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Graded G-sets,

Symmetric Powers of Permutation Modules,

and the Cohomology of Wreath Products

Peter J. Webb

With best wishes to Mark Mahowald for his 60th birthday

Abstract. The Poincaré series of the cohomology ring of a wreath product of
groups may be rather easily computed by a combinatorial procedure in terms
of the Poincaré series of the groups in the wreath product. The method is
applied to the cohomology of the Sylow 2-subgroup of GL(4, 2), and also gives
the decomposition of symmetric powers of permutation modules.

Our main result at the end of this paper is a formula for the Poincaré series of
the cohomology of a wreath product of groups F oG with Fp coefficients, expressed in
terms of the Poincaré series of F and the subgroups of G, and the Möbius function
for the poset of subgroups of G. This formula makes it comparatively easy to
compute the Poincaré series for some quite complicated groups, and as an example
we use it to derive the Poincaré series for the cohomology of the Sylow 2-subgroup
of GL(4, 2) ∼= A8, which may be expressed as a wreath product.

Our main input for the cohomology is the result proved by Nakaoka [8] which
gives the algebra structure of H∗(F oG, Fp). Nakaoka’s result could hardly be more
transparent as a description of this structure. On the other hand, to extract the
Poincaré series from his description requires a little bit of combinatorial work, and
it is this work which we perform here. The same problem has previously been
treated by Bogačenko [3] who obtained our formula for the Poincaré series in the
case where G is cyclic of order p.

To obtain the cohomology formula one needs to study certain constructions
to do with permutation modules, and these in turn depend on the corresponding
constructions with G-sets. Accordingly, we start with the G-sets and as a special
case of what we do, we define the symmetric powers of a G-set. These are exactly
what one would imagine them to be, and it may help in understanding the relevance
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of our general formulation to guess how the symmetric powers of a set might be
defined. We then turn G-sets into permutation modules and as a corollary of
the general theory obtain a description of the symmetric powers of permutation
modules. The significance of this is that we obtain the full module structure of the
symmetric powers, but in particular we can deduce the (known) formula for the
Poincaré series for the ring of invariants in the symmetric algebra on a permutation
module.

Since this paper was first written it has come to my attention that there is
related material in the work of Liulevicius and Özaydin [6,7]. They consider the
symmetric powers of G-sets and obtain a formula for their structure in the special
case that G is cyclic. Their formula involves the Möbius function of number theory,
which in this case coincides with the Möbius function for the poset of subgroups of
the cyclic group. Several ideas needed for this work are present in their papers, and
I wish to acknowledge their priority at this point without making special reference
later on. For the application to the cohomology of wreath products made here the
generality of their formula is insufficient, both because they restrict the structure of
G and because one needs to consider more general G-sets than symmetric powers.

1. Graded G-sets

By a graded set we mean a set Ψ partitioned as

Ψ = Ψ(0) ∪ Ψ(1) ∪ Ψ(2) ∪ · · ·

We will refer to Ψ(i) as the set of elements in degree i. A graded G-set is a graded
set in which each of the components Ψ(i) is a G-set. We denote by B(G) the
Burnside ring of finite G-sets with rational coefficients (c.f. [2]). This is a Q-vector
space with the inequivalent transitive G-sets G/H as a basis. Assuming that each
of the sets Ψ(i) is finite, we form what (by an extension of usual terminology) we
may call the Poincaré series of a graded G-set Ψ:

PΨ(t) =

∞
∑

i=0

Ψ(i)ti.

This is a formal power series in the variable t with coefficients in B(G). Our first
aim is to show how this series may be computed.

