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Chapter 1

Introduction

Let G be a finite group. In several instances it has proven to be fruitful to have

a space on which G acts in order to study the group G (consider [Qui78], [AM94],

[AM92] [AMM91], [DD89], [Ser80] and [Bro89]). For example, if BG is the classifying

space of G, characterized by being a connected CW -complex with fundamental group

G and higher homotopy groups zero, then G acts freely on its universal cover EG,

which is a contractible space. The homology and the cohomology of G can be defined

as the homology or cohomology of the space BG.

Many of the formulas that have been used to study group cohomology are obtained

from a simplicial complex ∆ on which G acts. The simplicial complex often comes

from a partially ordered set (poset) where the points are subgroups of G, the order

relation is containment, and the action of G is given by conjugation. The complexes

of Brown ([Bro75]), Quillen ([Qui78]) and Bouc ([Web87b]) are examples of this.

From an action of a finite group G on a simplicial complex ∆ satisfying some

suitable properties, Webb obtains in [Web91] an acyclic split chain complex involving

the p-part of the cohomology of G (where p is a prime number) and that of the

stabilizers of the simplices of ∆. In [Dwy97] and [Dwy98b], W. Dwyer considers

some new spaces which are canonically constructed from the combinatorial structure

of the subgroups of G but which do not have the same equivariant homotopy type

(in general) as the complexes of Brown, Quillen and Bouc, although they do have

the same ordinary homotopy type. These spaces are the nerves of certain categories
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defined in terms of subgroups of G. In these spaces the stabilizers are the subgroups

themselves in one case, or their centralizers in the other.

In this thesis I give theorems, some of them new, that generalize well known

theorems about equivariant homotopy type of posets (see for example [TW91] and

[Wel95]) and about homotopy type of simplicial sets. Given a category on which G

acts, they allow us to obtain a simpler category with the same G-homotopy type, and

so preserving the necessary properties to apply Webb’s theorems.

In Chapter 2, we define the objects we will study: categories, simplicial and

bisimplicial sets, and topological spaces with a group action. We will also explore

basic relationships among them. In Chapter 3 we state the theorems that hold in

the general context of categories with a group action. We introduce the new concept

of an action of G by natural transformations on a functor F : C → D, which allows

us to define a G-action on hocolimF in the case that C is a G-category, but not

necessarily D is. We prove the most important property of hocolim in this new

context: the equivariant homotopy invariance (Theorem 3.20). We finish the chapter

with a proof of the equivariant version of a theorem of Thomason, which expresses any

homotopy colimit of a functor to small categories as the nerve of a certain category.

In Chapter 4 we write what the theorems of the previous chapter mean in the more

specialized setting of preordered sets with a group action, give some definitions and

prove some further theorems. We prove that the nerve of any preordered set with a

group action can be expressed in an equivariant fashion as the homotopy colimit of

a functor defined on the associated poset with an action by natural transformations

and whose values are ordinarily contractible. In Chapter 5 we consider a particular

G-preordered set, which is due to Dwyer, defined in terms of a family of subgroups of

G. We prove theorems that help us simplify such a family of subgroups without losing

any essential information. They are also applied to obtain results analogous to those

of Quillen on the join of posets and on connected components. In Chapter 6 we study

the chain complex of a G-preordered set, which is a chain complex of G-modules.

Finally we obtain as applications of this theory a new exact sequence that relates the

cohomology of a group to that of its subgroups and a spectral sequence that contains

the mentioned exact sequence as a particular case.
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Chapter 2

Basic Definitions

In this chapter we review some basic ideas to do with categories and their nerves, and

we say what we mean by the equivariant versions of these notions.

2.1 Categories with a Group Action

For the basic material about categories, we refer the reader to [Mac71]. Throughout,

G will be a fixed finite group, and for a given category D we start by defining what

we mean by the category of G-objects in D. The most convenient way to do this is

to regard G as a category G with a single object ∗, in which homG(∗, ∗) = G and the

composition is equal to the group multiplication. Now, the category of G-objects in

D is the category DG of functors from G to D. Note that if G is the trivial group,

then DG is just D.

For example, if D = SCat, the category of small categories, each functor F : G→

SCat is determined by the small category F (∗) = C, and actions of G on both the

set objC and the set ∪A,B∈objC homC(A,B) in such a way that

1. φ ∈ homC(A,B) implies gφ ∈ homC(gA, gB) for all g ∈ G,

2. g1A = 1gA for all g ∈ G and A ∈ objC,

3. g(φ ◦ ψ) = (gφ) ◦ (gψ) for all g ∈ G, and φ, ψ maps in C.
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We say then that C is a G-category. If C1 and C2 are G-categories, determined

respectively by functors F1, F2 : G→ SCat, then a G-functor C1 → C2 is a natural

transformation from F1 to F2. Hence a G-functor is determined by a functor η : C1 →

C2 such that η(gA) = gη(A) for all objects A in C and g ∈ G, and η(gφ) = gη(φ) for

all morphisms φ in C and g ∈ G. A G-functor is also called an equivariant functor.

2.2 Simplicial Objects with a Group Action

For the basic notions about simplicial objects we will refer the reader to [May67]

and [GJ97]. We use ∆ to denote the category with obj∆ = { [n] = {0, 1, . . . , n} |

n ∈ N } and hom∆([n], [m]) the set of monotone maps. Then, for a category D, the

category of simplicial objects in D, denoted s̄D, is defined to be D∆
op

.

We have special maps in the category ∆, namely δi : [n−1]→ [n], σi : [n+1]→ [n]

for 0 ≤ i ≤ n given by

δi(j) =







j if j < i,

j + 1 if j ≥ i
σi(j) =







j if j ≤ i,

j − 1 if j > i
(2.1)

Then, ifK : ∆op → D is a functor, we define Kn = K([n]), ∂i = K(δi) and si = K(σi).

The sequence of objects in D, K0, K1, K2, . . . together with the ∂i : Kn → Kn−1,

si : Kn → Kn+1 for 0 ≤ i ≤ n satisfy

1. ∂i∂j = ∂j−1∂i if i < j,

2. sisj = sj+1si if i ≤ j,

3. ∂isj = sj−1∂i if i < j,

∂jsj = 1Kq
= ∂j+1sj,

∂isj = sj∂i−1 if i > j + 1.

Conversely, it can be proven that given objects Kn in D and maps ∂i, si, satisfying

the previous identities we obtain a simplicial object in D.

The elements in Kq are called q-simplices. The maps ∂i are called face operators

and the si are called degeneracy operators. If x ∈ Kq is such that x = siy for some i
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and some y ∈ Kq−1, we say that x is degenerate. We will denote by ∆[n] the simplicial

set given by the contravariant functor hom∆(−, [n]).

The category of bisimplicial objects in D is the category of simplicial objects in

the category of simplicial objects in D, that is (D∆
op

)∆
op

. Using the exponential law

for categories, we observe that this is the same as D∆
op×∆

op

.

The diagonal functor diag : ∆op →∆op×∆op induces a functor D∆
op×∆

op

→ D∆
op

which we will also denote by diag, from the category of bisimplicial objects in D to

the category of simplicial objects in D. Note that any functor F : C → D gives a

commutative diagram of categories and functors

C∆
op×∆

op diag
//

F∆
op

×∆
op

��

C∆
op

F∆
op

��

D∆
op×∆

op diag
// D∆

op

Let k be a commutative ring with unit element. We will denote also by k the

functor Set→ k-mod that sends a set X to the free k-module generated by X. This

functor extends to a functor from the category of simplicial sets to the category of

simplicial k-modules, and also to a functor from the category of bisimplicial sets to

the category of bisimplicial k-modules.

Lemma 2.1. Let X be a bisimplicial set, and k be a commutative ring with unit

element. Then k(diagX) ∼= diag kX in the category s̄k-mod.

Proof. Apply the previous commutative square to the functor k : Set→ k-mod

Remark 2.2. The exponential law for functor categories, together with the commu-

tativity of the product of two categories, allows us to deduce, for any category D,

that the category of G-simplicial objects in D (that is, (D∆
op

)G) is isomorphic to the

category of simplicial G-objects in D (this is (DG)∆
op

). Also, clearly we have that if

X is a bisimplicial G-set, then the simplicial set diag(X) has a canonical action of G.

We denote by ∆n the standard n-simplex

∆n = { (x0, . . . , xn) ∈ R
n+1 |

∑

xi = 1, xi ≥ 0 } (2.2)
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Let ei be the point in ∆n with the i-th coordinate equal to 1, we call it the i-th vertex

of ∆n. For f : [m] → [n] we have a map ∆(f) : ∆m → ∆n which is the linear map

that sends the vertex ei to the vertex ef(i).

Definition 2.3. The geometric realization |X| of a simplicial set X is the topological

space obtained as the quotient of X̃ =
⊔

Xn × ∆n (where Xn is given the discrete

topology) by the equivalence relation generated by identifying points (x, s) ∈ Xn×∆n

and (t, y) ∈ Xm×∆m if y = X(f)x and s = ∆(f)(t) for some map f : [m]→ [n]. We

denote the equivalence class of (x, s) by [x, s].

In the case that X has an action of the group G, we notice that if we consider G

acting trivially on all of the ∆n, then G acts on X̃ and it preserves the equivalence

relation, hence |X| becomes a G-topological space by the action g[x, s] = [gx, s].

If K is a G-simplicial set, then |K| is a G-space, and a map of G-simplicial sets

φ : K1 → K2 induces an equivariant continuous map |φ| : |K1| → |K2|.

Remark 2.4. Note that the definition of geometric realization could also be used to

define the geometric realization of a simplicial topological space.

Here we are mainly interested in the composition

SCat
N
−→ s̄Set

|−|
−→ Top (2.3)

Theorem 2.5. Let X be a bisimplicial G-set. Construct a simplicial G-topological

space XI by sending [p] to the realization of the simplicial set [q] 7→ Xpq. Similarly,

construct another simplicial G-topological space X II by sending [q] to the realization

of the simplicial set [p] 7→ Xpq. Then we have a homeomorphism of G-topological

spaces

| diag(X)| ∼=G |X
I | ∼=G |X

II | (2.4)

Proof. We refer the reader to [GM96, p. 19]. The non-equivariant version of this

theorem is proved there. The method used is to give a set Z and three equivalence

relations on it so that by applying them in different orders we get | diag(X)|, |X I | and

|XII| and observing that the resulting spaces have to be homeomorphic. It is imme-

diate to check that G preserves such equivalence relations, hence the isomorphisms

given are equivariant.
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2.3 The Nerve Functor

Let SCat denote the category of small categories. Let n be the category with ob-

jects {1, . . . , n} and exactly one map i → j if i ≤ j. Note that a monotone map

f : [n] → [m] gives rise to a functor f ∗ : n → m. Given a small category C, we get

a simplicial set N(C), called the nerve of C, as the functor ∆op → Set defined by

[n] 7→ homSCat(n,C) and a map f : [n]→ [m] gives homSCat(m,C)→ homSCat(n,C)

by precomposing with f ∗. In other words, N(C) is the simplicial set with q-simplices

the diagrams in C of form

X0 → X1 → · · · → Xq (2.5)

The i-th face of this simplex is defined by deleting Xi and composing maps as neces-

sary and i-th degeneracy is obtained by replacing Xi by 1Xi
: Xi → Xi.

