∈ G}

and {hn|h ∈ G} form submodules of M and N , respectively. The dimensions of

modules are related by the inequalities,

dim(FG) = |G| = |{gm⊗ gn | g ∈ G}|

≤ dim(Span({gm⊗ hn | g, h ∈ G}))

= dim(Span({gm|g ∈ G})) dim(Span({hn|h ∈ G}))

≤ dim(M) dim(N) = dim(M ⊗N) = dim(FG).

We must have equality throughout, and M and N must be generated by m and n

respectively.

We recall the following notation from the introduction.

For a p-group G, Jennings [J, Al 1, Sc] describes a decreasing series of sub-

groups, κi(G) = {g ∈ G|g ≡ 1 modulo Radi(FG)}, which we refer to as the

Jennings series of G. This series of subgroups has the following properties:

1) [κλ, κµ] ⊆ κλ+µ,

2) gp ∈ κip for all g ∈ κi,

3) κλ/κ2λ is elementary abelian.

For each i ≥ 1 choose elements xi,s of G such that the set {xi,sκi+1 | 1 ≤

s ≤ di} forms a basis for κi/κi+1. Let xi,s = xi,s − 1 ∈ FG. There are |G|
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products of the form
∏

x
αi,s

i,s , where the factors are listed in lexicographic order,

and 0 ≤ αi,s ≤ p − 1. The weight of such a product is defined to be
∑

iαi,s.

Jennings’ theorem states that the set of products of weight w lie in Radw(FG),

and form a basis modulo Radw+1(G).

Alperin comments [Al 1] that the order of the factors is irrelevant. After

choosing a particular order for these factors, let {βi,t} be the set of such products

with weight i. For a product βj,t =
∏

x
αi,s

i,s Alperin defines a complementary

element, βc
j,t =

∏

x
p−1−αi,s

i,s . We further define a coefficient ci,t =
∏
(

p−1
αi,s

)

. The

element βλ−1,1 =
∏

xp−1
i,s = ‖G‖ is the generator of the socle of FG, and has

weight λ− 1 = ``(FG) − 1. The sum of the weights of βi,t and βc
i,t is λ− 1.

The following result will be used in section 3 when we determine the tensor

decomposition of FG by uniserial modules.

Lemma 1.11. With the notation just defined, if M and N are left FG-

modules, m ∈ Socµ(M), n ∈ Socν(N), and µ+ ν − 1 = λ = ``(FG), then

‖G‖ ·m⊗ n =
∑

t

cµ−1,tβµ−1,tm⊗ βc
µ−1,tn.

Proof. We use the fact that ‖G‖ =
∏

xp−1
i,s , where we have specified the order

of multiplication. We start by multiplying m⊗ n by the last term in the product.

We have xi,s ·m⊗ n = (xi,s − 1) ·m⊗ n = xi,sm⊗ n+m⊗ xi,sn+ xi,sm⊗ xi,sn.

Since xi,s ∈ Radi(FG), we have xi,sm ∈ Socµ−i(M) and xi,sn ∈ Socν−i(N).

We proceed by multiplying by xp−1
i,s . At each stage, we have a sum of elements

which is multiplied on the left by xi,s. Each element gives a sum of three further

elements, where xi,s is applied on the left tensor factor, the right factor, or both

factors. Thus

xp−1
i,s ·m⊗ n = S1 +

p−1
∑

j=0

(

p− 1

j

)

xj
i,sm⊗ xp−1−j

i,s n,

where S1 is the sum of all elements for which the multiplication was applied to

both tensor factors at least once.

We continue this process for the entire product, and obtain

‖G‖ ·m⊗ n = S +
∑

γ,t

cγ,tβγ,tm⊗ βc
γ,tn,
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where S is the sum of all elements for which at least on of the factors of ‖G‖ was

applied to both tensor factors at the same stage.

Now m is an element of Socµ(M). Thus if m is multiplied by an element

of Radµ(FG), the result is zero. Likewise, if n is multiplied by an element of

Radν(FG), the result is zero. The weights of βγ,t and βc
γ,t are γ and λ − γ − 1,

respectively. The sum of these weights is λ− 1 = µ− 1 + ν − 1. The weight of an

element is the minimum power of the radical in which it lies. Thus S must be zero,

as well as all other summands except for the terms cµ−1,tβµ−1,tm⊗ βc
µ−1,tn.

Lemma 1.12. If m and n are elements of FG, and Rad(FGn) ⊆ Rad2(FGm)

then Rad(FGm) = Rad(FG(m+ n)).

Proof. Given g ∈ G, we know that gn = (g− 1)n is an element of Rad(FGn).

Let a1 = −g. As gn ∈ Rad2(FGm), there is an element a2 ∈ Rad2(FG) such that

a2m = −a1n = gn. We find elements ai ∈ Radi(FG) such that ai+1m = −ain.

We set ai = 0 for all i ≥ µ = ``(FGm). We find that

µ
∑

i=2

ai(m+ n) =

µ
∑

i=2

ain−

µ−1
∑

i=1

ain = aµn− a1n = gn,

which is an element of Rad2(FG(m+ n)). Thus Rad1(FGn) ⊆ Rad2(FG(m+ n)).

The submodule Rad1(FG(m+n)) is generated by elements of the form (g−1)(m+

n) = g(m+n) = gm+ gn. But gn ∈ Rad2(FG(m+ n), so the radical is generated

by all elements of the form gm. This is also the radical of FGm.

If we have one tensor decomposition of FG, we now show a way to find other

tensor decompositions.

Lemma 1.13. If m and m1 are elements of FG, Rad(FGm1) ⊆ Rad2(FGm),

FG ∼= FGm⊗N , and ``(FGm)+``(N)−1 = ``(FG) then FG ∼= FG(m+m1)⊗N .

Proof. By Lemma 1.10 we see that there is an element n that generates N .

Lemma 1.9 implies that there is an element m′⊗n′ such that ‖G‖m′⊗n′ 6= 0. As

m and n generate FGm and N , we may assume that m′ = m+rm and n′ = n+sn,

where r and s are elements of Rad(FG), as non-zero scalar multiples are irrelevant.
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Let µ = ``(FGm), and ν = ``(N). We must have m and m′ in Socµ(FGm) and n

and n′ in Socν(N). By Lemma 1.11 we see that

‖G‖ ·m⊗ n =
∑

t

cµ−1,tβµ−1,tm⊗ βc
µ−1,tn.

Replacing m and n by m′ and n′ respectively, we see that βµ−1,t(m + rm) =

βµ−1,tm, and βc
µ−1,t(n + sn) = βc

µ−1,tn, as rm and sn are not in a high enough

power of the socle to survive. Thus we may assume that m′ = m, and n′ = n.

Any choice of generators for the two modules would suffice.

We now substitute m + m1 for m. We have βµ−1,t(m + m1) = βµ−1,tm +

βµ−1,tm1. But m1 ∈ Socµ−1(FG), so this term is just βµ−1,tm. We have ‖G‖ ·

(m + m1) ⊗ n = ‖G‖ · m ⊗ n 6= 0. By Lemma 1.12, we have Rad(FGm) =

Rad(FG(m+m1)). Since these modules are both cyclic, and have the same radical,

they must both have the same dimension. Again, using Lemma 1.9, we see that

FG ∼= FG(m+m1) ⊗N .

We next present a result relating the radical series to the commutativity

within FG. This result will be useful to us in specific calculations involving the

action of generators of Rad(FG) on modules.

For the following lemma, G need not be a p-group.

Lemma 1.14. If G is a group, H is a subgroup of index p, and g is an element

of G not in H, then ‖G‖ = (g − 1)p−1‖H‖ in a field of characteristic p.

Proof. As g is outside of H, the cosets of H in G are {giH
∣

∣ 0 ≤ i < p}. The

element (g− 1)p = gp − 1 in FpG, so (g− 1)p−1 is the sum of all powers less than

p of g. Thus (g− 1)p−1‖H‖ is the sum of all elements of all cosets of ‖H‖ in G.

Corollary 1.15. For the p-group G with Jennings series G = κ1 ⊇ κ2 ⊇ . . .,

and the set {xi,s

∣

∣ 1 ≤ i < n, 1 ≤ s ≤ di} as described above, we may write

‖κi‖ =

di
∏

s=1

x̄p−1
i,s ‖κi+1‖,
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and ‖κi+1‖ is in the center of Fκi.

Proof. The group κi/κi+1 is an elementary abelian group with generators

{xi.sκi+1

∣

∣ 1 ≤ s ≤ di}. We may thus use the lemma iteratively to obtain the first

result. Also, we know that κi+1 is normal in κi, so

xi,s‖κi+1‖ = ‖xi,sκi+1‖ = ‖κi+1xi,s| = ‖κi+1‖xi,s.