Burnside [4, p.238] introduced a homomorphism m : B(G) → Map(C, Q)
where C is the set of conjugacy classes of subgroups of G and Map(C, Q) is the
algebra of Q-valued functions on C. In fact we will usually work with a set of
representatives for the conjugacy classes of subgroups and use C to denote also this
set of representatives. We write an element of Map(C, Q) as a list of its values on
the elements of C: (aJ)J∈C where aJ ∈ Q and J ranges over a set of representatives
of the conjugacy classes of subgroups of G. The homomorphism which Burnside
introduced is defined by m(Ω) = (|ΩJ |)J∈C where the superscript J denotes fixed
points, and he showed that this map is injective. Evidently m extends to a map of
power series m : B(G)[[t]] → Map(C, Q)[[t]]. Given a graded G-set Ψ, we define for
each subgroup J of G a power series fJ(t) with integer coefficients by

fJ(t) =

∞
∑

i=0

|Ψ(i)J |ti.
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Then clearly

m(PΨ) = (fJ )J∈C .

This allows us to derive a formula for PΨ in the following way. We let eJ ∈ B(G)
be the idempotent for which m(eJ) = 1 at J and 0 elsewhere (see [5] and [11]). We
have immediately:

(1.1) Proposition.

PΨ =
∑

J≤G

up to conjugacy

fJeJ .

Proof. Since m is injective it suffices to check that both sides are sent to the
same element of B(G)[[t]] by m. That this is so is immediate from the definitions.�

There is an explicit formula for these idempotents which is due to Gluck [5]
and Yoshida [11]:

eJ =
1

|NG(J)|

∑

K≤J

|K| · G/K · µ(K, J).

Here µ is the Möbius function of the partially ordered set of subgroups of G.
We may combine this formula with the statement of 1.1 to give

(1.2) Proposition.

PΨ =
∑

K≤J

G/K µ(K, J) fJ

|G : K|
.

Proof. Here the sum is over all pairs of subgroups K ≤ J . The formula
is immediate from what we had previously, since on summing over all subgroups
instead of over conjugacy classes we have

PΨ =
∑

J

fJ eJ

|G : NG(J)|
=

∑

J

fJ

|G : NG(J)|
·

1

|NG(J)|

∑

K≤J

|K| · G/K · µ(K, J).

�

As an example of this we take G = C2 × C2, in which case on writing out
explicitly the values of the Möbius function in 1.2 we obtain

PΨ =fG

(

G/G −
(G/A + G/B + G/C)

2
+

2 · G/1

4

)

+ fA

(

G/A

2
−

G/1

4

)

+ fB

(

G/B

2
−

G/1

4

)

+ fC

(

G/C

2
−

G/1

4

)

+ f1

(

G/1

4

)

(1.3)

Quite how we compute the power series fJ depends on Ψ, but for a certain type of
naturally occuring graded G-set we show how this may be done.
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Suppose we are given a graded set Ξ and a finite G-set Ω. We may form the
G-set Map(Ω, Ξ) of functions from Ω to Ξ. This becomes a G set via the action of
G on Ω. If φ ∈ Map(Ω, Ξ) we define its degree to be

deg φ =
∑

ω∈Ω

deg φ(ω).

Then Map(Ω, Ξ) becomes a graded G-set.
For example, suppose that Ξ has precisely one element in each degree, so we may

take Ξ = N to be the natural numbers {0, 1, 2, 3, . . .}, and suppose Ω = {a, b, c}.
Then a function φ : Ω → N may be written as arbsct where φ(a) = r, φ(b) = s and
φ(c) = t, so that the elements of Map(Ω, N) of degree n may be identified as the
monomials of degree n in the elements of Ω. Thus we produce for each finite G-set
Ω and natural number n the G-set Map(Ω, N)(n), which we term the nth symmetric
power of Ω. It is convenient to denote this G-set by Sn(Ω).

In general the power series fJ for Map(Ω, Ξ) are computed as follows.

(1.4) Proposition. Let Ξ be a graded set with Poincaré series f , and let Ω
be a finite G-set.

1. For each subgroup J ≤ G let fJ be the power series

fJ(t) =

∞
∑

i=0

|(Map(Ω, Ξ)(i)J |ti.