If F : C1 → C2 is a functor between small categories, then

(X0
φ0
−→ X1

φ1
−→ X2 · · ·Xq−1

φq−1

−−→ Xq) 7→

(FX0
Fφ0
−−→ FX1

Fφ1
−−→ FX2 · · ·FXq−1

Fφq−1

−−−→ FXq) (2.6)

is a map N(F ) : N(C1)→ N(C2) of simplicial sets, since it commutes with faces and

degeneracies.

In the case that C is a G-category, there is a natural structure of G-simplicial set

in N(C), that is also preserved by G-functors. If C is a small category, we denote

|N(C)| just by |C| and call it the geometric realization of the category C. Similarly,

if F : C→ D is a functor, we denote |N(F )| by |F |.

Example 2.6. If G is a group and C is the category G, then |G| is already known as

the classifying space of G, denoted BG.

In the next section we consider another example with a little more detail, which

includes the case of a poset seen as a category.
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2.4 Preordered Sets

A particular case that will be of interest of us is when the category C has the property

that for any pair of objects A,B in C the hom set has only one element or is empty.

This is exactly the same as a preordered set (see for example ([Mac71, page 11])),

that is, a set with a binary relation ≤ that is both reflexive and transitive. If P is a

preordered set, we can define a category P by putting objP = P , and

hom(x, y) =







x ≤ y if x ≤ y

∅ if x 6≤ y
(2.7)

The composition is given by (x ≤ y, y ≤ z) 7→ x ≤ z. A G-action on the category P

corresponds to an action of G on P in such a way that x ≤ y in P and g ∈ G imply

gx ≤ gy. If Q is another preordered set, then a functor F : P → Q corresponds to

an equivariant order-preserving map F : P → Q. The nerve of P is the simplicial

set whose q-simplices can be identified with chains x0 ≤ x1 ≤ · · · ≤ xq of length q

in P . The non-degenerate q-cells are the chains where none of the inequalities is an

equality. If the relation ≤ is in addition antisymmetric, that is, if (P,≤) is actually

a poset, then the chains

x0 < x1 < · · · < xq (2.8)

give the q-simplices of a simplicial complex, and so |P| can be identified with the

geometric realization of it. This is the simplicial complex we referred to in the Intro-

duction. It is usually called the order complex of P and denoted ∆(P ).
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Chapter 3

Equivariant Homotopy Type of

Categories and Simplicial Sets

We present here some technical results which will be used later in our analysis of the

structure of various examples. These results are well-known in their non-equivariant

form, and some also in case the categories are posets [TW91]. The equivariant form

of Quillen’s Theorem A (Theorem 3.10 here) is new in the generality presented here,

as also is the equivariant form of Thomason’s theorem 3.23.

3.1 Basic Theorems

Definition 3.1. If X and Y areG-spaces, aG-homotopy fromX to Y is a continuous

map H : X × [0, 1] → Y such that H(gx, t) = gH(x, t) for all g ∈ G, x ∈ X and

t ∈ [0, 1]. If K and L are G-simplicial sets and φ, ψ : K → L are G-maps, we say that

φ is weakly G-homotopic to ψ if there is a G-homotopy from |K| to |L| such that

H(x, 0) = |φ|(x) and H(x, 1) = |ψ|(x).

In the same way, we say that two G-functors between G-categories F1, F2 : C→ D

are weakly G-homotopic if there is a G-homotopy from |C| to |D| such that H(x, 0) =

|F1|(x) and H(x, 1) = |F2|(x). Also we say that two G-categories C and D are weakly

G-homotopy equivalent if |C| and |D| are G-homotopy equivalent.
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Remember that ∆[1] is the simplicial set hom∆(−, [1]). Let us denote by 0 its

subsimplicial set of maps that have images contained in {0} and by 1 the subsimplicial

set of maps that have images contained in {1}. Hence 0 and 1 are both simplicial

sets with only one simplex on each dimension.

Definition 3.2. If K and L are G-simplicial sets and φ, ψ : K → L are G-maps, we

say that φ is strongly (or simplicially) G-homotopic to ψ if there is a G-simplicial set

map H : K ×∆[1]→ L such that H restricted to K × 0 can be identified with φ and

H restricted to K × 1 can be identified with ψ.

Similarly, we say that two G-functors between G-categories F1, F2 : C → D are

strongly G-homotopic if N(F1) and N(F2) are strongly G-homotopic.

Theorem 3.3. If K and L are G-simplicial sets, we have a G-homeomorphism

|K × L| ∼=G |K| × |L| (3.1)

if the topology on the right side is taken to be compactly generated.

See for example [GJ97, Proposition 2.4].

Corollary 3.4. If K and L are G-simplicial sets and φ, ψ : K → L are strongly

G-homotopic G-maps, they are also weakly G-homotopic maps.

For the rest of this section, C and D will denote G-categories.

We say that C is G-contractible if C is weakly G-homotopy equivalent to a point.

Lemma 3.5. (Compare with [BK72, page 292]) A natural transformation η : F → F ′

between the G-functors F, F ′ : C → D induces a strong G-homotopy between F and

F ′.

Proof. The natural transformation allows us to define a G-functor τ : C×{0 < 1} →

D by (X, 0) 7→ F (X), (X, 1) 7→ F ′(X). Since N(C × {0 < 1}) ∼=G N(C)×∆[1], we

have that N(τ) is a G-strong homotopy,

Note that in the previous lemma we do not ask any kind of equivariant behavior

to the natural transformation η.
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Corollary 3.6. If the G-functor F : C→ D is left adjoint to the G-functor F ′ : D→

C, then F and F ′ are strong G-homotopy equivalences.

Proof. We apply Lemma 3.5 using the unit and counit of the adjunction 1C → F ′F

and FF ′ → 1D.

Corollary 3.7. If C is a G-category with an initial object X fixed by G, then C is

strongly G-contractible.

Proof. Let X be the category with only one object X and only one morphism. Define

a functor S : C → X by sending every object to X, and all maps to the identity.

Let T : X → C include the object X in C. Given that X is a fixed object, both

S and T are G-functors. Then ST is the identity in X, and we prove that TS is

homotopic to the identity because for any object C in C we can take the unique map

C → X as defining the component of a natural transformation ηC between TS and

the identity.

The following criterion for a homotopy equivalence to be an equivariant homotopy

equivalence is often useful.

Theorem 3.8. Let X and Y be G-CW-complexes and φ : X → Y a G-equivariant

cellular map. Then φ is a G-homotopy equivalence if and only if φH : XH → Y H is a

homotopy equivalence for each subgroup H of G.

Proof. See [Bre67], Sect. II.

Definition 3.9. Following Quillen ([Qui72, page 93]), we make the following defini-

tion: if F : C → D is a functor and D ∈ objD, let F/D denote the category with

objects (C, v) with C ∈ objC and v : FC → D. A morphism from (C, v) to (C ′, v′)

is a map w : C → C ′ such that v′F (w) = v. We similarly define the category D\F

with objects the pairs (C, u) with u : D → FC.

We remark that if F is a G-functor, then both F/D and D\F have an action of

the stabilizer GD induced by the action of G on C and D, namely g(C, v) = (gC, gv).

We now prove a new result, the equivariant form of Quillen’s Theorem, which is
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probably the most powerful technique available to prove that a functor induces a weak

equivariant homotopy equivalence of categories. It is at the same time a generalization

of Quillen’s Theorem A from [Qui72] and of (1.4) from [TW91].

Theorem 3.10. Let F : C → D be a G-functor. If the category D\F is weakly

GD-contractible for every object D of D, then F is a weak G-homotopy equivalence.

Proof. We follow the argument of (1.4) from [TW91]. We apply Lemma 3.8 to

|F | : |C| → |D|. Let H ≤ G and consider |F |H : |C|H → |D|H . We have that

|C|H = |CH |, where CH denotes the full subcategory of C with objects the ones

fixed by H. Hence it is enough to prove that FH : CH → DH is an ordinary ho-

motopy equivalence, where FH denotes the restriction of F . We therefore apply the

non-equivariant form of Quillen’s theorem to FH . Let D be an object in DH so that

H ≤ GD, and consider D\(FH). It is clear that this can be identified with (D\F )H,

and the GD-contraction of D\F restricts to give a contraction of the fixed points,

3.2 The Homotopy Colimit

The homotopy colimit of a functor F : C → s̄Set was studied in [BK72] and has

been proved very useful in some contexts in algebra ([Dwy97, Dwy98a, Dwy98b]) and

combinatorics ([WZZ̆98]). In the case that F actually takes values in the category

of G-simplicial sets, then hocolimF will be an object in the same category and so

it will have defined a G-action. However, we will see that for an action of G to be

defined on hocolimF in the more general situation it is also sufficient to let C be

a G-category and F be compatible with the action on C. The following definition

makes this precise.

Definition 3.11. Let C be a G-category and F : C → D a functor. (D is now not

necessarily a G-category). Suppose that for each g ∈ G, X ∈ objC there is a map

ηg,X : F (X)→ F (gX) for X ∈ objC, g ∈ G such that

1. η1,X = 1F (X) for all X ∈ objC

14



2. the following diagram is commutative for X ∈ objC, g1, g2 ∈ G:

F (X)
ηg2 ,X

//

ηg1g2,X
%%L

L

L

L

L

L

L

L

L

L

F (g2X)

ηg1,g2X

��

F (g1g2X)

(3.2)

3. the following diagram is commutative for g ∈ G and f : X → Y a map in C:

F (X)
F (f)

//

ηg,X

��

F (Y )

ηg,Y

��

F (gX)
F (gf)

// F (gY )

(3.3)

(this is, for a fixed g ∈ G, {ηg,X}X∈objC is a natural transformation between F

and Fg).

Then, we call η an action by natural transformations on the functor F . Note that by

1. and 2., the maps ηg,X have to be isomorphisms.

Remark 3.12. Observe that if F : C → D is a functor with action by natural trans-

formations η and T is any functor T : D → E, then Tη is an action by natural

transformations on TF : C → E. Note also that each object FX obtains an action

of the subgroup GX by ηg,X : FX → FX in such a way that if φ : X → Y is a map

in C, then Fφ : FX → FY is GX ∩GY -equivariant.

Definition 3.13. ([BK72, page 337]) Let C be a category and F : C→ D a functor.

We define the simplicial replacement of F , which is the simplicial object K(F,C) in

D such that

K(F,C)n =
⊔

X

FX0 (3.4)

where the coproduct is taken over all the n-simplices X = X0
φ0
−→ X1 → · · · →

Xn−1 → Xn of N(C). Faces and degeneracies are induced by the maps

d0 : FX0
Fφ0
−−→ FX1 (3.5)

dj : FX0
1
−→FX0, j > 0 (3.6)

sj : FX0
1
−→FX0 (3.7)
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where in (3.5) the domain is indexed by X and the range by d
N(C)
0 X, in (3.6) the

domain is indexed by X and the range by d
N(C)
j X and in (3.7), the domain is indexed

by X and the range by s
N(C)
j X

Our definition of simplicial replacement differs slightly from that in [BK72]. We

follow [GZ67, page 153] and [Dwy98a, page 20]. As an example of the usefulness of

this concept, we have that if D = Ab, the homology of the simplicial abelian group

K(F,C) gives the derived functors of the functor colim: AbC → Ab at F ([Qui72,

page 91]). The correspondance F 7→ K(F,C) is actually functorial on F : if ε : F1 →

F2 is a natural transformation, then there is a simplicial map K(F1,C)→ K(F2,C)

induced by εX0
: F1X0 → F2X0 on the term indexed by X. Commutativity with faces

and degeneracies is clear, the only nontrivial part is commutativity with d0, which is

a consequence of the commutativity of

F1X0

εX0 //

F1φ0

��

F2X0

F2φ0

��

F1X1

εX1 // F2X1

for any map φ0 : X0 → X1. Hence K(−,C) is a functor DC → s̄D.