Corollary 1.16. The center of FG contains Soc2(FG).

Proof. From the previous corollary we have ‖κ2‖ is contained in the center of

FG. As κ2 is the Frattini subgroup of G, we know that

gh‖κ2‖ = hg g−1h−1gh‖κ2‖ = hg‖κ2‖,

since the Frattini subgroup contains the commutator subgroup. By induction, we

find that ‖κl‖ =
∏

x̄
αi,s

i,s , where the product is taken over all i and s, and αi,s = 0

when i < l, and p− 1 when i ≥ l. Thus ‖κ2‖ =
∏

x̄
αi,s

i,s , where α1,s = 0 for all s,

and αi,s = p− 1 for all i ≥ 2 and all s.

A basis for Soc2(FG) is the set of elements {βj,t

∣

∣ j ≥ ``(FG) − 2}. Let

βj,t =
∏

x̄
αi,s

i,s be an element of weight j = ``(FG) − 2. In order to have weight

j, we need αi,s = p− 1 except for one exponent, α1,t = p− 2, for some t. We see

that ‖κ2‖ is a factor of βj,t, and we may rewrite

βj,t =
∏

s

x̄
p−1−δs,t

1,s ‖κ2‖,

where δs,t = 1 when s = t, and 0 otherwise. We know that a full set of generators

forG is {xs = x̄s+1}. As elements commute modulo ‖κ2‖, we see that gβj,t = βj,tg

for all g in G, and since the βj,t form a basis for Soc2(FG), this establishes the

result.
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For each maximal subgroup H of G, choose an element gH of G that is not

in H. Let SH =
∑p−1

i=0 ig
i
H‖H‖. We recall that Fp is the field of p elements.

Theorem 1.17. The complete list of elements of Soc2(FpG) is

{f‖G‖
∣

∣ f ∈ Fp} ∪ {fgi
HSH

∣

∣ H is maximal in G, 0 6= f ∈ F, 0 ≤ i < p}.

Proof. First we show that the elements in question are indeed elements of

Soc2(FpG). We know that Soc(FpG) is spanned by ‖G‖. Thus the first set of

elements is contained in Soc(FpG). Let H be a maximal subgroup of G. As G is a

p-group, every maximal subgroup of G is normal with index p. Thus any element

of G may be written in the form gj
Hh for some element h ∈ H, and some j between

0 and p− 1. As G/H ∼= Cp, we have gj
Hhg

i
H‖H‖ = gi+j

H ‖H‖, and

gj
HhSH =

p−1
∑

i=0

igi+j
H ‖H‖

=

p−1
∑

i=0

(i+ j)gi+j
H ‖H‖ − j

p−1
∑

i=0

gi+j
H ‖H‖

= SH − j‖G‖.

Thus (gj
Hh− 1)SH = −j‖G‖ ∈ Soc(FpG). As Rad(FpG) is generated by elements

of the form g− 1, we see that SH ∈ Soc2(FpG), for every maximal subgroup H of

G. As Soc2(FpG) is an ideal, we also have fgi
HSH ∈ Soc2(FpG), for all f ∈ Fp,

and 0 ≤ i < p.

We show that no element is listed more than once in the statement of the

theorem. Clearly the elements of the first set are distinct, and different from all

elements of the second set. Assume that the element f1g
i
HSH = f2g

j
KSK for some

elements f1 and f2 of Fp, and some maximal subgroups H and K. In f1g
i
HSH ,

every element of a coset gH has the same coefficient. Thus the subgroup H may

be determined. This indicates that H = K. Only one of the cosets of H has

coefficient 0 in f1g
i
HSH . This coset must be gi

H , as ‖H‖ is the coset in SH with

coefficient 0. This forces i and j to be equal. The two expressions of the same

element both are the same multiple of the element gi
HSH , so f1 = f2. Thus the

elements of the second set are distinctly listed.
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We then count the number of elements of Soc2(FpG), and find it to be the

same as the number of elements listed in the statement of the theorem. We know

that the Frattini subgroup of G is κ2(G). The elementary abelian group G/κ2 is

isomorphic to a vector space of dimension d1. The maximal subgroups of G are

generated by maximal subspaces of G/κ2. The number of maximal subspaces of

a vector space is equal to the number of projective lines in that subspace. The

number of projective lines in G/κ2 is (pd1 − 1)/(p − 1). Thus, the number of

non-zero elements of the form fgi
HSH is (p − 1)p(pd1 − 1)/(p − 1) = pd1+1 − p.

The number of elements of Soc(FpG) is p. Thus, the number of elements listed is

pd1+1.

The vector space Soc2(FpG) has a basis {x̄c
1,s

∣

∣ 1 ≤ s ≤ d1} ∪ {‖G‖}. This

gives dim(Soc2(FpG)) = d1 + 1, and the number of elements in Soc2(FpG) is

pd1+1.

The particular case where p = 2 has a simpler form.

Corollary 1.18. If G is a 2-group then the elements of Soc2(F2G) consists of

the elements

{0, ‖G‖} ∪ {‖H‖, ‖H‖c
∣

∣ H is maximal in G},

where ‖H‖c refers to the complement of ‖H‖, i.e. ‖G‖ − ‖H‖.

Proof. The field F2 has only 2 elements, 1 and 0. Given a maximal subgroup

H of G, let g be an element of G not in H. We see that SH = g‖H‖, and

gSH = ‖H‖. In the statement of the theorem, we see that f and i may only be 0

or 1, and the result follows.
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§2 Permutation Module Decompositions

In this section, we look at decompositions of FG into the tensor product

M ⊗N , where both M and N are permutation modules. By restricting our atten-

tion to permutation modules, we are able to obtain cleaner results than appear to

hold for general tensor decompositions. A permutation module for FG is a module

which has a basis permuted by G. The first lemma is well known.

Lemma 2.1. Let M be a left FG permutation module with G acting transi-

tively on the basis B of M . If H = StabG(b), for some basis element b ∈ B, then

M ∼= FG‖H‖ ∼= F[G/H].

Proof. Let T be a left transversal for the subgroup H in G. Let 1 represent

the coset 1H. The basis B for M is the G orbit of b, i.e., B = {gb | g ∈ G} = {tb |

t ∈ T}. Likewise, a basis for FG‖H‖ is {t‖H‖ = ‖tH‖
∣

∣ t ∈ T}, and a basis for

F[G/H] is {tH | t ∈ T}. Make the relation between basis elements,

tb↔ t‖H‖ ↔ tH.

This identification preserves the action of G, and the isomorphism is found by

extending linearly to the entirety of the modules.

Theorem 2.2. Let H and K be subgroups of G and let M and N be the left

FG-modules generated by ‖H‖ and ‖K‖, respectively. Then FG ∼= M ⊗N if and

only if G = HK and H ∩K = 1.

Proof. We give a proof in the case where G is a p-group and F has charac-

teristic p. If HK 6= G then either H ∩K 6= 1, or |H||K| < |G|. If |H||K| < |G|,

then the dimension of FG‖H‖ ⊗ FG‖K‖ is |H||K|, and is less than |G|, which is

the dimension of FG.
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Let Q = H ∩K. The element ‖H‖⊗‖K‖ is a generator of FG‖H‖⊗FG‖K‖.

We have,

‖Q‖ · ‖H‖ ⊗ ‖K‖ =
∑

q∈Q

q‖H‖ ⊗ q‖K‖

=
∑

q∈Q

‖H‖ ⊗ ‖K‖

= |Q|‖H‖ ⊗ ‖K‖.

If Q 6= 1, then this product is equal to 0, as p divides the order of Q. However,

‖Q‖1 = ‖Q‖ 6= 0 in FG. If an element of FG other than zero annihilates a

generator of a module, then that module must not be isomorphic to the regular

representation.

Bases for M and N are {‖kH‖ : k ∈ K} and {‖hK‖} : h ∈ H}, respectively.

(Each basis element is the sum of elements of a particular coset of the group.) A

basis for M ⊗N is then

{‖kH‖ ⊗ ‖hK‖ : k ∈ K,h ∈ H}.

The group G permutes these basis elements. The total number of basis elements

is |G|. The stabilizer of the element ‖H‖ ⊗ ‖K‖ must be in both H and K, so

StabG(‖H‖ ⊗ ‖K‖) = 1. This shows that the size of the orbit of ‖H‖ ⊗ ‖K‖ is

|G|, so the orbit must be the entire basis. The basis is permuted regularly by G,

so M ⊗N ∼= FG.

Corollary 2.3. Let F be a field of characteristic p. Let G be a group, which is

not necessarily a p-group. LetH andK be subgroups of G with trivial intersection.

Let M and N be the FG-modules generated by ‖H‖ and ‖K‖, respectively. Then

FG ∼= M ⊗N if and only if G = HK.