Then

fJ(t) = f(t|Ω1|) · · · f(t|Ωn|)

where Ω = Ω1 ∪ · · · ∪ Ωn is the decomposition of Ω into J-orbits.
2. With the fJ given as in (1), the Poincaré series of the graded G-set Map(Ω, Ξ)

is

PMap(Ω,Ξ) =
∑

K≤J

G/K µ(K, J) fJ

|G : K|

in B(G)[[t]].

Proof. (1) One sees immediately that (Map(Ω, Ξ))J consists of those func-
tions φ which are constant on the orbits of J on Ω. Such functions biject with
functions on the orbit space φ : J\Ω → Ξ, where for each φ : Ω → Ξ constant on
J-orbits, the associated map φ is defined by φ(Ωi) = φ(ωi), where ωi ∈ Ωi. The
degree of such a map φ is

deg φ =
∑

ω∈Ω

deg φ(ω) =
n

∑

i=1

|Ωi| deg φ(ωi).

We should therefore define

deg φ =

n
∑

i=1

|Ωi| deg φ(Ωi)

and now with this definition of degree Map(J\Ω, Ξ) has the same Poincaré series
as (Map(Ω, Ξ))J .
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For each orbit Ωi the functions {Ωi} → Ξ with domain the one point set {Ωi}
and degrees multiplied by |Ωi| as above, have Poincaré series f(t|Ωi|). Since an ar-
bitrary function in Map(J\Ω, Ξ) may be regarded as an n-tuple (φ(Ω1), . . . , φ(Ωn))
the Poincaré series we require is the product of the f(t|Ωi|).

(2) This is a restatement of formula 1.2. �

We point out also a generalization of this result in which Ω is itself taken to be
a graded G-set, and if φ ∈ Map(Ω, Ξ) we define

deg φ =
∑

ω∈Ω

deg(ω) · deg φ(ω).

Then a similar result to 1.4 holds, the difference being that we should take

fJ = f(td1|Ω1|) · · · f(tdn|Ωn|)

where di is the degree of the elements in Ωi. We leave the proof of this modification
to the reader.

As an example, let G = C2 × C2 act regularly on a set Ω of size 4. We will
compute the decomposition into orbits of the symmetric powers Sn(Ω). We take
Ξ = N = {0, 1, 2, 3, . . .} so that f(t) = 1

1−t
. As well as the identity subgroup and

the whole group, there are three further subgroups of G, which have size 2 and
which we denote A, B and C. They each have two orbits on Ω of size 2. Now by
Proposition 1.4,

f1(t) =
1

(1 − t)4
, fA(t) = fB(t) = fC(t) =

1

(1 − t2)2
, fG(t) =

1

1 − t4
.

Using the previous formula 1.3 for PΨ with Ψ = Map(Ω, N) we obtain

PMap(Ω,N) =fG G/G

+

(

−fG

2
+

fA

2

)

G/A +

(

−fG

2
+

fB

2

)

G/B +

(

−fG

2
+

fC

2

)

G/C

+

(

fG

2
−

fA + fB + fC

4
+

f1

4

)

G/1

=
G/G

1 − t4
+

(

1

(1 − t2)2
−

1

1 − t4

)

G/A + G/B + G/C

2

+

(

1

1 − t4
−

3

2(1− t2)2
+

1

2(1− t)4

)

G/1

2

=
1

1 − t4
G/G

+
t2

(1 − t2) (1 − t4)
(G/A + G/B + G/C)

+
t − t2 + 3t3 − t4

(1 − t)
2
(1 − t2) (1− t4)

G/1.
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Using the power series expansions

1

1 − t4
= 1 + t4 + t8 + t12 + t16 + · · ·

t2

(1 − t2) (1 − t4)
= t2 + t4 + 2t6 + 2t8 + 3t10 + 3t12 + 4t14 + 4t16 + · · ·

t − t2 + 3t3 − t4

(1 − t)
2
(1 − t2) (1 − t4)

= t + t2 + 5t3 + 7t4 + 14t5 + 18t6 + 30t7 + 38t8 + · · ·

we obtain, for example, that the 8th symmetric power S8(Ω) is the union of 38
regular orbits, 2 orbits with each of the subgroups A, B and C as stabilizer, and 1
fixed point.