We now use Definition 3.13 to define homotopy colimits.

Definition 3.14. ([Dwy98a, Definition 4.13.]) Let F : C→ s̄D be a functor, so that

K(F,C) is a bisimplicial object in D. We define the homotopy colimit of F , denoted

hocolimF , by

hocolimF = diagK(F,C) (3.8)

In particular, if D = Set, then hocolimF is a simplicial set with p-simplices:

(hocolim F )p = { (X, y) | X = (X0
φ0
−→ X1 → · · · → Xp−1 → Xp) ∈ N(C)p, y ∈ F (X0)p }

(3.9)

and faces and degeneracies given by:

d0(X, y) =
(

d
N(C)
0 X, d

F (X1)
0 F (φ0)(y) = F (φ0)(d

F (X0)
0 y)

)

(3.10)

di(X, y) = (d
N(C)
i X, d

F (X0)
i y), i > 0 (3.11)

si(X, y) = (s
N(C)
i X, s

F (X0)
i y) (3.12)
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Proposition 3.15. Let F : C→ s̄Set be a functor. Then

k(hocolimF ) ∼= hocolim(kF ). (3.13)

Proof. The functor k preserves coproducts and diagonals, by Lemma 2.1.

If A is a bisimplicial k-module, there is a spectral sequence

E2
pq = Hp(HqA)⇒ Hp+q(diagA) (3.14)

(see [GJ97, Chapter IV]). If the bisimplicial k-module isK(L,C) for a functor L : C→

s̄k-mod, this corresponds to (compare [GZ67, page 153] and [Dwy98a, page 21]) the

spectral sequence of Bousfield and Kan

E2
pq = colimp(HqL)⇒ Hp+q(hocolimL) (3.15)

where HqL is a functor k-modC → k-mod sending X to Hq(LX) and colimp is the

p-th left derived functor of colim: k-modC → k-mod.

We now let the G-action come into play:

Proposition 3.16. Let C be a G-category and η an action by natural transformations

on F : C→ D. Then K(F,C) can be given a natural structure of G-simplicial object.

Proof. Note that as an object in D, K(F,C)n can be identified with K(Fg,C)n

because g only permutes the chains X ∈ N(C)n and the set of chains of the form X

is the same as the set of chains of the form gX, possibly taken in a different order).

Hence for each g, the natural transformation ηg : F → Fg induces a simplicial map

K(F,C) → K(Fg,C) ≡ K(F,C) acting as ηg,X0
: FX0 → F (gX0) on the term X0

corresponding to X. This evidently gives an action of G.

Corollary 3.17. If C is a G-category, F : C → s̄D a functor and η an equivariant

automorphism of F , then hocolimF is a G-simplicial object in D, with action in the

p-simplices given by:

g(X0
φ0
−→ X1 → · · · → Xp, y) = (gX0

gφ0
−−→ gX1 · · · → gXp, ηg,X0

(y)) (3.16)

for y ∈ (FX0)p.
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Proof. This is precisely the G-action on diagK(F,C) induced from the G-action on

K(F,C).

Lemma 3.18. For a G-simplicial set X, we have that |X|G is naturally homeomor-

phic to |XG|.

Proof. This follows from [GJ97, Chapter I, Proposition 2.4.], which says that the

functor |− | preserves finite limits, and that XG is the limit of the functor G→ s̄Set

that gives X its action of G.

Theorem 3.19. Let φ : X → Y a map of bisimplicial G-sets. Suppose that for all p

we have that φp : Xp → Yp is a weak G-homotopy equivalence. Then diag φ is a weak

G-homotopy equivalence.

Proof. The non-equivariant version of this theorem is [GJ97, Chapter IV, Proposition

1.9.]. We will use Lemma 3.8. To prove that | diag(φ)| is aG-homotopy equivalence we

need to check that | diag(φ)|H is an ordinary homotopy equivalence. By the previous

lemma, we just need to verify that diag(φH) : diag(XH)→ diag(Y H) is a weak homo-

topy equivalence since clearly diag(Y )H can be identified with diag(Y H). By the non-

equivariant version of Theorem 3.19, it is enough to prove that |(φH)p| : |(X
H)p| →

|(Y H)p| is a homotopy equivalence. But this follows from the fact that |(XH)p| =

|Xp|
H (similarly for Y ) and that the equivariant homotopy equivalence |φp| : |Xp| →

|Yp| restricts to fixed points.

We will prove now the equivariant homotopy invariance of the homotopy colimit.

In this theorem, we prove that if we have two functors that have equivariant homo-

topy equivalent values by a natural transformation, then their homotopy colimits are

equivariant homotopy equivalent. The analogous statement is not true if we replace

homotopy colimits by the ordinary colimit. The nonequivariant form of this theorem

can be found in [BK72, page 335].

Theorem 3.20 (Homotopy Invariance of the Homotopy Colimit). Let

F, F ′ : C→ s̄Set (3.17)
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be two functors with action by natural transformations η, η ′ respectively. Let ε : F →

F ′ be a natural transformation such that each εX : FX → F ′X is a weak GX-homotopy

equivalence Suppose that the following diagram commutes for all g ∈ G, X ∈ objC

FX
εX //

ηg,X

��

F ′X

η′g,X

��

F (gX)
εgX

// F ′(gX)

Then we may construct an equivariant map

hocolimF → hocolimF ′ (3.18)

which is an equivariant weak homotopy equivalence.

Proof. The natural transformation ε : F → F ′ induces a map K(F,C) → K(F ′,C).

This map is given on (p, q)-simplices
⊔

X(FX0)q → tX(F ′X0)q by sending (X, y) to

(X, εX0
(y)) for X ∈ N(C)p. We check it is equivariant. For a chain X = X0 → · · · →

Xp we denote gX0 → · · · → gXp by gX.

εX0

(

g(X, y)
)

= εX0

(

gX, ηg,X0
(y)

)

=
(

gX, εgX0
ηg,X0

(y)
)

=
(

gX, η′g,X0
εX0

(y)
)

= g
(

X, εX0
(y)

)

= gεX0
(X, y)

Hence a simplicial G-map hocolimF → hocolimF ′ is obtained after taking diagonals.

To check it is a weak G-homotopy equivalence we apply Theorem 3.19 to the map

K(F,C) → K(F ′,C). Let Ep be a set of representatives for the orbits of the action

of G on N(C)p. The map |K(F,C)p| → |K(F ′,C)p| can then be written as

⊔

Y ∈Ep

indGG
Y
|FY0| →

⊔

Y ∈Ep

indGG
Y
|F ′Y0| (3.19)

(see [tD87, page 32] for the definition and properties of induced topological spaces).

Since by hypothesis, each |εY0
| : |FY0| → |F

′Y0| is a GY0
-homotopy equivalence, given

19



that GY ⊆ GY0
it is also a GY -homotopy equivalence. Therefore the map (3.19) is

a coproduct of G-homotopy equivalences, hence a G-homotopy equivalence, as we

wanted to prove.

Remark 3.21. In the proof of the previous theorem, we needed the following facts,

which are easy to prove. Let H be a subgroup of G. Then

1. If f : X → Y is a G-homotopy equivalence, then the restriction of f to H is an

H-homotopy equivalence.

2. If f : X → Y is an H-homotopy equivalence, then indGH f : indGH X → indGH Y is

a G-homotopy equivalence.

Let F : C→ SCat a functor with an action by natural transformations η from a

G-category C. By Remark 3.12, we have that the composition of F with the nerve

functor N : SCat → s̄Set has N(η) as an action by natural transformations. Hence

hocolimN(F ) is a G-simplicial set. Our aim now is to obtain a G-category defined

in terms of F which is weakly G-homotopy equivalent to hocolimN(F ), therefore

simplifying the task of identifying the homotopy type of | hocolimN(F )|.

Definition 3.22. Let F : C→ SCat be a functor. We define a category Gr(F ) with

objects the pairs (X, a) with X ∈ objC, a ∈ objF (X). A map (X, a) → (Y, b) is

given by a pair (f, u) such that f : X → Y is a map in C and u : F (f)(a)→ b is a map

in the category F (Y ). The category Gr(F ) is called the Grothendieck Construction

on F .

Now, if F : C→ SCat is a functor from a G-category C with an action by natural

transformations η, we have that Gr(F ) is a G-category with action on objects given

by

g(X, a) = (gX, ηg,X(a)) (3.20)

and on maps by

g
(

(X, a)
(f,u)
−−→ (Y, b)

)

= (gf, ηg,Y (u)) (3.21)

The nonequivariant form of the next theorem is Theorem 1.2 of [Tho79].
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Theorem 3.23. Let C be a G-category and F : C→ SCat a functor with an equiv-

ariant automorphism η. If we define on hocolimN(F ) a G-action by N(η) and on

Gr(F ) by η, then there is a weak G-homotopy equivalence

hocolimN(F )→ N (Gr(F )) (3.22)

Proof. We need to check that the maps defined by Thomason are equivariant. Notice

that our notation differs slightly from Thomason’s. We define Φi = φi · · ·φ0. We

have the map of simplicial sets

λ : hocolimN(F )→ N(Gr(F )) (3.23)

by sending

(X0
φ0
−→ · · ·

φp−1

−−→ Xp, a0
α0−→ · · ·

αp−1

−−→ ap) (3.24)

to

(X0, a0)
(φ0,F (φ0)(α0))
−−−−−−−−→ (X1, F (φ0)(a1))

(φ1,F (Φ1)(α1))
−−−−−−−−→ (X2, F (Φ1)(a2))

→ · · · → (Xp−1, F (Φp−2)(ap−1))
(φp−1,F (Φp−1)(αp−1))
−−−−−−−−−−−−−→ (Xp, F (Φp−1)(ap)) (3.25)

Thomason proved that λ is a homotopy equivalence, we want to prove that both

λ and its homotopic inverse are equivariant. We first prove that λ is equivariant. We

have

λ(g(X0
φ0

−→ · · ·
φp−1

−−−→ Xp, a0
α0−→ · · ·

αp−1

−−−→ ap))

= λ(gX0
gφ0

−−→ · · ·
gφp−1

−−−−→ gXp, ηg,X0
(a0)

ηg,X0
(α0)

−−−−−−→ · · ·
ηg,X0

(αp−1)
−−−−−−−−→ ηg,X0

(ap))

= (gX0, ηg,X0
(a0))

(gφ0,F (gφ0)(ηg,X0
(α0)))

−−−−−−−−−−−−−−−−→ (gX1, F (gφ0)ηg,X0
(a1))

· · · (gXp−1, F (gΦp−2)ηg,X0
(ap−1))

(gφp−1,F (gΦp−1)(ηg,X0
(αp−1)))

−−−−−−−−−−−−−−−−−−−−−→ (gXp, F (gΦp−1)ηg,X0
(ap))

= (gX0, ηg,X0
(a0))

(gφ0,ηg,X1
(F (φ0)α0))

−−−−−−−−−−−−−−→ (gX1, ηg,X1
(F (φ0)a1))

· · · (gXp−1, ηg,Xp−1
(F (Φp−2)(ap−1)))

(gφp−1,ηg,Xp−1
F (Φp−1)(αp−1))

−−−−−−−−−−−−−−−−−−−−→ (gXp, ηg,Xp−1
F (Φp−1)(ap))

= gλ(X0
φ0

−→ · · ·
φp−1

−−−→ Xp, a0
α0−→ · · ·

αp−1

−−−→ ap)

(3.26)
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This proves λ equivariant. Now, associated to the functor F we define a functor

F̃ : C→ SCat, such that for X ∈ objC, F̃ (X) is the category with objects the pairs

(l, a), with l : Y → X a map in C and a ∈ objF (Y ). A map (k, z) : (l, a) → (l′, a′)

is composed by a map k : Y → Y ′ in C such that l = l′k and z : F (k)(a) → a′ is a

map in the category F (Y ′). The composition in F̃ (X) is given by (k1, z1)(k2, z2) =

(k1k2, z1F (k2)(z2)). A map f : X → Y in C gives a functor F̃ (f) defined on objects as

F̃ (f)(l, a) = (fl, a) and on maps as F̃ (f)(k, z) = (k, z). From the action by natural

transformations η on F , we define an action by natural transformations η̃ on F̃ by

η̃g,X(l, a) = (gl, ηg,Y (a)) and η̃g,X(k, z) = (gk, ηg,Y ′(z)).