Proof. The only part of the proof of the theorem which uses the fact that G

is a p-group involves the order of the intersection of H and K. If we insist that

this intersection is trivial, the rest of the proof holds.
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We comment that an analogous, but more complicated statement may be

made concerning decompositions of FG as a tensor product of three or more per-

mutation modules.

Let H and K be subgroups of the group G. Then K is a complement of H if

HK = G, and H ∩K = 1.

If α is an automorphism of the group G, and K is a complement to H, it is a

simple matter to show that α(K) is also a complement of α(H) in G. It is useful to

know that if α is an inner automorphism, then H also has the complement α(K).

Lemma 2.4. Let H and K be subgroups in G. If K is a complement of H,

and g is any element of G, then gK is also a complement of H.

Proof. We may write g = hk for some elements h of H and k of K. Now

H gK = HhkKk−1h−1 = HKh−1 = Gh−1 = G. Since |H ∩ gK||H gK| =

|H|| gK| = |G|, we have |H ∩ gK| = 1.
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§3 Tensor Decompositions of FG, where |G| = 16

In this paper we have been paying particular attention to the groups of order

16 which may not be non-trivially written as the direct product of two subgroups.

The calculations we are about to perform depend heavily on an examination of

the subgroup lattices of these groups, which we take to be readily available for

inspection either from [H&S] or by calculations with the program [Sc]. We also

rely on the lists of uniserial modules for each group ring, which were obtained in

Chapter 2.

For each group G of order 16, we consider non-trivial tensor decompositions

FG ∼= M ⊗ N . If FG ∼= M ⊗ N , then dim(M) dim(N) = 16 and ``(FG) ≤

``(M) + ``(N)− 1 by Lemma 1.4. By symmetry of the tensor decomposition, we

need only consider cases where dim(M) ≤ dim(N), so we must have dim(M) = 2

and dim(N) = 8 or dim(M) = dim(N) = 4. By Lemma 1.10 we need only consider

cyclic modules M and N . If M is cyclic and dim(M) = 2, then M is uniserial,

and ``(M) = 2.

We first consider tensor decompositions in which both factors are permutation

modules. If such a decomposition exists, Theorem 2.2 tells us that there must be

a pair of complementary subgroups H and K in G for which M is generated by

‖H‖ and N is generated by ‖K‖. By symmetry of the tensor product, we may

take H to be the larger of the two subgroups. The dimension of the module is

equal to the index of the subgroup in the group, so |H| = 8 and |K| = 2, or

|H| = |K| = 4. With these choices, G = HK only when H ∩K = 1, so we need

only consider pairs which have trivial intersections. By Lemma 2.4 we need only

consider representatives of conjugacy classes for both H and K.

For each group the full subgroup lattice is given. The larger subgroups are

listed above the smaller subgroups. Each subgroup of a given order is listed at

the same level. A solid line between two subgroups indicates that the smaller

subgroup is contained in the larger subgroup, and there is no intermediate sub-

group. The diagram also indicates the orbits of subgroups under the actions of the

automorphisms of the group. A triple dotted line between two entries indicates

that the two subgroups are conjugates. A single dotted line between the listings

of two subgroups indicates that there is an outer automorphism of G that maps
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one subgroup to the other. If there is an automorphism that maps one subgroup

to another subgroup, then there is a path of dotted lines connecting the listings

of the two subgroups.

We start with the groups G of order 16 for which FG has Loewy length 7.

These are the groups G1 and (2 × 4).2. In both cases, the Poincaré polynomial

associated to FG is PFG(t) = 1 + 2t + 3t2 + 4t3 + 3t4 + 2t5 + t6. Assume FG ∼=

M ⊗N . If dim(M) = 2 then 7 ≤ 2 + ``(N) − 1 ≤ 1 + 6 = 7, as ``(N) < ``(FG).

Thus ``(N) = 6 and dim(N) = 8. The Poincaré polynomials for M and N are

PM (t) = 1+t and PN (t) = 1+t+2t2 +2t3+t4+t5. If dim(M) = dim(N) = 4 then

7 ≤ ``(M)+``(N)−1 ≤ 4+4−1 = 7, forcing equality, and both M and N must be

uniserial. Their corresponding Poincaré polynomials are both P (t) = 1+t+t2+t3.

Given M and N , we wish to determine if FG ∼= M ⊗N . We use Lemma 1.9

to determine this. We only consider cases where dim(M) dim(N) = 16, and either

``(M) = 2 and ``(N) = 6 or ``(M) = ``(N) = 4. If we can show that the product

‖G‖ ·M ⊗N 6= 0, then we know that FG ∼= M ⊗N . Let m and n be generators

of M and N respectively. By Lemma 1.11 of Chapter 1, the choice of generators

does not matter. The product ‖G‖ ·m ⊗ n is non-zero if and only if the product

‖G‖ ·M ⊗N is non-zero. We use Lemma 1.11 to find ‖G‖ ·m⊗ n.

In both groups that we are considering, we have chosen bases for FG consisting

of elements of the form βi+j,i = x̄iȳj , where 0 ≤ i, j ≤ 3. The complementary

element is βc
i+j,i = x̄3−iȳ3−j . Note that the characteristic of F is 2, so ci+j,i = 1.

If dim(M) = 2 and dim(N) = 8, we have µ = 2 and

‖G‖ ·m⊗ n =
∑

t

cµ−1,tβµ−1,tm⊗ βc
µ−1,tn

= x̄m⊗ x̄2ȳ3n+ ȳm⊗ x̄3ȳ2n.

If dim(M) = dim(N) = 4, we have µ = 4 and

‖G‖ ·m⊗ n = x̄3m⊗ ȳ3n+ x̄2ȳm⊗ x̄ȳ2n+ x̄ȳ2m⊗ x̄2ȳn+ ȳ3m⊗ x̄3n.

We now focus our attention on the group

G1 =
〈

x, y | x4 = y4 = (xy)2 = 1, {x2, y2} ⊂ Z
〉

,
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where Z is the center of the group. We first consider the decomposition of this

group into the non-trivial product of subgroups H and K whose intersection is 1.

We present the diagram for the full subgroup lattice of G1:

Theorem 3.1. The group ring FG1 is decomposable into the tensor product

of permutation modules, FG‖H‖ ⊗ FG‖K‖. Up to interchanging H and K, these

are the only such pairs of subgroups.

a) The subgroup H is either
〈

x, y2
〉

or
〈

x2, y
〉

and K is any one of the non-central

subgroups of order 2;

b) The subgroup H is either 〈x〉 or
〈

xy2
〉

and K is one of the four subgroups
〈

xy, x2y2
〉

,
〈

x−1y, x2y2
〉

,
〈

xy, y2
〉

, or
〈

x−1y, y2
〉

;

b′) The subgroup H is either 〈y〉 or
〈

x2y
〉

and K is one of the four subgroups
〈

xy, x2y2
〉

,
〈

x−1y, x2y2
〉

,
〈

xy, x2
〉

, or
〈

xy−1, x2
〉

;

c) The subgroup H is either 〈x〉 or
〈

xy2
〉

and K is either 〈y〉 or
〈

x2y
〉

.

Note that the complementary pairs of b′) may be obtained by applying the

automorphism that exchanges x and y to the complementary pairs of b).

Proof. By observing the diagram, we determine all complementary pairs of

subgroups in G1. By Theorem 2.2 we see that these subgroup pairs correspond

with all possible tensor decompositions of FG1 by permutation modules.
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We now list, up to isomorphism, all permutation modules of FG1, identifying

those that are uniserial on our list of all uniserial modules. To every subgroup H of

G1, there is a module FG1‖H‖. We list the subgroups in the order of decreasing

size, with conjugate subgroups listed together. For each subgroup H, we list a

generator of FG1‖H‖, as described in Chapter 2, section 1. The generators of the

form E
(6)
r,s,t,u,v are described after the listing.

• 〈x, y〉 = G1 corresponds to A(1).

•
〈

x2, y2, xy
〉

∼= C3
2 corresponds to A

(2)
1 .

•
〈

y, x2
〉

∼= C2 × C4 corresponds to A
(2)
0 .

•
〈

x, y2
〉

∼= C2 × C4 corresponds to B(2).

•
〈

xy, x2y2
〉

∼= C2
2 corresponds to A

(4)
1,1,1 = C

(4)
1,1,0,1.

•
〈

x−1y, x2y2
〉

∼= C2
2 corresponds to A

(4)
1,0,0 = C

(4)
1,0,0,0.

• C2
2
∼=
〈

xy, x2
〉

and
〈

xy−1, x2
〉

correspond to D
(4)
0,0,0 and D

(4)
1,0,1.