2. Symmetric powers of permutation modules

The type of calculation performed in the last section allows us to find very
easily the complete module structure of the symmetric algebra on a permutation
module. The answers are independent of the ground ring we work over, which may
be a field of characteristic p, or characteristic 0, or some quite different ring. This
feature is not really surprising since our answer for the module structure is given
as a decomposition into a direct sum of permutation modules, and this type of
decomposition is a property of G-sets rather than of modules.

We fix a commutative ground ring R and consider RG-modules. For any RG-
module V we let S•(V ) =

⊕∞
i=0 Si(V ) be the symmetric algebra on V . In particular

we will be interested in the case when V = RΩ is the permutation module whose
basis is a G-set Ω. The symmetric power Si(RΩ) is now the module whose basis
consists of the monomials in Ω of degree i. Since these monomials may be identified
with Map(Ω, N)(i) = Si(Ω) the decomposition of Map(Ω, N) into orbits immediately
gives a decomposition of S•(RΩ) as a direct sum of transitive permutation modules.

For example, suppose that G = C2 × C2 acts regularly on a set Ω of size 4, as
in Section 1. Then by our previously worked example we have

S8(RΩ) = R ⊕ (R ↑G
A ⊕R ↑G

B ⊕R ↑G
C)2 ⊕ (R ↑G

1 )38

using as before the notation A, B, C for the three subgroups of size 2.
It is convenient to make a Poincaré series out of this, but we have to replace the

Burnside ring we used in Section 1 by some different ring of coefficients. We will
use the Green ring A(G) (c.f. [2]) which we will take to be the Q-vector space with
the set of isomorphism classes of indecomposable RG-modules as a basis. Given an
RG-module M which is a finite direct sum of indecomposables M ∼= M1 ⊕· · ·⊕Mn

we denote by M also the linear combination of basis elements M1+· · ·+Mn ∈ A(G).
In order that the symbol M should represent a well-defined element of A(G) we
should assume that the Krull-Schmidt theorem holds for RG-modules (as happens
if R is a field or a complete discrete valuation ring), and when mentioning A(G) we
will always implicitly make this assumption.

If M happens to be a graded RG-module M = M(0)⊕M(1)⊕M(2)⊕· · · such
that each M(i) is a finite direct sum of indecomposables we may associate a power
series

PM (t) =

∞
∑

i=0

M(i)ti ∈ A(G)[[t]]
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and by analogy with other related series we will call this the Poincaré series of
M . We will perform this construction in the particular case that we have a graded
G-set Ψ, when we may form the graded module

RΨ = R[Ψ(0)] ⊕ R[Ψ(1)] ⊕ R[Ψ(2)] ⊕ · · · .

(2.1) Proposition. Let Ω be a finite G-set and R a commutative ring such
that the Krull-Schmidt theorem holds for RG-modules.

1. If Ξ is a graded set with Poincaré series f then

PR Map(Ω,Ξ) =
∑

K≤J

R[G/K] µ(K, J) fJ

|G : K|

in A(G)[[t]], where the functions fJ are as given in 1.4.
2. For each subgroup J ≤ G define a function

fJ =
1

(1 − t|Ω1|) · · · (1 − t|Ωn|)

where Ω = Ω1 ∪ · · ·Ωn is the decomposition of Ω into J-orbits. Then the
Poincaré series

PS•(RΩ) =

∞
∑

i=0

Si(RΩ) ti

of the symmetric algebra on RΩ is equal to

∑

K≤J

R[G/K] µ(K, J) fJ

|G : K|

in A(G)[[t]].

Proof. (1) This is immediate from 1.4 on replacing G-sets with permutation
modules.

(2) is a particular instance of (1) in the case of the graded set Ξ = N, which
has Poincaré series f(t) = 1

1−t
. �

As with 1.4 there is a generalization where instead of considering polynomials
in a set Ω in which every element has degree 1, we allow Ω itself to be a graded
G-set so that some elements of Ω may be assigned different degrees. In this case
a similar result to 2.1 holds, but in the denominator of fJ we replace 1 − t|Ωi| by
1 − tdi|Ωi| where di is the degree of the elements in Ωi.