We now prove there is a weak G-homotopy equivalence

λ1 : hocolimNF̃ → hocolimNF. (3.27)

For each X ∈ objC there is a functor F̃ (X) → F (X) defined on objects as (l, a) →

F (l)(a) and on maps by (k, z) 7→ F (l′)(z). This functor has a right adjoint F (X)→

F̃ (X) defined by a 7→ (1X , a). We can verify that these are actually GX-functors. By

Corollary 3.6, we obtain that NF̃ (X) → NF (X) is a strong GX-homotopy equiva-

lence. Also we have in this way a natural transformation F̃ → F , hence we have a

natural transformation NF̃ → NF . It is straightforward to prove the commutativity

required in Theorem 3.19 (to check it for the nerve of categories is enough to check

it for objects and maps), from where the claim of the existence of the G-homotopy

equivalence (3.27) follows.

We now will produce a weak equivariant homotopy equivalence

λ2 : hocolimNF̃ → N(Gr(F )) (3.28)

As Thomason indicates, a p-simplex in NF̃ (X)

(l0, a0)
(k0,z0)
−−−→ (l1, a1)→ · · · → (lp−1, ap−1)

(kp−1,zp−1)
−−−−−−→ (lp, ap) (3.29)

corresponds to a p-simplex in Gr(F )

(Y0, a0)
(k0,z0)
−−−→ (Y1, a1)→ · · · → (Yp−1, ap−1)

(kp−1,zp−1)
−−−−−−→ (Yp, ap) (3.30)

together with the map lp : Yp → X.
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Hence K(F̃ ,C) has as (p, q) simplices the expressions of the form

X0 → · · · → Xp, Yq → X0, (Y0, a0)→ · · · → (Yq, aq) (3.31)

and the map λ2 will send a (q, q) simplex of this form to the q-simplex (Y0, a0) →

· · · → (Yq, aq) in N(Gr(F )). This is clearly equivariant.

Consider N(Gr(F )) as a bisimplicial set constant in the p-direction, that is

N(Gr(F ))pq = N(Gr(F ))q. (3.32)

Then the map λ2 can be identified with diag(Λ) for an obvious bisimplicial G-map

Λ: K(F̃ ,C)→ N(Gr(F ))∗∗. From Theorem 2.5 we know that | diagN(Gr(F ))∗∗| ∼=G

|N(Gr(F ))|. So, by Theorem 3.19, we just need to prove that ΛqK(F̃ ,C)∗q →

N(Gr(F ))∗q is a weak homotopy equivalence. From (3.31), we observe that such

map can be expressed as a coproduct of simplicial maps N(Yq\C)→ ∆[0], taken over

the points of N(Gr(F ))q. Since geometric realization commutes with coproducts, we

are to prove that the map

⊔

(Y0,a0)→···→(Yq ,aq)

|N(Yq\C)| →
⊔

(Y0,a0)→···→(Yq ,aq)

|∆[0]| (3.33)

is a G-homotopy equivalence. Let Eq be a set of representatives for the action of G

on N(Gr(F ))q. Then we can write the spaces and the map in (3.33) as

⊔

i∈Eq

indGGi
|N(Yq\C)| →

⊔

i∈Eq

indGGi
|∆[0]| (3.34)

The map |N(Yq\C)| → |∆[0]| is a Gi-homotopy equivalence by Corollary 3.7, because

1Yq
is an initial object in Yq\C fixed by Gi. Hence (3.34) is a coproduct ofG-homotopy

equivalences, from where our claim that (3.28) is a G-homotopy equivalence follows.

We finally prove that λ · λ1 is strongly G-homotopic to λ2. Note that λ · λ1 sends

the p-simplex of hocolimNF̃

(X0
φ0
−→ X1 → · · ·Xp−1

φp−1

−−→ Xp,

(l0, a0)
(k0,z0)
−−−→ (l1, a1)→ · · · → (lp−1, ap−1)

(kp−1,zp−1)
−−−−−−→ (lp, ap)) (3.35)
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to

(X0, F (l0)(a0))
(φ0,F (φ0l1)(z0))
−−−−−−−−−→ (X1, F (φ0l1)(a1))→

· · · → (Xp−1, F (Φp−2lp−1)(ap−1))
(Φp−1,F (Φp−1lp)(zp−1))
−−−−−−−−−−−−−−→ (Xp, F (Φp−1lp)(ap)). (3.36)

Consider the simplicial homotopy given by Thomason:

H : hocolimNF̃ ×∆[1]→ N(Gr(F )) (3.37)

that sends

(X0
φ0
−→ X1 → · · ·Xp−1

φp−1

−−→ Xp, (l0, a0)
(k0,z0)
−−−→ (l1, a1)→

· · · → (lp−1, ap−1)
(kp−1,zp−1)
−−−−−−→ (lp, ap), fi : [p]→ [1])

(3.38)

where f(0) = · · · = f(i) = 0 and f(i+ 1) = · · · = f(p) = 1, to

(Y0, a0)→(Y1, a1)→ · · · → (Yi−1, ai−1)
(Φi−1li−1,F (Φi−1li)(zi))
−−−−−−−−−−−−−−→

(Xi, F (Φi−1li)(ai))→ (Xi+1, F (Φi)(li+1ai+1))→ · · · → (Xp, F (Φp−1lp)(ap))

(3.39)

This is equivariant because each of the assignment of the point (3.38) to one of the

spaces or maps appearing in (3.39) is equivariant. This finishes the proof.
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Chapter 4

Equivariant Homotopy Type of

Preordered Sets

We start by stating what the theorems of the previous chapter mean in the special

context of preordered sets. Remember that a preordered set is a set P with a binary

relation ≤ which is reflexive and transitive. If G is a group, we say that P is a G-

preordered set if G acts on the set P and for every g ∈ G and x ≤ y in P we have

gx ≤ gy. Here, we will consider mostly finite groups and finite preordered sets.

We define the poset associated to a preordered set P . If x ≤ y and y ≤ x, we write

x ∼ y. This is an equivalence relation, because it is the relation of being isomorphic

when P is considered as a category. Let [P ] be the set of equivalence classes in P

under the relation ∼. It is immediate to check that [P ] is a poset if we define [x] ≤ [y]

if x ≤ y. If P has a G-action, then [P ] has a G-action by g[x] = [gx], and this makes

[P ] a G-poset. We say [P ] is the G-poset associated to the G-preordered set P .

We note then that the associated [P ] without the G-action is isomorphic to the

poset that would be obtained considering P as a category and taking a skeletal subcat-

egory. It is well known (see for example [Jac89, page 27]) that a category is equivalent

to any skeletal subcategory. Hence, because of Corollary 3.6, every preordered set is

ordinarily homotopy equivalent to the associated poset. Therefore the study of the

ordinary homotopy type of a preordered set P is all contained in the study of that of

posets. However, when there is an action of G on P we see no obvious finite G-poset
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associated to P that has the same G-homotopy type. In this direction, we prove the

following result. We remind the reader that the barycentric subdivision sd(P ) of a

preordered set P is the poset of chains in P , ordered by inclusion. It has a naturally

defined G-action if P has one, and will be infinite whenever the preordered set has

an equivalent class of size greater than one, that is, if it is not a poset.

Proposition 4.1. Let P be a finite G-preordered set. Then sd(P ) 'G P .

Proof. Let f : sd(P ) → P be f(x0 ≤ · · · ≤ xn) = xn. Clearly f is order preserving

and equivariant. For x ∈ P , we get that f−1(X≤x) = { x0 ≤ · · · ≤ xn | xn ≤ x }. We

can give a Gx-contraction in sd(P ) by the maps (x0 ≤ · · · ≤ xn) ≤ (x0 ≤ · · · ≤ xn ≤

x) ≥ x.

4.1 The Basic Theorems for Preordered Sets

Lemma 4.2. (Compare with Lemma 3.5) Let P and Q two G-preordered sets If

F, F ′ : P → Q are equivariant order-preserving maps such that F (x) ≤ F ′(x) for

all x ∈ P , then F is G-homotopic to F ′.

An initial object x in a preordered set P seen as a category has the property that

x ≤ y for all y ∈ P . We will call then x an initial element of P .

Corollary 4.3. (Compare with Corollary 3.7) If P is a G-preordered set with an

initial element fixed by G, then P is G-contractible.

Remark 4.4. (Compare with Definition 3.9) If φ : P → Q is a map of preordered sets,

then with respect to the identification (2.4), if y ∈ Q, then y\φ can be identified with

the sub-preordered set { x ∈ P | y ≤ φ(x) } of P . We denote this set as φ−1(Y≥y)

Theorem 4.5. (Compare with Theorem 3.10) Let φ : P → Q a map of preordered

sets. If φ−1(Q≥y) is Gy-contractible for all y ∈ Q, then φ is a G-homotopy equivalence.

We now generalize (1.7) of [TW91] to the case of a pre-ordered set (X,≤) with a

group action. We need some notation. Define x ≺ y if x ≤ y and x 6∼ y (equivalently,
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if x ≤ y and y 6≤ x). A chain

x0 ≺ x1 ≺ · · · ≺ xN (4.1)

is said to have length N . If x ∈ X, denote by X�x the set { y ∈ X | y � x }. We say

that an element x0 in X is minimal if w ≤ x0 implies w ∼ x0. Note that the set of

minimal elements is invariant under G and preserves the relation ∼, that is, if x is

minimal and x ∼ z, then z is minimal.

Proposition 4.6. Let X be a G-preordered set such that there is no infinite chain

of the form (4.1) and Y be a G-invariant subset of X that preserves the relation

∼. Assume that for all x ∈ X − Y , we have that X�x is Gx-contractible. Then the

inclusion Y → X is a G-homotopy equivalence.

Proof. We construct a chain of preordered sets.