• C2
2
∼=
〈

xy, y2
〉

and
〈

x−1y, y2
〉

correspond to C
(4)
0,1,0,1 and C

(4)
0,0,0,0.

•
〈

x2, y2
〉

∼= C2
2 corresponds to x̄2ȳ2, which is not a uniserial module generator.

• C4
∼= 〈x〉 and

〈

xy2
〉

correspond to B
(4)
1,0 and B

(4)
0,0.

• C4
∼= 〈y〉 and

〈

x2y
〉

correspond to A
(4)
0,0,0 and A

(4)
0,1,0.

• C2
∼= 〈xy〉 and

〈

x−1y−1
〉

correspond to E
(6)
1,0,0,0,0 and E

(6)
0,1,0,0,0.

• C2
∼=
〈

xy−1
〉

and
〈

x−1y
〉

correspond to E
(6)
1,1,0,0,0 and E

(6)
0,0,0,0,0.

•
〈

x2
〉

∼= C2 corresponds to x̄2, which is not a uniserial module generator.

•
〈

y2
〉

∼= C2 corresponds to ȳ2, which is not a uniserial module generator.

•
〈

x2y2
〉

∼= C2 corresponds to x̄2+ȳ2, which is not a uniserial module generator.

• 〈1〉 generates all of FG1.

We now find all modules M and N such that FG1
∼= M⊗N . We start with the

case where dim(M) = 2 and dim(N) = 8. We need to find all cyclic submodules

N of FG1 with Poincaré polynomial PN = 1 + t+ 2t2 + 2t3 + t4 + t5. We use an

algorithm similar to that described in Chapter 1, Section 2. We sketch the use of

the algorithm, although the actual calculations are performed by computer, and

are not shown here. We use the basis from Chapter 2, Section 1 for FG1. We start
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with an arbitrary element of Soc6(FG1),

E(6) =

·
b c

d e f
g h i j

k l m
n p

q

.

Let N = FG1E
(6). We need E(6) 6∈ Soc5(FG1). This implies that b and c can

not both be zero. Consider the map from Rad(N) to Rad(N)/Rad2(N), where

we list the elements in terms of the images of the basis elements x̄2, x̄ȳ, and ȳ2

of FG1. Using the multiplications that are given in Chapter 2, Section 1, we find

that the images of x̄E(6) and ȳE(6) are (b, c, 0) and (b, b, b+ c) respectively. Since

we need dim(Rad(N)/Rad2(N)) = 1, we see that both b and c must be equal. By

rescaling, we choose b = c = 1.

We find the set of elements x̄iȳjE(6), and perform a Gram-Schmidt type of

process on the set. For each of the entries b, d, g, i, k, l, n, and q in the original

arbitrary element E(6), we find an element in our resulting set that has a 1 in

the corresponding position, and only zeros in all prior entries. We then conclude

that a distinguished generator of our module should have a zero in each of these

positions, other than the position designated by b. After setting the values of

these variables as indicated, we find that there remain two vectors that are not in

the form of a distinguished generator. The module is either an 8-dimensional or a

10-dimensional vector space, depending on the values of these two vectors. As we

desire an 8-dimensional space, we require these two remaining vectors to be zero.

The two vectors are zero precisely when j = e + ef + e2 + f + h. We thus set j

to this value. The distinguished generators of FG1 which generate 8-dimensional

modules of Loewy length 6 are of the form

E
(6)
r,s,t,u,v =

·
1 1

· r s
· t · r + rs+ r2 + s+ t

· · u
· v

·

– 89 –



The isomorphism bucket for the module generated by such an element is

E
(6)
r,s,t,u,v

r+s=α,r2t+v=β

α, β, t ∈ F

In order to find all modules M and N such that FG1
∼= M ⊗ N , we need to

find the products ‖G1‖ ·m ⊗ n that are non-zero, where m generates M , and n

generates N . As we have seen, ifM is two dimensional, andN is eight dimensional,

then we need to find x̄m, ȳm, x̄2ȳ3n, and x̄3ȳ2n. We present these products in

the following multiplication table:

E
(6)
r,s,t,u,v A

(2)
r B(2)

x̄2ȳ3 A(1) 0 0

x̄3ȳ2 A(1) 0 0

x̄ − A(1) 0

ȳ − rA(1) A(1)

Table of elements of (IG1)u and (IG1)
5u

Any entry of − in this table is an irrelevant product. We see that

‖G1‖A
(2)
ρ ⊗ E

(6)
r,s,t,u,v = x̄A(2)

ρ ⊗ x̄2ȳ3E
(6)
r,s,t,u,v + ȳA(2)

ρ ⊗ x̄3ȳ2E
(6)
r,s,t,u,v

= (1 + ρ)A(1) ⊗A(1),

and this is non-zero whenever ρ 6= 1. Likewise, if we substitute B(2) in the previous

equation in place of A(2), we find that ‖G1‖B
(2) ⊗ E

(6)
r,s,t,u,v = A(1) ⊗ A(1) 6= 0.

We have found the tensor decompositions FG1
∼= M ⊗N where dim(M) = 2 and

dim(N) = 8. We restate these results in the following table. We list the possible

values of m on the top, and the possible values of n on the side. The coefficient

of A(1) ⊗ A(1) in the product ‖G1‖ · m ⊗ n is listed in the corresponding row

and column. Any non-zero entry indicates that there is a tensor decomposition

FG1
∼= FG1m⊗ FG1n.
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A
(2)
ρ B(2)

E
(6)
r,s,t,u,v 1 + ρ 1

Table of coefficients for A(1) ⊗ A(1) in ‖G1‖ ·m⊗ n

If M and N are both 4-dimensional, we need to find the products, x̄3u, x̄2ȳu,

x̄ȳ2u, and ȳ3u, where u is a generator of M or N . We have seen that both M and

N need to be uniserial. We obtain the following multiplication table:

A
(4)
r,s,t B

(4)
s,t C

(4)
s,t,u,v D

(4)
s,t,u

x̄3 A(1) 0 A(1) 0

x̄2ȳ rA(1) 0 A(1) 0

x̄ȳ2 rA(1) 0 sA(1) A(1)

ȳ3 r2A(1) A(1) sA(1) A(1)

Table of elements of (IG1)
3 u

We wish to determine all non-zero products of the form

‖G1‖ ·m⊗ n = x̄3m⊗ ȳ3n+ x̄2ȳm⊗ x̄ȳ2n+ x̄ȳ2m⊗ x̄2ȳn+ ȳ3m⊗ x̄3n.

This table gives the coefficient of A(1) ⊗ A(1) in the product ‖G1‖ ·m⊗ n.

A
(4)
r,s,t B

(4)
s,t C

(4)
s,t,u,v D

(4)
s,t,u

A
(4)
ρ,σ,τ r2 + ρ2 1 (s+ ρ)(ρ+ 1) 1 + ρ

B
(4)
σ,τ 1 0 1 0

C
(4)
σ,τ,υ,ν (σ + r)(r + 1) 1 0 0

D
(4)
σ,τ,υ 1 + r 0 0 0

Table of coefficients of A(1) ⊗ A(1) in ‖G‖ ·m⊗ n
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This table describes all tensor decompositions of FG1
∼= M ⊗N , when both

M and N are uniserial. A generator of each uniserial module of length 4 is listed

on the top and on the side. If the entry corresponding to generators m and n

is non-zero, then a tensor decomposition by those modules exists. For example,

the entry corresponding to A
(4)
r,s,t and A

(4)
ρ,σ,τ is r2 + ρ2. This indicates that if

r2 + ρ2 6= 0, (i.e., r 6= ρ), then FG1
∼= FG1A

(4)
ρ,σ,τ ⊗ FG1A

(4)
r,s,t. In this manner, we

determine all tensor decompositions of FG1:

Theorem 3.2. Up to isomorphism and rearrangement of factors, the following

is the complete list of non-trivial tensor decompositions, FG1
∼= M ⊗N :

a) M ∼= FG1A
(2)
ρ and N ∼= FG1E

(6)
0,α,t,0,β when ρ 6= 1;

b) M ∼= FG1B
(2) and N ∼= FG1E

(6)
0,α,t,0,β;

c) M ∼= FG1A
(4)
ρ,σ,τ and N ∼= FG1A

(4)
r,s,t when ρ 6= r;

d) M ∼= FG1A
(4)
ρ,σ,τ and N ∼= FG1B

(4)
s,t ;

e) M ∼= FG1A
(4)
ρ,σ,τ and N ∼= FG1C

(4)
s,t,u,v when s 6= ρ and ρ 6= 1, and if s = 1

then u 6= 0;

f) M ∼= FG1A
(4)
ρ,σ,τ and N ∼= FG1D

(4)
s,t,u with ρ 6= 1;

g) M ∼= FG1B
(4)
σ,τ and N ∼= FG1C

(4)
s,t,u,v such that if s = 1 then u 6= 0.

