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In connection with recent developments in group representation theory which make use of

the theory of Mackey functors [T-W], the natural question of the classification of simple Mackey

functors arose. The purpose of the present paper is to give a complete answer to this question.

For applications, the reader can refer to our paper [T-W] where our main results are actually used

in an essential way.

After recalling the definitions and elementary facts about Mackey functors, we prove in Sec-

tion 2 that every simple Mackey functor S for a finite group G has (up to conjugation) a unique

minimal subgroup H with S(H) 6= 0, and that the (NG(H)/H)-module V = S(H) is simple.

Similar methods easily give a criterion for the simplicity of a Mackey functor (Section 3). We

attach to S the pair (H, V ) just described and it turns out that this provides a parameterisation

of the simple Mackey functors. In order to prove this, we describe explicitly a simple Mackey

functor corresponding to an arbitrary pair (H, V ). This requires a number of constructions which

are introduced in Sections 4, 5 and 6, namely restriction, induction, inflation of Mackey functors

and fixed point functors. All of these constructions are very natural and have useful adjointness

properties. Sections 7 and 8 are devoted to the classification of simple Mackey functors. In the

last section, we prove (in two different ways) that over a field whose characteristic is zero or prime

to |G|, any Mackey functor is semi-simple, that is, a direct sum of simple Mackey functors.

Mackey functors for G with a multiplicative structure are called Green functors or simply

G-functors. We note here that the classification of simple G-functors appears in [T 2]. Our main

result is similar, but the methods are quite different.

Notations. Throughout the paper, G denotes a finite group. We write H ≤ G (resp. H < G)

to indicate that H is a subgroup of G (resp. a proper subgroup of G). The notation K =G H

means that K is G-conjugate to H. Similarly we write K ≤G H (resp. K <G H) when K is

G-conjugate to a subgroup of H (resp. a proper subgroup of H). If H, K ≤ G, we denote by

[G/H] (resp. [K\G/H]) an arbitrary set of representatives of the cosets gH (resp. the double

cosets KgH). Finally we set NG(H) = NG(H)/H .



1. Definitions

As a base ring, we fix a commutative ring R (which will later be a field). Let G be a finite

group and X a family of subgroups of G closed under taking subgroups and conjugation (in

short, subconjugacy closed). Our main interest is in the family of all subgroups of G, but it is

convenient to give the following more general definition. A Mackey functor M on X (over R) is

a family of R-modules M(H) where H runs through the set X , together with restriction maps

rH
K : M(H) → M(K), transfer maps tHK : M(K) → M(H) (where in both cases K ≤ H) and

conjugation maps cg : M(H) → M(gH) where g ∈ G and gH = gHg−1, such that the following

axioms are satisfied. For any g, h ∈ G and H, K, L ∈ X ,

(i) if K ≤ H, rH
K , tHK and cg are R-linear maps.

(ii) if L ≤ K ≤ H, rK
L rH

K = rH
L , tHK tKL = tHL ; moreover rH

H = tHH = idM(H).

(iii) cgh = cgch.

(iv) if K ≤ H, cg rH
K = r

gH
gK cg and cg tHK = t

gH
gK cg.

(v) if h ∈ H, ch : M(H) → M(H) is the identity.

(vi) (Mackey axiom) if L, K ≤ H,

rH
L tHK =

∑

g∈[L\H/K]

tLL∩gK r
gK
L∩gK cg

where [L\H/K] denotes an arbitrary set of representatives of the double cosets LgK.

When X is the family of all subgroups of G, we shall simply say that M is a Mackey functor

for G.

Note that the axioms (iii) and (v) imply that NG(H) = NG(H)/H acts on M(H) (via

R-linear automorphisms), so that M(H) is an RNG(H)-module. In particular M(1) is an RG-

module. This implies that the category of RG-modules is embedded in the category of Mackey

functors (see Section 6).

There is an equivalent definition in terms of finite G-sets (see [Dr] or [t D, Section 6.1] for

details). The value of M on the transitive G-set G/H is simply M(G/H) = M(H) and then M is

also defined on disjoint unions of transitive G-sets thanks to the formula M(S∪T ) = M(S)⊕M(T ).

In order to deal with morphisms, we note that we have the following G-homomorphisms between

transitive G-sets: if K ≤ H are subgroups of G then

πH
K : G/K → G/H ; gK 7→ gH

denotes the natural quotient map, and for x ∈ G

cx : G/H → G/ xH ; gH 7→ (gx−1) xH



denotes conjugation by x. Then any G-homomorphism between two transitive G-sets is a composite

of a natural quotient map and a conjugation. Now it turns out that one can define a Mackey functor

as a bifunctor (M∗, M
∗) on the category of G-sets with very few defining properties. By definition

M∗ is covariant and M∗ is contravariant. Moreover M∗ and M∗ coincide on objects and we write

M(S) = M∗(S) = M∗(S). The link with the previous definition is provided by the following

dictionary:
M∗(π

H
K ) = tHK : M(K) → M(H)

M∗(πH
K ) = rH

K : M(H) → M(K)

M∗(cx) = cx : M(H) → M( xH)

M∗(cx) = c−1
x : M( xH) → M(H).

This point of view is extremely fruitful but we shall only occasionnally use it, for the elementary

approach suffices for our purposes.

Recall that a homomorphism of Mackey functors f : M → N is a family of R-module ho-

momorphisms f(H) : M(H) → N(H) (where H runs in X ) which commute with restriction,

transfer and conjugation (in the obvious sense). Since f commutes with conjugation, f(H) is in

particular an RNG(H)-linear homomorphism. The set of homomorphisms from M to N is written

HomMack(X )(M, N) (respectively HomMack(G)(M, N) when X is the family of all subgroups of G).

The category of Mackey functors for G is written Mack(G).