X = X0 ≥ X1 ≥ · · · ≥ Xn = Y (4.2)

Let X1 be obtained from X0 = X by removing the minimal elements in X0−Y , then

X2 is obtained from X1 removing the minimal elements of X1 − Y and so on. We

reach Y in a finite number of steps because of the finite length condition. We prove

X1 'G X0 using Theorem 4.5.

We note first that X1 preserves the equivalence relation: If x 6∈ X1 this means

that x was removed at the first stage and so it is minimal in X−Y . Suppose x is not

minimal in X. Then if w ≺ x for w ∈ X, given that x is minimal in X − Y , we must

have w 6∈ X − Y , this is, w ∈ Y . Hence x 6∈ X1 implies that either a) x is a minimal

element of X or b) x has the property that w ≺ x implies w ∈ Y . In the first case,

if z ∼ x then z is also minimal by the comments before the proof and cannot be in

Y since Y preserves the relation and x 6∈ Y . In the second case, if z ∼ x and t ≺ z,

then t ≤ z ≤ x and if we had t ≥ x we would have t ≥ z contradicting t ≺ z. Hence

t ≺ x and so t ∈ Y . So z also has the property and therefore z 6∈ X1. This proves

that the complement of X1 preserves the relation ∼, hence also X1 does.

Let i : X1 → X the inclusion. Let x ∈ X and consider x\i = { z ∈ X1 | x ≤ z }.

We have two cases:
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If x ∈ X1, then x\i has x as a initial element, and it is fixed by Gx, so it is

Gx-contractible, by Corollary 4.3.

If x 6∈ X1, we now prove that

{ z ∈ X1 | x ≤ z } = X�x (4.3)

Let z ∈ X1 with z ≥ x. We cannot then have z ∼ x, since X1 preserves ∼. Hence

z � x, and this proves one containtment.

Let now z � x. Then z ≥ x but we also need to prove z ∈ X1. Clearly z is not

minimal in X. And from the fact that x 6∈ X1, we know that x 6∈ Y , so z does not

satisfy condition b) above either. Hence z ∈ X1, and this proves equation (4.3). Since

by hypothesis X�x is Gx-contractible, we are done since Theorem 4.5 applies.

Of course we can similarly prove the dual proposition, namely

Proposition 4.7. Let X be a G-pre-ordered set of finite length and Y be a G-

invariant subset of X that preserves the relation ∼. Assume that for all x ∈ X − Y ,

we have that X≺x is Gx-contractible. Then the inclusion Y → X is a G-homotopy

equivalence.

4.2 Homotopy Colimits of Preordered Sets

Let D : P → PreordSet be a functor where P is a poset and suppose we have

an action of G on D by natural transformations. Considering preordered sets as

categories, and hence as simplicial sets via the nerve functor we can form hocolimD,

which a priori is a simplicial set. However, using Theorem 3.23, we will see in the next

result that it is actually up to weak G-homotopy equivalence the nerve of a preordered

set. This is because the Grothendieck construction of the functor D has as objects

the points (p, x) with p ∈ P and x ∈ D(p) and a map from (p, x) to (p′, x′) if p ≤ p′

and D(p ≤ p′)(x) ≤ x′. We observe that there can be at most one map between any

two objects, hence the category Gr(D) ' hocolimD can be seen as a preordered set.

We use now the universal property of the Grothendieck construction ([Tho79]) to give

the universal property of the homotopy colimit of a functor of preordered sets:
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Proposition 4.8. The homotopy colimit of a functor D : P → PreordSet has the

following universal property: It is a preordered set hocolimD together with maps

χp : D(p)→ hocolimD, one for each p ∈ P with the property that χp(x) ≤ χp′(D(p ≤

p′)(x)) if p ≤ p′, x ∈ D(p), and such that if there is a preordered set Q and a

collection of maps χ′
p : D(p)→ Q with χ′

p(x) ≤ χ′
p′(D(p ≤ p′)(x)) if p ≤ p′, then there

is a unique map hocolimD → Q such that the appropriate diagrams commute.

Proof. Define χp : D(p)→ hocolimD by χp(x) = (p, x). If we have maps χ′
p : D(p)→

Q with the properties stated, define hocolimD → Q by (p, x) 7→ χ′
p(x). This is

order preserving because if (p, x) ≤ (p′, x′) then D(p ≤ p′)(x) ≤ x′. Applying χ′
p′ to

this last inequality we get that χ′
p′D(p ≤ p′)(x) ≤ χ′

p′x
′. Since we also know that

χ′
p(x) ≤ χ′

p′(D(p ≤ p′)(x)), we get χ′
p(x) ≤ χ′

p′(x
′) as we wanted.

Hence we can take as underlying set for hocolimD the disjoint union
⊔

p∈P D(p)

with order relation x ≤ x′, x ∈ D(p), x′ ∈ D(p′) if p ≤ p′ and D(p ≤ p′)(x) ≤ x′.

We now present a lemma which describes a general (finite) preordered set as a

homotopy colimit of contractible spaces. This generalizes Proposition 5.1 of [WZZ̆98].

Since we will work with the poset opposite to barycentric subdivision, we will use the

following notation: A chain will be denoted with a bar, as in x̄, and if a chain x̄

includes the chain ȳ, we write x̄ ⊇ ȳ, hence in this situation we have x̄ ≤ ȳ in the

opposite poset.

Lemma 4.9. Let X be a finite G-preordered set. Let [X] be the G-poset associated

to X. Let P = sd([X]) be the G-poset of chains of [X] (barycentric subdivision). Let

D : P op → PreordSet the following diagram: If x̄ = ([x0] < · · · < [xn]) ∈ P , then

D(x̄) =
∏n

i=0[xi] (external product). If x̄ = ([x0] < · · · < [xn]) ⊇ ([y0] < · · · < [ym]) =

ȳ, then D(x̄)→ D(ȳ) is the canonical projection. Define the map ηg,x̄ as

D(x̄) // D(ḡx)

(ci)
� // (gci)

(4.4)

This is an action of G to the functor D, and it gives a G-action to hocolimD. Then

X 'G hocolimD
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Proof. By Corollary (3.17), we know that hocolimD has a G-action. By Theo-

rem 3.23, we know that hocolimD 'G Gr(D), the Grothendieck construction as-

sociated to D. That can be considered as a preordered set Z with points { (x̄, (ci)) |

x̄ ∈ P, ci ∈ [xi] } and order relation (x̄, (ci)) ≤ (ȳ, (dj)) if and only if x̄ ⊇ ȳ and

projD(x̄)→D(ȳ)(ci) ≤ dj. The action of G on hocolimD corresponds to the action of G

on Z given by

g (x̄, (ci)) = (ḡx, (gci)) (4.5)

We prove now X 'G Z. We define a map f : Z → X by f (x̄, (ci)) = c0. We check this

is order preserving and equivariant. That f is equivariant is clear by equation (4.5).

To prove it is order preserving, take (x̄, (ci)) ≤ (ȳ, (dj)), then ȳ ⊆ x̄ in P implies

that [y0] ≥ [x0] in [X]. Given that c0 ∈ [x0] and d0 ∈ [y0], we get c0 ≤ d0 in X. We

proceed then to apply Theorem 4.5.

Now, let s ∈ X. We want to prove that f−1(X≥s) is Gs-contractible. We have

f−1(X≥s) = { (x̄, (ci)) ∈ Z | [s] ≤ [x0] } (4.6)

Let us call this set L. Define a map φ : L→ L by

(x̄, (ci)) = ([x0] < · · · < [xn], (ci)) 7→







([s] < [x0] < · · · < [xn], (s, (ci))) [s] 6= [x0]

(x̄, (ci)) [s] = [x0]

(4.7)

Then φ is an order preserving Gs-map and also we have φ(w) ≤ w for all w ∈ L. Thus

L 'Gs
φ(L). Also, since φ(w) ≤ ([s], s) for all w ∈ L, φ(L) has a terminal object.

Hence L is Gs-contractible, and by Theorem 4.5, f is a G-homotopy equivalence.

The spaces D(x̄) in Lemma 4.9 are all contractible because their elements are all

comparable, hence any of them is an initial element.

We now present a theorem that expresses the G-preordered set X as homotopy

colimit of simpler G-preordered sets. Note that in Lemma 4.9, the diagram D was

a diagram of preordered sets, but they were not G-preordered sets and the G-action

on the homotopy colimit came by permuting the preordered sets among themselves.
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The idea now is to group together the preordered sets in an orbit so as to obtain a

group action on a single preordered set. First, observe that the G-poset P = sd([X])

has the property that for x̄, ȳ ∈ P , we have that gx̄ ⊆ ȳ and x̄ ⊆ ȳ imply that gx̄ = x̄.

So we can define the poset (P/G)op by declaring Gx̄ ≤ Gȳ if there is a g ∈ G such

that x̄ ⊇ gȳ as chains.

Theorem 4.10. Let X, [X], P and the diagram D as in the previous lemma. Con-

sider the diagram (P/G)op → PreordSet defined as follows: F (Gx̄) =
⊔

u∈Gx̄D(u) =

D(x̄) ↑GGx̄
. If Gx̄ ≤ Gȳ in (P/G)op, we have that x̄ ⊇ gȳ for some g ∈ G. Let

h1, . . . , hn be a collection of left coset representatives of Gx̄ in G. The map F (Gx̄)→

F (Gȳ) is defined by the maps D(hix̄)→ D(higȳ). Then X 'G hocolimF .

Proof. Clearly the map F (Gx̄) → F (Gx̄) associated to Gx̄ ≤ Gx̄ is the identity.

Now suppose Gx̄ ≤ Gȳ ≤ Gz̄ and x̄ ⊇ g0ȳ, ȳ ⊇ g1z̄. We have that F (Gx̄ ≤

Gg0ȳ) maps D(x̄) to D(g0ȳ). Let h ∈ G such that h−1g0 ∈ Gȳ, then F (ȳ ≤

g1z̄) will map D(g0ȳ) to D(hg1z̄). From ȳ ⊇ g1z̄ we get h−1g0ȳ ⊇ g1z̄, hence

ȳ ⊇ g−1
0 hg1z̄. We deduce that g1z̄ = g−1

0 hg1z̄, hence g0g1z̄ = hg1z̄. This proves

that F is actually a diagram. We will prove hocolimF 'G hocolimD by prov-

ing that K(F, (P/G)op) as a G-bisimplicial set is G-isomorphic to K(D,P op). Now,

K(D,P op)n =
⊔

ȳ0⊇···⊇ȳn
D(ȳ0) and K(F, (P/G)op)n =

⊔

Gx̄0⊇···⊇Gx̄n
F (Gx̄0). We de-

fine a map K(D,P op)n
φ
−→ K(F, (P/G)op)n by sending (ȳ0 ⊇ · · · ⊇ ȳn, c) to (Gȳ0 ⊇

· · · ⊇ Gȳn, c). To define the inverse ψ, we note first that a chain Gx̄0 ⊇ · · · ⊇ Gx̄n

determines t1, . . . , tn, which are elements of the group G with the property that

x̄0 ⊇ t1x̄1 ⊇ · · · ⊇ tnx̄n. So, to (Gx̄0 ⊇ · · · ⊇ Gx̄n, d) with d ∈ F (Gx̄0) we as-

sociate (gx̄0 ⊇ gtx̄1 ⊇ · · · ⊇ gtnx̄n, d). Then ψφ(ȳ0 ⊇ · · · ⊇ ȳn, c) = ψ(Gȳ0 ⊇

· · · ⊇ Gȳn, c) = (ȳ0 ⊇ · · · ⊇ ȳn, c). On the other hand, φψ(Gx̄0 ⊇ · · · ⊇ Gx̄n, d) =

(gx̄0 ⊇ gt1x̄1 ⊇ · · · ⊇ gtnx̄n, d) = (Ggx̄0 ⊇ Ggt1x̄1 ⊇ · · · ⊇ Ggtnx̄n, d) = (gx̄0 ⊇

gt1x̄1 ⊇ · · · ⊇ gtnx̄n, d). To prove ψ is simplicial, we prove it commutes with d0: We

have ψd0(ȳ0 ⊇ · · · ⊇ ȳn, c) = ψ(ȳ1 ⊇ · · · ⊇ ȳn, D(c)) = (Gȳ1 ⊇ · · · ⊇ Gȳn, D(c)).