The restrictions on C
(4)
s,t,u,v preventing s = 1 and u = 0 are to prevent overlap

in the listing, as C
(4)
1,t,0,v = A

(4)
1,t,v. For the modules of the form FG1E

(6)
r,s,t,u,v only

one element was chosen to represent the isomorphism class. The same was not

done with the modules of Loewy length 4.

For each of the remaining groups, we present similar diagrams and tables. In

the tables listing group ring elements of (IG)iu, we list the coefficients of A(1). In

the tables listing ‖G‖ ·m⊗ n, we list the coefficients of A(1) ⊗A(1).

We turn our attention to the other group which has Loewy length 7,

(2 × 4).2 = 〈x, y
∣

∣ x4 = y4 = 1, xy = y−1〉.

We first consider the decomposition of this group into the non-trivial product of

subgroups H and K whose intersection is 1. We present the diagram for the full

subgroup lattice of (2 × 4).2:
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Theorem 3.3. The group ring F(2×4).2 is decomposable into the tensor prod-

uct of permutation modules, F(2× 4).2‖H‖⊗F(2× 4).2‖K‖. Up to interchanging

H and K, these are the only such pairs of subgroups:

a) H is one of the four subgroups 〈x〉,
〈

xy2
〉

, 〈xy〉, and
〈

xy−1
〉

;

b) K is one of the two subgroups 〈y〉 and
〈

x2y
〉

.

Proof. Again, we observe the lattice diagram, and conclude that these are all

the possible pairs of complementary subgroups in (2 × 4).2.

We now list, up to isomorphism, all permutation modules of F(2×4).2, identi-

fying those that are uniserial on our list of all uniserial modules. To every subgroup

H of (2×4).2, there is a module F(2×4).2‖H‖. We list the subgroups in the order

of decreasing size, with conjugate subgroups listed together. For each subgroup

H, we list a generator of F(2 × 4).2‖H‖, as described in Chapter 2, section 2.

• 〈x, y〉 = (2 × 4).2 corresponds to A(1).

•
〈

x, y2
〉

∼= C2 × C4 corresponds to A
(2)
0 .

•
〈

xy, y2
〉

∼= C2 × C4 corresponds to A
(2)
1 .

•
〈

y, x2
〉

∼= C2 × C4 corresponds to B(2).

•
〈

x2, y2
〉

∼= C2
2 corresponds to x̄2ȳ2, which is not a uniserial module generator.
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• C4
∼= 〈x〉 and

〈

xy2
〉

correspond to A
(4)
0,1,0 and A

(4)
0,0,0.

• C4
∼= 〈xy〉 and

〈

xy−1
〉

correspond to A
(4)
1,0,0 and A

(4)
1,1,1.

• C4
∼= 〈y〉 and

〈

x2y
〉

correspond to B
(4)
0,0 and B

(4)
1,0.

•
〈

x2
〉

∼= C2 corresponds to x̄2, which is not a uniserial module generator.

•
〈

y2
〉

∼= C2 corresponds to ȳ2, which is not a uniserial module generator.

•
〈

x2y2
〉

∼= C2 corresponds to x̄2+ȳ2, which is not a uniserial module generator.

• 〈1〉 generates all of F(2 × 4).2.

We now find all modules M and N such that F(2 × 4).2 ∼= M ⊗ N . We

start with the case where dim(M) = 2 and dim(N) = 8. There is no pair of

complementary subgroups H and K in (2 × 4).2 such that |H| = 8 and |K| = 2.

Thus there is no pair of permutation modules M and N with dimensions 2 and

8 such that F(2 × 4).2 ∼= M ⊗ N . We now look for a module N that is not

a permutation module, but would suffice as an 8-dimensional factor in a tensor

decomposition of F(2 × 4).2.

We need to find all cyclic submodulesN of F(2×4).2 with Poincaré polynomial

PN = 1 + t+ 2t2 + 2t3 + t4 + t5. We use the basis from Chapter 2, Section 2 for

F(2 × 4).2. We start with an arbitrary element of Soc6(F(2 × 4).2),

E(6) =

·
b c

d e f
g h i j

k l m
n p

q

.

Let N = F(2×4).2E(6). We need E(6) 6∈ Soc5(F(2×4).2), which implies that b

and c can not both be zero. Consider the map from Rad(N) to Rad(N)/Rad2(N),

where we list the elements in terms of the images of the basis elements x̄2, x̄ȳ, and

ȳ2 of F(2×4).2. Using the multiplications that are given in Chapter 2, Section 2, we

find that the images of x̄E(6) and ȳE(6) are (b, c, 0) and (0, b, b+c) respectively. We

see that it is impossible to choose b and c such that dim(Rad(N)/Rad2(N)) = 1.

Thus there are no F(2× 4).2-modules that have this Poincaré polynomial, and no

tensor decomposition F(2×4).2 ∼= M⊗N such that dim(M) = 2 and dim(N) = 8.
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If F(2 × 4).2 ∼= M ⊗ N , then both M and N must be uniserial with Loewy

length 4. We give a table of all products bu, where b is one of our basis element of

Soc4(F(2×4).2) that is not an element of Soc3(F(2×4).2), and u is a distinguished

generator of a uniserial module of Loewy length 4. These basis elements and

generators are listed in Chapter 2, section 2. We list the coefficients of A(1) in the

products.

A
(4)
r,s,t B

(4)
s,t

x̄3 r2(r + 1) 1

x̄2ȳ r(r + 1) 0

x̄ȳ2 r 0

ȳ3 1 0

Table of elements of (I(2 × 4).2)
3
u

From this table, we determine all products,

‖G‖ ·m⊗ n = x̄3m⊗ ȳ3n+ x̄2ȳm⊗ x̄ȳ2n+ x̄ȳ2m⊗ x̄2ȳn+ ȳ3m⊗ x̄3n.

We list the coefficient of A(1) ⊗ A(1) in the product ‖G‖ ·m ⊗ n in the following

table.

A
(4)
r,s,t B

(4)
s,t

A
(4)
ρ,σ,τ (r + ρ)2(1 + r + ρ) 1

B
(4)
σ,τ 1 0

Table of coefficients of A(1) ⊗ A(1) in ‖(2 × 4).2‖ ·m⊗ n

From this table, we determine all tensor decompositions of F(2 × 4).2:

Theorem 3.4. Up to isomorphism and rearrangement of factors, the following

is the complete list of non-trivial tensor decompositions, F(2 × 4).2 ∼= M ⊗N :

– 95 –



a) M ∼= F(2 × 4).2A
(4)
ρ,σ,τ and N ∼= F(2 × 4).2A

(4)
r,s,t such that ρ + r is neither 0

nor 1;

b) M ∼= F(2 × 4).2A
(4)
ρ,σ,τ and N ∼= F(2 × 4).2B

(4)
s,t .

We now focus on the groups G of order 16 for which FG has Loewy length 9:

Mod16, D16, SD16, and Q16. In all four cases, the Poincaré polynomial associated

to FG is PFG(t) = 1+2t+2t2+2t3+2t4+2t5+2t6+2t7+t8. Assume FG ∼= M⊗N . If

we assume dim(M) = dim(N) = 4 then 9 ≤ ``(M)+``(N)−1 ≤ 4+4−1 = 7 < 9,

which indicates a contradiction. If we assume dim(M) = 2 then 9 ≤ 2+``(N)−1 ≤

1 + 8 = 9, as ``(N) ≤ dim(N). Thus ``(N) = 8 = dim(N), so both N and M

are uniserial. The Poincaré polynomials for M and N are PM (t) = 1 + t and

PN (t) = 1 + t+ t2 + t3 + t4 + t5 + t6 + t7.

Given M and N , we wish to determine if FG ∼= M ⊗ N . We only consider

cases where dim(M) dim(N) = 16, ``(M) = 2 and ``(N) = 8. If we can show that

the product ‖G‖ ·M ⊗ N 6= 0, then we know that FG ∼= M ⊗ N . Let m and n

be generators of M and N respectively. By Lemma 1.11 of Chapter 1, the choice

of generators does not matter. The product ‖G‖ ·m⊗ n is non-zero if and only if

the product ‖G‖ ·M ⊗N is non-zero. We use Lemma 1.11 to find ‖G‖ ·m⊗ n.

For the groups Mod16 and SD16 we use the identity,

‖G‖ · (m⊗ n) = x̄7m⊗ ȳn+ x̄6ȳm⊗ x̄n,

where m generates a module of length 2, and n generates a module of length 8,

and where x̄ and ȳ are defined in Sections 3 and 5 of Chapter 2.

We investigate the modular group of order 16,

Mod16 = 〈x, y
∣

∣ x8 = y2 = 1, yx = x5〉.