We may be interested just in the ring of invariants (S•(RΩ))G in S•(RΩ), not
the full module structure. The theory in this case has been known for a long time
and is described in [9 , Theorem 10.1] (I am indepted to L.G. Kovács for this
reference). The Poincaré series for this ring of invariants may also be computed
using Molien’s theorem, which ostensibly applies only in case |G| is invertible in R,
but may be applied here because of known properties of permutation modules. We
wish to indicate also that the determination of the Poincaré series of the ring of
invariants is a consequence of Proposition 2.1. Since each transitive permutation
module R[G/H ] has fixed points of rank 1, we obtain the Poincaré series of the
invariants from the series in 2.1 by replacing each module R[G/H ] by 1.
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There is also a more direct way to obtain the Poincaré series of the invariants,
which we take the opportunity to describe. We use Burnside’s formula for the
number of orbits of G on a set:

|G\Si(Ω)| =
1

|G|

∑

g∈G

|(Si(Ω))〈g〉|.

(2.2) Proposition. The Poincaré series of the ring of invariants (S•(RΩ))G

is
1

|G|

∑

g∈G

f〈g〉(t)

where for each cyclic subgroup J = 〈g〉 the functions fJ are as defined in 2.1.

Proof. Each transitive permutation module R[G/H ] has a fixed point set of
R-rank 1, and so rankR Si(RΩ)G equals the number of orbits of G on Si(Ω). Thus
the Poincaré series is

∞
∑

i=0

rankR(Si(RΩ)G)ti =
∞
∑

i=0

|G\Si(Ω)|ti

=

∞
∑

i=0

1

|G|

∑

g∈G

|(Si(Ω))〈g〉|ti

=
1

|G|

∑

g∈G

f〈g〉(t)

where as before

fJ(t) =
∞
∑

i=0

|(Si(Ω))J |ti.

�

Consider our example in which G = C2 × C2 acts regularly on a set Ω of size
4. The Poincaré series of S•(RΩ)G is

1

4
(f1 + fA + fB + fC) =

1

4

(

1

(1 − t)4
+

3

(1 − t2)2

)

=
1 − t + t2

(1 − t)
2
(1 − t2)

2

= 1 + t + 4t2 + 5t3 + 11t4 + 14t5 + 24t6 + 30t7 + · · ·

We note that the approach we have just described is merely a formalisation of a
method used in [1].

3. The cohomology of wreath products

We now apply our results on permutation modules to give the following result
in cohomology.
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(3.1) Theorem. Let X = F o G be a wreath product of finite groups, where G
permutes a product of copies of F indexed by a G-set Ω. Let

f(t) =
∑

dim Hn(F, Fp)t
n

be the Poincaré series of the cohomology ring of F , and for each subgroup J ≤ G
let fJ(t) = f(t|Ω1|) · · · f(t|Ωn|) where Ω = Ω1 ∪ · · · ∪ Ωn is the decomposition of Ω
into J-orbits. Also let gJ(t) be the Poincaré series of the cohomology ring of J .
Then the Poincaré series of the cohomology ring of X is

Φ(t) =
∑

K≤J

gK µ(K, J) fJ

|G : K|

where the sum ranges over all pairs of subgroups K ≤ J of G.

Thus Φ(t) is obtained by substituting gK for G/K in the series PMap(Ω,Ξ)(t)
where Ξ is any graded set with Poincaré series f(t) (for example, a basis of H∗(F, Fp)).