On the other side, d0ψ(ȳ0 ⊇ · · · ⊇ ȳn, c) = d0(Gȳ0 ⊇ · · · ⊇ Gȳn, c) = (Gȳ1 ⊇

· · · ⊇ Gȳn, F (ȳ0 ≤ ȳ1)c). But since ȳ0 ⊇ ȳ1, we can take h = 1 in the definition of

F (c). Hence F (c) = D(c), and so φ is simplicial. Now we prove φ is equivariant:
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φ(g(ȳ0 ⊇ · · · ⊇ ȳn, c)) = φ(gȳ0 ⊇ · · · ⊇ gȳn, gc) = (Ggȳ0 ⊇ · · · ⊇ Ggȳn, gc) = (Gȳ0 ⊇

· · · ⊇ Gȳn, gc) = g(Gȳ0 ⊇ · · · ⊇ Gȳn, c) = gφ(ȳ0 ⊇ · · · ⊇ ȳn, c)
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Chapter 5

Dwyer’s Space

In this chapter we define a space associated to a collection of subgroups, that gener-

alizes the construction of the classifying space of a group.

5.1 Definition

Definition 5.1. Let G a finite group. A collection C of subgroups of G is a set of

subgroups of H that is closed under conjugation.

Let C be a collection of subgroups of G. In [Dwy97] and [Dwy98b], W. G. Dwyer

associates to C a space which is the homotopy colimit of the functor

β̃C : OC → GSet (5.1)

where OC is the category with set of objects equal to {G/H}H∈C and morphism are

G-maps, the category GSet is the category of G-sets and β̃C sends G/H to G/H

itself. By Theorem 1.2 of [Tho79], this space is homotopy equivalent to the nerve

of the Grothendieck Construction associated to β̃C . This is a category which Dwyer

denotes by Xβ
C that has as objects the pairs (xH,G/H), where H ∈ C, xH is a coset in

the G-set G/H, and a map from (xH,G/H) to (yK,G/K) is a G-map G/H → G/K

that sends xH to yK. The G-action is given by g(xH,G/H) = (gxH,G/H). Note

that the stabilizer of (xH,G/H) is xH.
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Since the G-sets G/H are transitive, a G-map is determined by a value on a point.

Hence between any two objects (xH,G/H) and (yK,G/K) there can be at most one

map, precisely when xH ≤ yK. This says that the nerve of Xβ
C which Dwyer denotes

Xβ
C , is equivalent to the nerve of a pre-ordered set PC, whose elements are the cosets

xH, with H ∈ C and xH ≤ yK if xH ≤ yK.

Example 5.2. Suppose that C contains just the trivial group 1. Then the elements of

PC can be identified with the elements of G, and every element is comparable to each

other. Hence PC is contractible, and we also note that the action of G on it is free.

Therefore, we can take PC as a model for the space EG.

We prove now theorems that allows us to simplify the preordered set PC. For this

preordered set, we have that xH ∼ yK if xH = yK, and so (PC)�xH = { yK | yK >
xH }. Since GxH = xH, we have that this stabilizer acts trivially on (PC)�xH .

Theorem 5.3. Let C be a G-poset of subgroups of G ordered by inclusion and with

G acting by conjugation. Let l : C → C be a G-poset map such that H ⊂ l(H) for all

H ∈ C. Then l induces a G-preordered set map Pl : PC → PC by Pl(xH) = xl(H), and

we have that PC 'G imPl 'G Pim l.

Proof. We show first that Pl is well-defined: if xH = yH then y−1x ∈ H ⊂ l(H),

hence xl(H) = yl(H). Now we prove it preserves the order of PC: let xH ≤ yK,

then xH ⊂ yK, hence l(xH) ⊂ l(yK), hence xl(H) ⊂ yl(K), so xl(H) ≤ yl(K), but

this is precisely Pl(xH) ≤ Pl(yK). To prove Pl preserves the action of G, consider

Pl(g(xH)) = Pl(gxH) = gxl(H) = g(xl(H)) = gPl(xH).

To prove the final statement, just note that xH ≤ Pl(xH) for any xH ∈ PC. The

theorem then follows from Lemma 4.2.

We show some examples

1. Let C a collection of subgroups (closed under intersection) and l(K) = intersec-

tion of maximal elements of C containing K. This proves PC to be G-homotopy

equivalent to PC′ , where C ′ contains the subgroups that are intersection of max-

imal elements of C.
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2. C = Sp(G), the poset of nontrivial p-subgroups of G, Q a normal p-subgroup

and l(K) = KQ. Here im l consists of the subgroups in C containing Q.

Proposition 5.4. Let C0 be a set of representatives of the conjugacy classes of C.

Then PC0
is G-homotopy equivalent to PC.

Proof. For each K ∈ C, denote by K̂ ∈ C0 the chosen representative and fix gK ∈ G

such that K̂ = gKK. If K ∈ C0, choose gK = 1. Then we have an isomorphism

of G-sets cgK
: G/K → G/K̂ given by xK 7→ xg−1

K K̂. Define then a map f : PC →

PC0
by sending xK → cgK

(xK). Since we have cgK
(xK) ≤ xK ≤ yL ≤ cgL

(yL)

for xK ≤ yL, we have that f is order preserving. We have also that gf(xK) =

g(xg−1
K K̂) = gxg−1

K K̂ = f(gxK) and so f is equivariant. On the other hand, the

inclusion i : PC0
→ PC is of course order preserving and equivariant. Then we check:

Let xK ∈ PC, then if(xK) = i(xg−1
K K̂) = xg−1

K K̂ ≥ xK, and so if ' 1PC
by

Lemma 3.5. Since fi = 1PC0
, we get PC0

' PC

Proposition 5.5. Let C be a collection of subgroups of G closed under conjugation

and let C0 be a set of representatives of the conjugacy classes of C. Then the G-posets

C (where G acts by conjugation) and [PC0
] are G-isomorphic.

Proof. Fix a set map φ : C → C0 such that for each H ∈ C we have that φ(H) is the

chosen representative of the conjugacy class of H. Define maps Λ: [PC0
] → C and

Γ: C → [PC0
] by Λ([xH]) = xH and Γ(H) = [aφ(H)] where H = aφ(H). It is routine

to prove they are well-defined order-preserving equivariant bijections.

Proposition 5.6. If H ∈ PC0
, then the equivalence class of H in PC0

with respect to

the relation ∼, which we denoted by [H], is isomorphic as an N(H)/H-preordered set

to E(N(H)/H).

Proof. If yH ′ ∼ H, then yH ′ = H. Since H is the only element of its conjugacy class

in C0, we must have that H ′ = H and so y ∈ N(H)/H. Hence the elements of [H]

can be identified with the cosets of H in N(H). By Example 5.2 we can identify then

[H] with E(N(H)/H).
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5.2 The case C = Sp(G)

In this section we prove a result analogous to one previously proved by Quillen

([Qui78, Proposition 2.6]), expressing the poset of Sp(G1 ×G2) as the join of Sp(G1)

and Sp(G2). To this end, first we prove a lemma which identifies the join of two

preordered sets in a certain way. The join of two preordered sets X and Y is the

preordered set that has as underlying set the disjoint union of X and Y , the order

relation is given by w ≤ z if either one of the three following statements is true

1. w, z ∈ X and w ≤ z in X

2. w, z ∈ Y and w ≤ z in Y

3. w ∈ X and z ∈ Y

Lemma 5.7. Let X and Y be G-preordered sets. Let Z = Z(X, Y ) be the following

preordered set: The underlying set of Z is X t Y t X × Y and the order relation

x ≤ (x, y), y ≤ (x, y), and the usual order in X, Y and X×Y . Then Z has a natural

G-action defined, and we have Z 'G X ∗ Y

Proof. We will identify X, Y and X × Y with their images in Z under inclusion. We

now prove Z ' X ∗ Y using Quillen’s theorem. Consider the map f : Z → X ∗ Y

that sends x to x, y to y and (x, y) to y. Let x0 ∈ X, then f−1 ((X ∗ Y )≤x0
) = X≤x0

,

which is Gx0
-contractible. Now, for y0 ∈ Y , we have

f−1 ((X ∗ Y )≤y0) = X ∪ Y≤y0 ∪ { (x, y) | y ≤ y0 } (5.2)

We will denote L = f−1 ((X ∗ Y )≤y0). We define the map φ : L → L that sends

x ∈ X to (x, y0), y ∈ Y≤y0 to y0 and (x, y) ∈ { (x, y) | y ≤ y0 } to (x, y0). Then φ

is order-preserving and Gy0-equivariant, and also we have φ(w) ≥ w for all w ∈ L.

Thus L ' φ(L). Also, since φ(w) ≥ y0 for all w ∈ L, φ(L) has a terminal object.

Hence L = f−1 ((X ∗ Y )≤y0) is contractible, and by Theorem 3.10, f is G-a homotopy

equivalence.

Remark 5.8. We will use this lemma in the following way: Suppose that Xi is a Gi-

preordered set for i = 1, 2. Then if G = G1 × G2, we can give a natural G-action to

X, Y , X × Y and X ∗ Y (hence to Z), and with that action, we have Z 'G X ∗ Y .
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Lemma 5.9. Let C1, C2 be collections of subgroups of G1, G2 respectively. Then

P(C1∪{1})×(C2∪{1})−(1,1)
∼=G1×G2

PC1
∗ PC2

(5.3)

Proof. Let Z be constructed from PC1
, PC2

as in Proposition 5.7. From there, we

know Z 'G1×G2
PC1
∗ PC2

. We will prove then equivariant homotopy equivalence of

the left side of (5.3) with Z. Consider the map f : P(C1∪{1})×(C2∪{1})−(1,1) → Z defined

by

(xH, yK) 7→



















yK H = 1

xH K = 1

(xH, yK) H 6= 1 and K 6= 1

(5.4)

and the map g : Z → P(C1∪{1})×(C2∪{1})−(1,1) defined by

xH 7→ (xH, 1)

yK 7→ (1, yK)

(xH, yK) 7→ (xH, yK)

We have that f and g are order preserving, equivariant and inverses to each other,

hence they give an isomorphism of preordered sets

Proposition 5.10. We have that

PSp(G1×G2) 'G1×G2
PSp(G1) ∗ PSp(G2) (5.5)

Proof. Let C = Sp(G1 × G2). Take l(K) = pr1(K) × pr2(K). This satisfies the

hypothesis of Theorem 5.3 and so we have that PC 'G1×G2
PC′, where C ′ = im l = all

subgroups of G of the form H ×K with H ∈ Sp(G1) ∪ {1}, K ∈ Sp(G2) ∪ {1}, and

not both 1. From Lemma 5.9, we obtain that PC′ 'G1×G2
PSp(G1) ∗ PSp(G2)

5.3 Connected Components of PC

Proposition 5.11. Let X and Y be G-homotopy equivalent topological spaces by

maps φ : X → Y and ψ : Y → X. Let x ∈ X, and C(x) be the connected com-

ponent of X containing x. Then GC(x) = GC(φ(x)).
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Proof. By standard topological arguments (see [Spa66, page 49]), we know that φ and

ψ determine a bijection of the connected components of X and Y . Now let g ∈ GC(x).