We first consider the decomposition of this group into the non-trivial product of

subgroups H and K whose intersection is 1. We present the diagram for the full

subgroup lattice of Mod16:
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Theorem 3.5. The group ring FMod16 is decomposable into the tensor prod-

uct of permutation modules, FMod16‖H‖ ⊗ FMod16‖K‖. Up to interchanging H

and K, these are the only such pairs of subgroups:

a) H is one of the two subgroups 〈x〉 and 〈xy〉;

b) K is one of the two subgroups 〈y〉 and
〈

x4y
〉

.

Proof. Again, we observe the lattice diagram, and conclude that these are all

the possible pairs of complementary subgroups in Mod16.

We now list, up to isomorphism, all permutation modules of FMod16, identify-

ing those that are uniserial on our list of all uniserial modules. To every subgroup

H of Mod16, there is a module FMod16‖H‖. We list the subgroups in the order of

decreasing size, with conjugate subgroups listed together. For each subgroup H,

we list a generator of FMod16‖H‖, as described in Chapter 2, section 3.

• 〈x, y〉 = Mod16 corresponds to A(1).

• 〈x〉 ∼= C8 corresponds to A
(2)
0 .

• 〈xy〉 ∼= C8 corresponds to A
(2)
1 .

•
〈

y, x2
〉

∼= C2 × C4 corresponds to B(2).

•
〈

x2
〉

∼= C4 corresponds to x̄6, which is not a uniserial module generator.
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•
〈

x2y
〉

∼= C4 corresponds to B
(4)
1,0.

•
〈

x4, y
〉

∼= C2
2 corresponds to B

(4)
0,0.

•
〈

x4
〉

∼= C2 corresponds to x̄4, which is not a uniserial module generator.

• C2
∼= 〈y〉 and

〈

x4y
〉

correspond to B
(8)
0,0,0,0 and B

(8)
1,0,0,0.

• 〈1〉 generates all of FMod16.

We now find all modules M and N such that FMod16
∼= M ⊗ N . We have

seen that if FMod16
∼= M ⊗ N then, up to exchanging M and N , the modules

must both be uniserial with dimensions 2 and 8. We give a table of all products

bu, where b is a one of the basis elements and u is a distinguished generator listed

in Section 3 of Chapter 3. Where the product is relevant, we list the coefficient of

A(1) in the product.

B
(8)
u,v,w,x A

(2)
r B(2)

x̄7 1 0 0

x̄6ȳ 0 0 0

x̄ − r 1

ȳ − 1 0

Table of coefficients for A(1) in (IMod16)
nu

From this table we determine all products,

‖Mod16‖ ·m⊗ n = x̄m⊗ x̄6ȳn+ ȳm⊗ x̄7n.

We list the coefficient of A(1)⊗A(1) in the product ‖Mod16‖·m⊗n in the following

table.

A
(2)
r B(2)

B
(8)
u,v,w,x 1 0

Table of coefficients of A(1) ⊗ A(1) in ‖Mod16‖ ·m⊗ n

From this table, we determine all tensor decompositions of FMod16:
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Theorem 3.6. Up to isomorphism and rearrangement of factors, FMod16
∼=

M ⊗N where M ∼= FMod16B
(8)
u,v,w,x, and N ∼= FMod16A

(2)
r .

We investigate the semidihedral group of order 16,

SD16 = 〈x, y
∣

∣ x8 = y2 = 1, yx = x3〉.

We first consider the decomposition of this group into the non-trivial product of

subgroups H and K whose intersection is 1. We present the diagram for the full

subgroup lattice of SD16:

Theorem 3.7. The group ring FSD16 is decomposable into the tensor product

of permutation modules, FSD16‖H‖⊗FSD16‖K‖. Up to interchanging H and K,

these are the only such pairs of subgroups:

a) H is one of the two subgroups 〈x〉 and
〈

x2, xy
〉

;

b) K is one of the four conjugate subgroups 〈y〉,
〈

x4y
〉

,
〈

x2y
〉

, and
〈

x6y
〉

.

Proof. Again, we observe the lattice diagram, and conclude that these are all

the possible pairs of complementary subgroups in SD16.
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We now list, up to isomorphism, all permutation modules of FSD16, identify-

ing those that are uniserial on our list of all uniserial modules. To every subgroup

H of SD16, there is a module FSD16‖H‖. We list the subgroups in the order of

decreasing size, with conjugate subgroups listed together. For each subgroup H,

we list a generator of FSD16‖H‖, as described in Chapter 2, section 5.

• 〈x, y〉 = SD16 corresponds to A(1).

•
〈

xy, x2
〉

∼= Q8 corresponds to A
(2)
1 .

• 〈x〉 ∼= C8 corresponds to A
(2)
0 .

•
〈

y, x2
〉

∼= D8 corresponds to B(2).

•
〈

x2
〉

∼= C4 corresponds to x̄6, which is not a uniserial module generator.

• C4
∼= 〈xy〉 and

〈

x3y
〉

correspond to A
(4)
1,0 and A

(4)
0,0.

• C2
2
∼=
〈

y, x4
〉

and
〈

x2y, x4
〉

correspond to B
(4)
0,0 and B

(4)
1,0.

•
〈

x4
〉

∼= C2 corresponds to x̄4, which is not a uniserial module generator.

• C2
∼= 〈y〉,

〈

x4y
〉

,
〈

x2y
〉

, and
〈

x6y
〉

correspond to B
(8)
0,0,0,0, B

(8)
0,1,0,0, B

(8)
1,1,1,0

and B
(8)
1,0,0,0.

• 〈1〉 generates all of FSD16.

We now find all modules M and N such that FSD16
∼= M ⊗N . We have seen

that if FSD16
∼= M ⊗N then, up to exchanging M and N , the modules must both

be uniserial with dimensions 2 and 8. We give a table of all products bu, where b

is a one of the basis elements and u is a distinguished generator listed in Section 3

of Chapter 3. Where the product is relevant, we list the coefficient of A(1) in the

product.

B
(8)
s,u,w,x A

(2)
r B(2)

x̄ − r 1

ȳ − 1 0

x̄7 1 0 0

x̄6ȳ 0 0 0

Table of coefficients for A(1) in (ISD16)
nu
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From this table we determine all products,

‖SD16‖ ·m⊗ n = x̄m⊗ x̄6ȳn+ ȳm⊗ x̄7n.

We list the coefficient of A(1)⊗A(1) in the product ‖SD16‖ ·m⊗n in the following

table.

A
(2)
r B(2)

B
(8)
s,u,w,x 1 0

Table of coefficients of A(1) ⊗ A(1) in ‖SD16‖ ·m⊗n

From this table, we determine all tensor decompositions of FSD16:

Theorem 3.8. Up to isomorphism and rearrangement of factors, FSD16
∼=

M ⊗N where M ∼= FSD16B
(8)
u,v,w,x, and N ∼= FSD16A

(2)
r .

We investigate the quaternion group of order 16,

Q16 = 〈x, y
∣

∣ x8 = 1, x4 = y2, yx = x−1〉.

We first consider the decomposition of this group into the non-trivial product of

subgroups H and K whose intersection is 1. We present the diagram for the full

subgroup lattice of Q16 after the theorem.

Theorem 3.9. The group ring FQ16 is not decomposable into the tensor

product of permutation modules, FQ16‖H‖ ⊗ FQ16‖K‖.

Proof. We observe the lattice diagram, and conclude that all non-trivial

subgroups of Q16 intersect in the subgroup
〈

x4
〉

. Thus there is no pair of non-

trivial complementary subgroups in Q16.
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We now list, up to isomorphism, all permutation modules of FQ16, identifying

those that are uniserial on our list of all uniserial modules. To every subgroup H of

Q16, there is a module FQ16‖H‖. We list the subgroups in the order of decreasing

size, with conjugate subgroups listed together. For each subgroup H, we list a

generator of FQ16‖H‖, as described in Chapter 2, section 6.

• 〈x, y〉 = Q16 corresponds to A(1).

• 〈x〉 ∼= C8 corresponds to A
(2)
0 .

•
〈

y, x2
〉

∼= Q8 corresponds to B(2).

•
〈

xy, x2
〉

∼= Q8 corresponds to A
(2)
1 .

•
〈

x2
〉

∼= C4 corresponds to x̄6, which is not a uniserial module generator.

• C4
∼= 〈y〉 and

〈

x2y
〉

correspond to B
(4)
0,0 and B

(4)
1,0.

• C4
∼= 〈xy〉 and

〈

x3y
〉

correspond to A
(4)
1,0 and A

(4)
0,0.

•
〈

x4
〉

∼= C2 corresponds to x̄4, which is not a uniserial module generator.