Proof. Our starting point is the isomorphism

H∗(F o G, Fp) ∼= H∗(G, H∗(F, Fp)
(m))

shown by Nakaoka [8 , p.237] using work of Steenrod and quoted by Bogačenko
[3]. Here H∗(F, Fp)

(m) is the m-fold tensor product, where m = |Ω|, and G acts on
it by permuting the factors. Thus it is immediate that if Ξ is a basis of H∗(F, Fp),
taken as a graded set so that Ξ(n) is a basis of Hn(F, Fp) for each n, then the basis
elements ξ1 ⊗ · · · ⊗ ξm, ξi ∈ Ξ, i ∈ Ω of the tensor power are in bijection with
functions Ω → Ξ. The action of G on H∗(F, Fp)

(m) arises from the permutation
action of G on this basis, which under the correspondence with Map(Ω, Ξ) is the
same as the action on Map(Ω, Ξ) defined in Section 1, since it arises from the action
on Ω. It follows that H∗(F, Fp)

(m) ∼= Fp Map(Ω, Ξ) as FpG-modules.
The Poincaré series of Ξ is the same as the Poincaré series of H∗(F, Fp), namely

f . Thus the series in A(G)[[t]] of the graded FpG-module H∗(F, Fp)
(m) is

∑

K≤J

Fp[G/K] µ(K, J) fJ

|G : K|

by 2.1. The theorem now follows from the next lemma.

(3.2) Lemma. Suppose M is a graded permutation module over FpG with series

∞
∑

i=0

M(i)ti =
∑

K≤G

Fp[G/K]pK(t) ∈ A(G)[[t]]

where pK(t) ∈ Z[[t]]. Then H∗(G, M) has series
∑

K≤G

gK(t)pK(t)

where gK is the Poincaré series of H∗(K, Fp).

Proof. On taking cohomology, each of the modules Fp[G/K] gives rise to a
term H∗(G, Fp[G/K]) ∼= H∗(K, Fp) and so contributes gK(t) to the Poincaré series
of M . �
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(3.3) Example. The mod p cohomology of F oCp. Let G = Cp acting regularly
on a set Ω of size p, and let F be any group with Poincaré series f . We have

g1(t) = 1 f1(t) = f(t)p

gG(t) = 1
1−t

fG(t) = f(tp)

and

Φ = gGfG −
g1fG

p
+

g1f1

p

which is the formula obtained by Bogačenko [3].

(3.4) Example. The mod 2 cohomology of F o (C2 × C2). Here G = C2 × C2

acting regularly on a set Ω of size 4. As usual, we denote the three subgroups of G
of order 2 by A, B and C, and we have

g1(t) = 1 f1(t) = f(t)4

gA(t) = gB(t) = gC(t) = 1
1−t

fA(t) = fB(t) = fC(t) = f(t2)2

gG(t) = 1
(1−t)2 fG = f(t4).

Substituting this into formula 1.3 gives

Φ(t) =f(t4)

(

1

(1 − t)2
−

3

2(1 − t)
+

1

4

)

+ 3f(t2)2
(

1

2(1 − t)
−

1

4

)

+
f(t)4

4

=f(t4)
−1 + 4t + t2

4(1− t)2
+ f(t2)2

3(1 + t)

4(1− t)
+

f(t)4

4
.

As a particular example we consider the cohomology of C2 o (C2 × C2), which is
of interest since it is the Sylow 2-subgroup of GL(4, 2) ∼= A8. One obtains this
identification of the Sylow 2-subgroup of these groups on noting that the Sylow
2-subgroup of GL(4, 2) is a semidirect product







1 0 ∗ ∗
0 1 ∗ ∗
0 0 1 0
0 0 0 1






o







1 ∗ 0 0
0 1 0 0
0 0 1 ∗
0 0 0 1







where the conjugation action of the quotient C2×C2 is as the regular representation
on the subgroup (C2)

4. For the group C2 the Poincaré series is f(t) = 1
1−t

and so

the Poincaré series of the cohomology of C2 o (C2 × C2) is

Φ(t) =
1 + t2 − t3

(1 − t)3(1 − t4)

= 1 + 3t + 7t2 + 12t3 + 19t4 + 28t5 + 40t6 + 54t7 + 71t8 + 91t9 + · · · .

This cohomology has been computed in [10].
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