We want to prove g stabilizes the component of φ(x) in Y . Let y ∈ C(φ(x)). Since

the action of g is a continuous map, we have that gy is in the same component as

gφ(x), this is C(φ(gx)). Since gx ∈ C(x), we know C(φ(gx)) = C(φ(x)). Hence

gy ∈ C(φ(x)). This proves GC(x) ⊆ GC(φ(x)). Applying the same argument to ψ we

obtain GC(φ(x)) ⊆ GC(ψφ(x)). But ψφ(x) is in the same component as x, finishing the

proof.

For the case of the poset Sp(G), remember that Quillen proved in ([Qui78, Corol-

lary 5.3]) that the stabilizer of the component containing the Sylow subgroup P was

generated by NG(H) for 1 < H ⊆ P .

Definition 5.12. Let H and K be subgroups of G. We define the transporter from

H to K in G, T (H,K), as the set

T (H,K) = { g ∈ G | gH ≤ K } = { g ∈ G | H ≤ Kg }

Theorem 5.13. Let C be a set of nontrivial subgroups of G. Let L be a maximal

element in C. Then the stabilizer of the connected component of PC containing L is

the subgroup generated by all T (H,K) for 1 ≤ H ≤ K ≤ L, H,K ∈ C.

Proof. Let T be the subgroup generated by all T (H,K) for 1 ≤ H ≤ K ≤ L,

H,K ∈ C. Let g ∈ T (H,K) and we prove that it stabilizes the component of L,

which we will denote by C(L). Let xS lie in such a component. Since H ≤ K ≤ L,

we know that H and K (as cosets) are also in that component. Hence gxS is in

the same component as gH. But gH ≤ K, hence gH is in the component of K,

which is the component of L. This proves that T is contained in the stabilizer of the

component.

To prove the other containment we will first observe that if xS ∈ C(L), then

x ∈ T . Let xS ∈ C(L) Then there is a sequence L = H0, a1H1, . . . , anHn = xS

so that each term in the sequence is comparable to the next as elements of PC. We

prove our assertion by induction on n. If n = 1, so that xS ≤ L (the case xS ≥ L

is similar), then x ∈ T (S, L) ≤ T . This proves the case n = 1. Now for the general
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case, if an−1Hn−1 ≤ anHn (the case an−1Hn−1 ≥ anHn is similar), we have that

a−1
n an−1 ∈ T (Hn−1, Hn) ⊂ T . Since an−1 ∈ T by induction hypothesis, we get that

an ∈ T , proving our observation. Now let g ∈ GC(L). Since gL ∈ C(L), we get g ∈ T .

Hence GC(L) ⊂ T .

It is interesting to observe that for C = Sp(G), the stabilizer of the component

containing a Sylow p-subgroup P is the same in both C and PC even though they are

not G-homotopy equivalent in general. To prove this, it is enough to show that if

g ∈ T (H,K) with H ≤ K ≤ P , then g is in the subgroup generated by the normalizer

of the proper p-subgroups of G. But this is consequence of Alperin’s Fusion Theorem

([Alp67, page 229]).
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Chapter 6

Calculations

6.1 The Chain Complex of a Join

Our goal in this section is to describe the chain complex of the join of two preordered

sets X and Y , that is C(X ∗ Y ), in terms of the chain complexes of X and Y .

We define a boundary in the total complex of the tensor product of two complexes,

(see ([Mun84, page 341, exercise 3]). Let C, D be chain complexes, then if x ∈ Ci,

y ∈ Dj with i + j = n, let

∂(x⊗ y) = −∂x ⊗ y + (−1)ix⊗ ∂y (6.1)

This is a nonstandard definition, but the resulting chain complex is isomorphic to the

usual tensor product by the chain map that sends x⊗ y to (−1)ix⊗ y, where x ∈ Ci.

Note the following formula in C(X ∗ Y ):

∂(x0 ≤ · · · ≤ xi ≤ y0 ≤ · · ·yn−i−1) = ∂x ≤ y + (−1)i+1x ≤ ∂y (6.2)

with x = (x0 ≤ · · · ≤ xi), y = (y0 ≤ · · · ≤ yn−i−1). If the chain x consists only of the

point x0, then we interpret ∂x ≤ y as y.

We define a chain map f : C(X)⊗ C(Y )→ C(X)⊕ C(Y ) as follows: Consider the

maps

Cn(X)⊗ C0(Y )
1⊗ε
−−→ Cn(X)⊗ k → Cn(X)

(−1)n+1

−−−−→ Cn(X) (6.3)

C0(X)⊗ Cn(Y )
ε⊗1
−−→ k ⊗ Cn(Y )→ Cn(Y ) (6.4)
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Taking the direct sum of these two composites, we get a map

(Cn(X)⊗ C0(Y ))⊕ (C0(X)⊗ Cn(Y ))→ Cn(X)⊕ Cn(Y )

and we extend this to a map f : C(X) ⊗ C(Y ) → C(X) ⊕ C(Y ) by defining it equal

to zero in all the other summands of C(X) ⊗ C(Y ). In zero dimension, we have

f0 : C0(X)⊗C0(Y )→ C0(X)⊕ C0(Y ) defined by x⊗ y 7→ (−x, y), where x ∈ X and

y ∈ Y , that is the points x, y are basic elements of C0(X) and C0(Y ) respectively. It

is a routine calculation to check that f is actually a chain map (using the defintion

of boundary (6.1)).

Proposition 6.1. The chain complex C(X ∗Y ) is isomorphic to cone(f), where f is

the chain map just defined.

Proof. Remember that if f : C→ D is a chain map, cone(f) is a chain complex with

cone(f)n = Cn−1 ⊕Dn, ∂(c, d) = (−∂c, ∂d + fc) (6.5)

To prove the claimed isomorphism, consider the map Φ which in dimension n is

Cn(X ∗ Y )
Φn−→ (C(X)⊗ C(Y ))n−1 ⊕ Cn(X)⊕ Cn(Y ) (6.6)

given by

x = (x0 ≤ · · · ≤ xn) 7→ (0, x, 0)

y = (y0 ≤ · · · ≤ yn) 7→ (0, 0, y)

x ≤ y = (x0 ≤ · · · ≤ xi ≤ y0 ≤ · · ·yn−i−1) 7→ (x⊗ y, 0, 0)

Again it is routine to prove that Φ is a chain map. Since each Φn is an isomorphism,

we get that Φ is an isomorphism of chain complexes.

6.2 An Example

In this example, we will take C = Sp(G) for some prime p and consider the Sylow

p-subgroup HG
n (|PC|;U)p of the equivariant homology, where U is a G-module. There
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are two spectral sequences ([Bro82, page 172]) converging to this homology, one of

which is the isotropy spectral sequence, whose E1 page is

E1
rs =

⊕

σ∈[G\N(PC)r ]

Hs(Gσ, U)p (6.7)

Here the sum is taken over representatives of the orbits of the r-simplices and we

need only consider the non-degenerate ones. This page consists of a lot of sequences

which are shown in [Web91, Dwy98b] under the hypothesis (PC)
H is contractible for

all H ∈ Sp(G) to be split and have homology Hs(G,U)p in degree 0. Let us call the

augmented sequences

· · · →
⊕

σ∈[G\N(PC)1]

Hs(Gσ, U)p →
⊕

σ∈[G\N(PC)0]

Hs(Gσ, U)p → Hs(G,U)p → 0 (6.8)

isotropy sequences. There are also similarly constructed sequences for cohomology.

We want to consider the case when G = S4 and C = Sp(G) with p = 2. We

will apply the previous results to obtain an expression that relates the 2-part of the

cohomology of G with that of some of its subgroups. By the first example after

Theorem 5.3 and Proposition 5.4 we obtain that PC is G-homotopy equivalent to PC0
,

where C0 contains only the cosets of one copy of D8 and the cosets of one copy the

Klein’s group V . Since V is contained in D8 and V is normal, we have that Z = PC0

can be represented by the following diagram

6 cosets of V

D8 (123)D8 (321)D8

and the condition xV ⊂ yD8 for all x, y ∈ S4 means that in the preordered set Z every

coset of V is less than every coset of D8. Hence we have that Z can be written as the

join of X = P{V } and Y = P{D8}, and so by section 6.1 the chain complex of Z can

be written in terms of C(X) and C(Y ) as a cone.

Let k = F2 be the field of two elements. We have that X, which is the preordered

set of cosets of V on S4, can be seen as E(S4/V ) inflated up to S4, since V �G, and
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xV ≤ yV for any pair of elements in X (see Example 5.2), hence C(X) is the bar

resolution of k as S4/V ∼= S3-module and inflated to S4 (compare [Bro82, page 18]).

We want now to find a simpler chain complex which is chain homotopy equivalent to

C(X).

Every projective resolution of k as a kS3-module is chain homotopy equivalent to

a minimal resolution, which is given by

· · · //k↑S3

C3

1+(12)
//k↑S3

C3

1+(12)
//k↑S3

C3

//k //0 (6.9)

This is the standard resolution for k as a module over the cyclic group S3/C3, then

inflated to S3. The modules are still projective after inflation since they are projective

when restricted to a Sylow 2-subgroup.

A concrete representation of k↑S3

C3
is k(1 + (123) + (132))⊕ k((12) + (13) + (23)).

Identifying S3 with S4/V by the isomorphism given by the composition S3 ↪→ S4 →

S4/V we may identify k↑S3

C3
with k↑S4/V

A4/V
= k(V + (123)V + (132)V ) ⊕ k((12)V +

(13)V + (23)V ). The maps between the modules are still 1 + (12). After inflating to

S4, the modules become isomorphic to k↑S4

A4
= kA4 ⊕ k(12)A4 and the map will be

1 + (12). Therefore, if we inflate the resolution (6.9) we obtain a chain complex P1

of S4-modules that is chain homotopy equivalent to C(X) since before inflation the

projective resolutions were chain homotopy equivalent. Each term in P1 is isomorphic

to k↑S4

A4
and the map between them is always 1 + (12).

Now C(Y ) is chain homotopy equivalent to a chain complex P2 concentrated in

dimension 0 as k ↑S4

D8
since Y consists solely of three points (the three cosets of D8)

with no order relations among them. In order to make future calculations easier,

choose a copy of D8 such that (12) ∈ D8.

By the previous section, C(Z) is isomorphic to cone(f) for a certain map f : C(X)⊗

C(Y )→ C(X)⊕ C(Y ). Replacing C(X) and C(Y ) by the chain homotopy equivalent

complexes P1 and P2 we obtain that C(Z) will be chain homotopy equivalent to

cone(g), where g : P1 ⊗ P2 → P1 ⊕ P2 is defined analogously to the way f was.