• 〈1〉 generates all of FQ16.

Theorem 3.10. There are no non-trivial tensor decompositions of FQ16.

Proof. From Chapter 2, Section 6, we see that FQ16 has no uniserial modules

of length 8. Therefore, there is no non-trivial tensor decomposition of FQ16.
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We investigate the dihedral group of order 16,

D16 =
〈

x, y, z | x2 = y2 = (xy)8, z = xy
〉

.

We first consider the decomposition of this group into the non-trivial product of

subgroups H and K whose intersection is 1. We present the diagram for the full

subgroup lattice of D16:

Theorem 3.11. The group ring FD16 is decomposable into the tensor product

of permutation modules, FD16‖H‖ ⊗ FD16‖K‖. Up to interchanging H and K,

these are the only such pairs of subgroups:

a) H is the subgroup
〈

x, z2
〉

and K is one of the four subgroups 〈y〉,
〈

z3x
〉

, 〈zx〉,

or
〈

yz2
〉

;

b) H is the subgroup
〈

y, z2
〉

and K is one of the four subgroups 〈x〉,
〈

yz3
〉

, 〈yz〉,

or
〈

z2x
〉

;

c) H is the subgroup 〈z〉 and K is any of the subgroups of order two other than
〈

z4
〉

.

Proof. Again, we observe the lattice diagram, and conclude that these are

all the possible pairs of complementary subgroups in D16. Note that there is an
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automorphism of D16 which converts the pairs of statement a) into the pairs of

statement b).

We now list, up to isomorphism, all permutation modules of FD16, identifying

those that are uniserial on our list of all uniserial modules. We list all subgroups

H of D16 along with a generator of the module generated by ‖H‖. Subgroups are

listed in decreasing order, and they are listed by conjugacy class.

• 〈x, y〉 = D16 corresponds with A(1)

•
〈

x, z2
〉

∼= D8 corresponds with A
(2)
0

•
〈

y, z2
〉

∼= D8 corresponds with B(2)

• 〈z〉 ∼= C8 corresponds with A
(2)
1

• C2 × C2
∼=
〈

x, z4
〉

and
〈

yz, z4
〉

correspond with A
(4)
0,0 and A

(4)
1,0 respectively

• C2 × C2
∼=
〈

y, z4
〉

and
〈

zx, z4
〉

correspond with B
(4)
0,0 and B

(4)
1,0 respectively

•
〈

z2
〉

∼= C4 corresponds with A
(3)
0 + B

(3)
0 , which generates a 4-dimensional

module

• C2
∼= 〈x〉,

〈

yz3
〉

, 〈yz〉, and
〈

z2x
〉

correspond with A
(8)
0,0,0, A

(8)
0,1,1, A

(8)
1,0,0 and

A
(8)
1,1,1 respectively

• C2
∼= 〈y〉,

〈

z3x
〉

, 〈zx〉, and
〈

yz2
〉

correspond with B
(8)
0,0,0, B

(8)
0,1,1, B

(8)
1,0,0 and

B
(8)
1,1,1 respectively

• C2
∼=
〈

z4
〉

corresponds with A
(5)
0 + B

(5)
0 , which generates an 8-dimensional

module

• 〈1〉 generates the entire module FD16.

We now find all modulesM andN such that FD16
∼= M⊗N . Up to exchanging

M and N , the modules must both be uniserial with dimensions 2 and 8. We give a

table of all products bu, where b is one of the basis elements and u is a distinguished

generator listed in section 4 of chapter 2. Where the product is relevant, we list

the coefficient of A(1) in the product.
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A
(8)
s,u,w,x B

(8)
s,u,w,x A

(2)
r B(2)

x̄(ȳx̄)3 0 1 0 0

ȳ(x̄ȳ)3 1 0 0 0

x̄ − − r 1

ȳ − − 1 0

Table of coefficients for A(1) in (ID16)
nu

From this table we determine all products,

‖D16‖ ·m⊗ n = x̄m⊗ ȳ(x̄ȳ)3n+ ȳm⊗ x̄(ȳx̄)3n.

We list the coefficients of A(1) ⊗A(1) in the product ‖D16‖ ·m⊗n in the following

table.

A
(2)
r B(2)

A
(8)
s,u,w,x r 1

B
(8)
s,u,w,x 1 0

Table of coefficients of A(1) ⊗ A(1) in ‖D16‖ ·m⊗ n

From this table, we determine all tensor decompositions of FD16:

Theorem 3.12. Up to isomorphism and rearrangement of factors, the follow-

ing is the complete list of non-trivial tensor decompositions, FD16
∼= M ⊗N :

a) M ∼= FD16A
(2)
r and N ∼= FD16A

(8)
s,u,w,x when ρ 6= 0;

b) M ∼= FD16A
(2)
r and N ∼= FD16B

(8)
s,u,w,x

c) M ∼= FD16B
(2) and N ∼= FD16A

(8)
s,u,w,x

The remaining group G is such that the Loewy length of FG is 6:

D8Y4 = 〈x, y, z
∣

∣ x4 = y2 = z2 = 1, x ∈ Z, (yz)2 = x2〉.
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The expression x ∈ Z indicates that x is in the center of D8Y4. This group is the

central product of D8 and C4.

The Poincaré polynomial associated with FD8Y4 is PFD8Y4(t) = 1+3t+4t2 +

4t3 + 3t4 + t5. Assume FD8Y4 ∼= M ⊗ N . If we assume dim(M) = dim(N) = 4

then 6 ≤ ``(M)+``(N)−1 ≤ 4+4−1 = 7. At least one of the modules must have

Loewy length 4, and is thus uniserial. But from Section 7 of Chapter 2 we see that

there are no uniserial modules of length 4, so this is not a possibility. If we assume

dim(M) = 2 then 6 ≤ 2 + ``(N)− 1 ≤ 1 + 5 = 6, as ``(N) < ``(FD8Y4). Thus we

must have ``(N) = 5. The Poincaré polynomials for M and N are PM (t) = 1 + t

and PN (t) = 1 + 2t+ 2t2 + 2t3 + t4.

Given M and N , we wish to determine if FG ∼= M ⊗ N . We only consider

cases where dim(M) dim(N) = 16, ``(M) = 2 and ``(N) = 5. If we can show that

the product ‖G‖ ·M ⊗ N 6= 0, then we know that FG ∼= M ⊗ N . Let m and n

be generators of M and N respectively. By Lemma 1.11 of Chapter 1, the choice

of generators does not matter. The product ‖G‖ ·m⊗ n is non-zero if and only if

the product ‖G‖ ·M ⊗ N is non-zero. We use Lemma 1.11 to find ‖G‖ ·m ⊗ n.

We find that

‖G‖ · (m⊗ n) = x̄m⊗ x̄2ȳz̄n+ ȳm⊗ x̄3z̄n+ z̄m⊗ x̄3ȳn,

where m generates a module of length 2, and n generates a module of length 8,

and where x̄, ȳ, and z̄ are defined in Section 7 of Chapter 2.

We first consider the decomposition of this group into the non-trivial product

of subgroups H and K whose intersection is 1. We present the diagram for the

full subgroup lattice of D8Y4 after the theorem.

Theorem 3.13. The group ring FD8Y4 is decomposable into the tensor prod-

uct of permutation modules, FD8Y4‖H‖ ⊗ FD8Y4‖K‖. Up to interchanging H

and K, these are the only such pairs of subgroups:

a) H is one of the four subgroups 〈xy, xz〉, 〈x, y〉, 〈x, yz〉, or 〈xz, y〉 and K is one

of the conjugate subgroups 〈z〉 or
〈

x2z
〉

;

b) H is one of the four subgroups 〈xy, xz〉, 〈x, z〉, 〈x, yz〉, or 〈xy, z〉 and K is one

of the conjugate subgroups 〈y〉 or
〈

x2y
〉

;
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c) H is one of the four subgroups 〈xy, xz〉, 〈x, y〉, 〈x, z〉, or 〈y, z〉 and K is one

of the conjugate subgroups 〈xyz〉 or
〈

x−1yz
〉

;

Proof. Again, we observe the lattice diagram, and conclude that these are all

the possible pairs of complementary subgroups in D8Y4. Note that for each pair

of statements of the theorem, there is an isomorphism on D8Y4 which converts

one of the statements to the other.

We now list, up to isomorphism, all permutation modules of FD8Y4, identi-

fying those that are uniserial on our list of all uniserial modules. We also identify

8-dimensional permutation modules that have Loewy length 5 with a generator

described later. To every subgroup H of D8Y4, there is a module FD8Y4‖H‖. We

list the subgroups in the order of decreasing size, with conjugate subgroups listed

together. For each subgroup H, we list a generator of FD8Y4‖H‖, as described in

Chapter 2, section 7.