We have that P1 ⊗ P2 has k↑S4

A4
⊗ k↑S4

D8
on each dimension. The boundary of this

chain complex is (1 + (12)) ⊗ 1 on each dimension. Considering the map of G-sets

S4/V → S4/A4× S4/D8 given by xV 7→ (xA4, xD8), we observe it is injective since if
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xV and yV have the same image we obtain that xA4 = yA4 and xD8 = yD8, hence

y−1x ∈ A4 ∩D8 = V , so xV = yV . Since both G-sets have six elements, we conclude

that such map is an isomorphism. Hence we get that P1⊗P2 is isomorphic to a chain

complex C that has k↑S4

V in each dimension and we see that the boundary corresponds

to 1 + (12) by commutativity of the following diagram

k↑S4

A4
⊗ k↑S4

D8

//

(1+(12))⊗1
��

k↑S4

V

1+(12)

��

k↑S4

A4
⊗ k↑S4

D8

// k↑S4

V

(We needed here that (12) ∈ D8). We will use also g to denote the corresponding

map g : C→ P1 ⊕ P2. There is a short exact sequence of complexes

0 //(P1 ⊕ P2) //cone g //C[−1] //0 (6.10)

(see [Wei94, page 19]), where we use C[−1] to denote the chain complex with C[−1]n =

Cn−1. The low degree terms of this sequence of complexes are shown in Figure 6.1.

Since from the definition of the cone this sequence of complexes splits on each dimen-

0 // k↑S4

A4
⊕ k↑S4

D8

// cone(g)0
// 0 // 0

0 // k↑S4

A4

//

(1+(12),0)

OO

cone(g)1
//

OO

k↑S4

V
//

OO

0

0 // k↑S4

A4

//

1+(12)

OO

cone(g)2
//

OO

k↑S4

V
//

1+(12)

OO

0

...

OO

...

OO

...

OO

Figure 6.1:

sion as a sequence of kS4-modules (although not a sequence of complexes), we get

also a short exact sequence of complexes after applying the functor TorkS4

n (−, k). We
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apply Shapiro’s Lemma in order to identify TorkS4

n (k ↑S4

V , k) with Hn(V, k), etc. Low

degree terms of the long exact sequence in homology of these short exact sequence of

complexes are shown in Figure 6.2. To identify the terms in the middle column we use

Hn(A4)/(1 + (12))⊕Hn(D8) // Hn(S4) // 0

∗ // 0 // Hn(V )/(1 + (12))

llY
Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Figure 6.2:

our knowledge that TorkS4

n (cone(g), k) is the isotropy sequence of S4. By [Web87b,

Theorem 3.3], such sequence is acyclic with 0-homology equal to Hn(S4).

One can prove the following facts:

Hn(A4)/(1 + (12)) ∼= Hn(V )S3

∼= H0(S3, Hn(V ))

Hn(V )/(1 + (12)) ∼= Hn(V )C2

∼= H0(C2, Hn(V ))
(6.11)

On the other hand, we have for any S3-module M , the following:

Hi(S3,M) = Hi(C2,M) +
1

2
[Hi(C3,M)−Hi(1,M)] (6.12)

in the Grothendieck group of finitely generated abelian groups with relations given

by direct sum decompositions. This comes from uS3
= uC2

+ 1
2
[uC3
−u1], see [Web87a,

p. 159]. Putting i = 0 and M = Hn(V ), we get

Hn(V )S3
= Hn(V )C2

+
1

2
[Hn(V )C3

−Hn(V )] (6.13)

Now, from the sequence in Figure 6.2, and using the equations from 6.11, we get

the following equation in the Grothendieck group

Hn(S4) = Hn(D8) +Hn(V )S3
−Hn(V )C2

(6.14)

and from Equation 6.13, we get that Hn(V )S3
− Hn(V )C2

= 1
2
[Hn(V )C3

− Hn(V )].

But by Swan’s theorem, we know that Hn(V )C3
∼= Hn(A4). So we finally arrive to

Hn(S4) = Hn(D8) +
1

2
[Hn(A4)−Hn(V )] (6.15)
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This is the same as the formula which was obtained by Webb in [Web87a]. However

the formula there had a purely combinatorial origin, and part of our goal here is to

provide a geometric setting in which the coefficients may be interpreted. It does indeed

appear that the formula arises in this way through consideration of the topological

information in Dwyer’s complex Xβ
C .

6.3 A Spectral Sequence Approach

We now describe a new spectral sequence associated to the space XC
β converging to

the (co)homology of G. It provides relationships between the (co)homology of G and

that of its subgroups. We start by recalling the Leray spectral sequence of a map

of simplicial sets. If f : X → B is a map of G-simplicial sets, the Leray spectral

sequence of f ([Dwy98a, page 39]) is the homology spectral sequence associated to

the filtration

X0 ⊆ X1 ⊆ X2 ⊆ · · · (6.16)

where X i = f−1(skiB). Consider the map f : PC → C given by f(xH) = xH. It is

equivariant and so induces a G-simplicial set map N(f) : N(PC) → N(C). Letting

X = N(PC) and B = N(C), we get that X i can be identified with the set of chains of

elements of PC such that at most i morphisms are nonisomorphisms. Let Ci be the

chain complex of X i, so that {Ci} gives a filtration of C, the chain complex of X. We

have then the situation of Figure 6.3

We now depart from what is usually done with the Leray spectral sequence.

Applying the functor Torr(−, k) to this filtration gives a filtration {Torr(C
i, k)} of

Tor(C, k). Note that Cn(X
i) is a direct summand of Cn(X

i+1) as ZG-modules (al-

though Ci is not a direct summand in general of Ci+1 as complexes of ZG-modules).

This is because as a G-set X i+1 is the disjoint union of X i and some other G-set.

Hence when we apply Torr(−, k) to this diagram the morphisms Torr(Cn(X
i), k) →

Torr(Cn(X
i+1), k) are (split) monomorphisms, and so Torr(C

i, k) → Torr(C
i+1, k)

is a monomorphism of chain complexes. Because of the splitting in each degree,

we also get that Torr(C
i, k)/Torr(C

i−1, k) is isomorphic to Torr(C
i/Ci−1, k). Hence
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...

��

...

��

· · · ⊂ Cn(X
i)

��

⊂ Cn(X
i+1)

��

⊂ · · · ⊂ Ci

· · · ⊂ Cn−1(X
i)

��

⊂ Cn−1(X
i+1)

��

⊂ · · · ⊂ Ci+1

...
...

Figure 6.3:

the spectral sequence associated to the filtration {Tor(Ci, k)} has E0 page E0
mn =

Torr(C
m
m+n/C

m−1
m+n, k). Consider the bottom sequence of the E1 page:

E1
0,0

d1
←− E1

1,0
d1
←− E1

2,0 (6.17)

Since we have a first quadrant spectral sequence, we have that E∞
0,0 = Hr(G, k) is

the cokernel of d1. Also, the sequence (6.17) is exact at the term E1
1,0 because its

homology at that term is an image of the first homology of the isotropy sequence,

which is zero. This proves

Theorem 6.2. The sequence

0← Hr(G, k)← E1
0,0

d1
←− E1

1,0
d1
←− E1

2,0 (6.18)

is exact.

We also mention the following consequences of the fact that the spectral sequence

converges to a chain complex concentrated in degree 0.

Proposition 6.3. When the dimension of the poset C is 1, we have a short exact

sequence

0← Hr(G, k)← E1
0,0

d1
←− E1

1,0 ← 0 (6.19)
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Proposition 6.4. When the dimension of the poset C is 2, the E1 consists of maps

which fit together in a long exact sequence

E1
0,s

(d2)−1

oo E1
1,s

oo E1
2,s

oo

E1
0,s−1

(d2)−1

oo E1
1,s−1

oo E1
2,s−1

oo

...

0 Hr(G, k)oo E1
0,0

oo E1
1,0

oo E1
2,0

oo

(6.20)

In order to use these results we should be able to identify the complexes Cm/Cm−1.

Remember the notation of Proposition 5.5. We have

Proposition 6.5. We have the following isomorphism of G-chain complexes

C
m/Cm−1 ∼=

⊕

σ=(H0<···<Hm)∈sdm(C)

(C([φ(H0)])⊗ · · · ⊗ C([φ(Hm)]))[−m]

∼=
⊕

σ∈[G\ sdm(C)]

(C([φ(H0)])⊗ · · · ⊗ C([φ(Hm)]))[−m]↑GGσ

'
⊕

σ∈[G\ sdm(C)]

C(E(N(H0)/H0))[−m]↑GGσ

(6.21)

where we let G act permuting the summands according to the action on C.

Proof. We can identify Cm/Cm−1 as ⊕σ∈sdm(C)C(σ), where C(σ) is the chain complex of

the space of chains spanned by those τ ∈ sd(PC) with f(τ) = σ. Such τ biject with the

(m + 1)-tuples (ρ0, · · · , ρm) where ρi ∈ sd[φ(Hi)], where if ρi = λi1 ≤ λi2 ≤ · · · ≤ λini,

then τ = (ρ0 < ρ1 < · · · < ρm) = λ0
1 ≤ λ0

2 ≤ · · · ≤ λ0
n0 < λ1

1 ≤ λ1
2 ≤ · · · ≤ λ1

n1 < · · · <

λm1 ≤ λm2 ≤ · · · ≤ λmnm. The degree in which τ occurs is m +
∑m

i=1 deg ρi. It follows

that C(σ) ∼= (C([φ(H0)]) ⊗ · · · ⊗ C([φ(Hm)]))[−m]. Since the map f : PC → C is G-

equivariant, each g ∈ G sends { τ ∈ sd(PC) | f(τ) = σ } to { τ ∈ sd(PC) | f(τ) = gσ }.

Thus G permutes the summands C(σ), which are subcomplexes of C
m/Cm−1. The
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stabilizer of C(σ) is Gσ, so we have

C
m/Cm−1 ∼=

⊕

σ∈[G\ sdm(C)]

C(σ)↑GGσ
(6.22)

Next we have

(C([φ(H0)])⊗ · · · ⊗ C([φ(Hm)])) = C(E(N(H0)/H0))⊗ · · · ⊗ (E(N(Hm)/Hm))

'Gσ
C(E(N(H0)/H0)× · · · × E(N(Hm)/Hm))

'Gσ
C(E(N(H0)/H0)

(6.23)

where we have used Proposition 5.6 for the first step. All of the identifications here

are evident except perhaps the last one. We claim that

E(N(H0)/H0)× · · · × E(N(Hm)/Hm) (6.24)

with the diagonal Gσ-action is equivariantly homotopy equivalent to E(N(H0)/H0),

with the action of N(H0) restricted to Gσ. This is because (6.24) is a contractible

space (each factor is contractible) with a free action of Gσ, since the action of Gσ on

the first factor is free.

Let us apply this results to the example of section 6.2. Again, let k be the field

of two elements, G = S4, p = 2 and C = Sp(G). From that section, we know that C0

is chain homotopy equivalent to the complex in the first column of Figure 6.1. Also,

from Proposition 6.5, we get that (C1/C0)[−1] is precisely the complex in the third

column of the mentioned diagram. Hence the sequence of Proposition 6.18 reduces

to the short exact sequence in Figure 6.2.
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