• 〈x, y, z〉 = D8Y4 corresponds to A(1).

• 〈xy, xz〉 ∼= Q8 corresponds to A
(2)
1,1.

• 〈x, y〉 ∼= C2 × C4 corresponds to B
(2)
0 .

• 〈x, z〉 ∼= C2 × C4 corresponds to C(2).
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• 〈x, yz〉 ∼= C2 × C4 corresponds to B
(2)
1 .

• 〈z, xy〉 ∼= D8 corresponds to A
(2)
0,1.

• 〈y, xz〉 ∼= D8 corresponds to A
(2)
1,0.

• 〈y, z〉 ∼= D8 corresponds to A
(2)
0,0.

• 〈x〉 ∼= C4 corresponds to x̄3, which is not a uniserial module generator.

• 〈xy〉 ∼= C4 corresponds to x̄3 + x̄2ȳ, which is not a uniserial module generator.

• 〈xz〉 ∼= C4 corresponds to x̄3 + x̄2z̄, which is not a uniserial module generator.

• 〈yz〉 ∼= C4 corresponds to x̄2(ȳ+ z̄), which is not a uniserial module generator.

•
〈

x2, y
〉

∼= C2
2 corresponds to x̄2ȳ, which is not a uniserial module generator.

•
〈

x2, z
〉

∼= C2
2 corresponds to x̄2z̄, which is not a uniserial module generator.

•
〈

x2, xyz
〉

∼= C2
2 corresponds to x̄3 + x̄2(ȳ + z̄ + ȳz̄), which is not a uniserial

module generator.

•
〈

x2
〉

∼= C2 corresponds to x̄2, which is not a uniserial module generator.

• C2
∼= 〈y〉 and

〈

x2y
〉

correspond to E
(5)
0,0,0,0 and E

(5)
1,0,0,0.

• C2
∼= 〈z〉 and

〈

x2z
〉

correspond to F
(5)
0,0,0,0 and F

(5)
1,0,0,0.

• C2
∼= 〈xyz〉 and

〈

x−1yz
〉

correspond to D
(5)
1,0,0,0 and D

(5)
0,0,0,0.

• 〈1〉 generates all of FD8Y4. We now find all modules M and N such that

FD8Y4 ∼= M ⊗ N . We have seen that if FD8Y4 ∼= M ⊗ N then, up to

exchanging M and N , the modules have dimensions 2 and 8, respectively,

and N must have Loewy length 5, and PN = 1 + 2t + 2t2 + 2t3 + t4. We

now find all cyclic submodules N of FD8Y4 with Poincaré polynomial PN =

1 + t + 2t2 + 2t3 + t4 + t5. We use an algorithm similar to that described

when we were dealing with G1. We sketch the use of the algorithm, although

the actual calculations are performed by computer, and are not shown here.

We use the basis from Chapter 2, Section 7 for FD8Y4. We start with an

arbitrary element of Soc6(FD8Y4),

D(5) =

a
b c d
e f g h
i j k l

m n p
q

.
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Let N = FD8Y4D(5). We need D(5) 6∈ Soc4(FD8Y4). This implies that b, c

and d can not all be zero. Consider the map from Rad(N) to Rad(N)/Rad2(N),

where we list the elements in terms of the images of the basis elements x̄2, x̄ȳ, x̄z̄,

and ȳz̄ of FD8Y4. Using the multiplications that are given in Chapter 2, Section 7,

we find that the images of x̄D(5), ȳD(5) and z̄D(5) are (b, c, d, 0), (0, b, 0, d) and

(c, 0, b, c) respectively. We may assume that the first non-zero element in the list

{b, c, d} is equal to 1, as we may rescale. If b = 1, we must have cd = 1. If b = 0

and c = 1, then we must have d = 0. If b = c = 0, the case where d = 1 is

also valid. Further quotients of powers of the radical show that all three of these

outcomes are possible, with the added restriction that if b = 1 then c and d equal

1 as well.

For each of these three cases, we find the set of elements x̄iȳj z̄kE(6), and per-

form a Gram-Schmidt type of process on the set in the same manner we described

with G1 . In each of the three cases, we may assume that some of the entries are

zero. In each case, there is also a restriction on the possible values of the remaining

variables. We list the three possible families of distinguished module generators

here, and rename them:

D
(5)
r,s,t,u =

·
1 1 1
· · r 1 + r
· · s t

· · u
·

, E
(5)
r,s,t,u =

·
· 1 ·
· · · r
· · s t

· u ·
·

,

F
(5)
r,s,t,u =

·
· · 1
r · · ·
s t · ·

u · ·
·

We give a table of all products bu, where b is a one of the basis elements and

u is a distinguished generator listed in Section 3 of Chapter 7, or one of those just

described. We list the coefficient of A(1) in the product.
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D
(5)
r,s,t,u E

(5)
r,s,t,u F

(5)
r,s,t,u

x̄2ȳz̄ 1 0 0

x̄3z̄ 1 1 0

x̄3ȳ 1 0 1

Table of coefficients for A(1) in (ID8Y4)4u

A
(2)
r,s B

(2)
r C(2)

x̄ 1 0 0

ȳ s r 1

z̄ r 1 0

Table of coefficients for A(1) in (ID8Y4)u

From this table we determine all products,

‖D8Y4‖ ·m⊗ n = x̄m⊗ x̄2ȳz̄n+ ȳm⊗ x̄3z̄n+ z̄m⊗ x̄3ȳn.

We list the coefficient of A(1)⊗A(1) in the product ‖D8Y4‖ ·m⊗n in the following

table.

A
(2)
ρ,σ B

(2)
ρ C(2)

D
(5)
r,s,t,u 1 + ρ+ σ 1 + ρ 1

E
(5)
r,s,t,u σ ρ 1

F
(5)
r,s,t,u ρ 1 0

Table of coefficients of A(1) ⊗ A(1) in ‖D8Y4‖ ·m⊗ n

From this table, we determine all tensor decompositions of FD8Y4:
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Theorem 3.14. Up to isomorphism and rearrangement of factors, the follow-

ing is the complete list of non-trivial tensor decompositions, FD8Y4 ∼= M ⊗N :

a) M ∼= FD8Y4A
(2)
ρ,σ and N ∼= FD8Y4D

(5)
r,s,t,u when ρ+ σ 6= 1;

b) M ∼= FD8Y4A
(2)
ρ,σ and N ∼= FD8Y4E

(5)
r,s,t,u when σ 6= 0;

c) M ∼= FD8Y4A
(2)
ρ,σ and N ∼= FD8Y4F

(5)
r,s,t,u when ρ 6= 0;

d) M ∼= FD8Y4B
(2)
ρ and N ∼= FD8Y4D

(5)
r,s,t,u when ρ 6= 1;

e) M ∼= FD8Y4B
(2)
ρ and N ∼= FD8Y4E

(5)
r,s,t,u when ρ 6= 0;

f) M ∼= FD8Y4B
(2)
ρ and N ∼= FD8Y4F

(5)
r,s,t,u;

g) M ∼= FD8Y4C(2) and N ∼= FD8Y4D
(5)
r,s,t,u;

h) M ∼= FD8Y4C(2) and N ∼= FD8Y4E
(5)
r,s,t,u.

We may further factor PN (t) = (1+t)(1+t+t2+t3), so it seems possible that

FD8Y4 may be factored into the tensor product of 3 modules, FD8Y4 ∼= L⊗M⊗N .

We could rearrange the orders of L, M , and N so that dim(L) = dim(M) = 2

and dim(N) = 4. However, we know that FD8Y4 has no decomposition into the

product of two 4-dimensional modules. This implies that the modules L⊗M and

N could not exist, so there is no non-trivial factorization of FD8Y4 into a triple

tensor product.
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Philip Lloyd Osterlund

178 words

Abstract

This thesis is aimed towards the determination of tensor decompositions of

the regular representation of finite p-groups over fields of characteristic p. We also

focus on uniserial modules, as they are often factors. We develop an algorithm that

determines, up to isomorphism, all uniserial modules of a group ring (Section 2,

pp. 11–12). In a tensor decomposition of the regular representation of a group,

we relate the Loewy lengths, radical series and socle series of the regular repre-

sentation to those of the factors (Theorems 1.4–1.7, pp. 69–74). Under certain

conditions, we find that the Poincaré polynomial associated to the filtration of a

module is the product of the corresponding Poincaré polynomials of the module’s

tensor factors (Corollary 1.8, p. 73). For the non-abelian groups of order 16 that

can not be written as direct products of proper subgroups we classify the unise-

rial modules (Chapter 2, pp. 23–66) and all tensor decompositions (Section 3, pp.

85–111).

Key words Tensor decomposition, uniserial module, p-group, radical and socle

series, Poincaré polynomial.
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