By a subfunctor N of a Mackey functor M on X , one means a family of R-submodules

N(H) ⊆ M(H) (where H ∈ X ) which is stable under restriction, transfer and conjugation (in

the obvious sense). If N is a subfunctor of M , then the quotient functor M/N is defined by

(M/N)(H) = M(H)/N(H), with the induced restriction, transfer and conjugation maps. It is not

difficult to check that the category of Mackey functors is an abelian category. Finally a Mackey

functor M is called simple (or irreducible) if the only subfunctors of M are M itself and 0 (i.e. the

Mackey functor which is 0 on each subgroup). The set of isomorphism classes of simple Mackey

functors for G is written IrrR(Mack(G)).

Let I be a maximal ideal of R with residue field k and let M be a Mackey functor for G. Since

all restriction, transfer and conjugation maps are R-linear, it is clear that the family of k-vector

spaces

(k ⊗R M)(H) = k ⊗R M(H) = M(H) / I ·M(H)

is endowed with a structure of Mackey functor for G over k. If M is simple, then k ⊗R M is either

equal to M or to 0, but it cannot be zero for all maximal ideals I of R (by standard commutative

algebra). Therefore we have

IrrR(Mack(G)) =
⋃

I maximal

IrrR/I(Mack(G))



and it does no harm to assume that R = k is a field. We shall make this assumption for the rest

of the paper. However we note that we never actually use this assumption (except in Section 9); it

is just that it seems to us misleading not to emphasize that simple Mackey functors are naturally

defined over a field.

2. The parameterisation of simple Mackey functors

Let M be a Mackey functor for G over a field k and for each subgroup H of G let E(H) be a

subset of M(H). We put

<E >=
⋂

{N |N is a subfunctor of M with E(H) ⊆ N(H) for all subgroups H}.

We call < E > the subfunctor generated by E. More generally, let F be any family of subgroups

of G and for each H ∈ F , let E(H) be a subset of M(H); by the subfunctor generated by E, we

mean the subfunctor generated by Ẽ where Ẽ is the extension of the family E to all subgroups

of G defined by Ẽ(H) = 0 if H /∈ F . If M is a Mackey functor for G and if X is a subconjugacy

closed family of subgroups of G, we denote by M ↓X the restriction of M to X , viewed as a Mackey

functor defined on X .

(2.1) PROPOSITION. Let M be a Mackey functor for G. Let X be a subconjugacy closed

family of subgroups of G and N a subfunctor of M ↓X (defined on X ). Then for all subgroups K,

<N > (K) =
∑

X∈X
X≤K

tKXN(X).

If K ∈ X then <N > (K) = N(K), or in other words <N >↓X= N .

Proof. Let

L(K) =
∑

X∈X
X≤K

tKXN(X).

We check that L is indeed a subfunctor of M . We have to prove that L is closed under restriction,

transfer and conjugation. Closure under transfer and conjugation are evident. Closure under

restriction follows from

rK
J L(K) =

∑

X∈X
X≤K

rK
J tKXN(X)

=
∑

X∈X
X≤K

∑

g∈[J\K/X]

tJgX∩J cg rX
X∩g−1

J
N(X)

⊆
∑

Y ∈X
Y ≤J

tJY N(Y )

= L(J).



It is now apparent that any subfunctor of M “containing” N must contain L, so we obtain that

L =<N >.

Finally if K ∈ X we have

L(K) =
∑

X∈X
X≤K

tKXN(X) = N(K)

since N(K) = tKKN(K) is one of the terms, and it contains all the others.

(2.2) COROLLARY. Let S be a simple Mackey functor for G and X a subconjugacy closed

set of subgroups of G. Then S ↓X is either a simple Mackey functor on X or is zero.

Proof. Suppose N is a non-zero subfunctor of S ↓X . This generates a non-zero subfunctor

<N > of S, and so <N >= S by simplicity of S. Therefore by the proposition above, N =<N >

↓X= S ↓X , proving that S ↓X is simple.

(2.3) PROPOSITION. Let S be a simple Mackey functor for G and let H be a minimal

subgroup such that S(H) 6= 0.

(i) S is generated by S(H).

(ii) The conjugacy class of H is the unique conjugacy class of minimal subgroups K such that

S(K) 6= 0.

(iii) S(H) is a simple kNG(H)-module.

Proof. (i) is clear because, by simplicity, S is generated by any non-zero family of subsets

(a single subset in our case). Let X consist of all conjugates of subgroups of H. Let W be a

non-zero kNG(H)-submodule of S(H) and for K ∈ X , let

E(K) =

{

gW if K = gH,
0 if K <G H.

It is clear that E is a non-zero subfunctor of S ↓X , because since S vanishes on subgroups K <G H,

no restriction and transfer are involved, while closure under conjugation is clear since W is an

kNG(H)-submodule. Then <E > is a non-zero subfunctor of S, so equals S because of simplicity.

But from the description in the last proposition, <E > (K) 6= 0 only if K contains a conjugate of

H, which proves (ii). Moreover the second statement in Proposition 2.1 gives S(H) =<E > (H) =

E(H) = W which establishes the simplicity of S(H).

A minimal subgroup H such that S(H) 6= 0 will be called an minimal subgroup of S. This

definition is given for an arbitrary Mackey functor S, but when S is simple, then the minimal

subgroups of S are all conjugate.



Let Ω be the set of pairs (H, V ) where H is a subgroup of G and V a simple kNG(H)-module

(up to isomorphism). The group G acts by conjugation on Ω and we are interested in the set of

orbits Ω/G. These are represented by pairs (H, V ) where H is taken up to G-conjugation and V

is taken up to kNG(H)-isomorphism. Proposition 2.3 allows to define a map

Φ : Irrk(Mack(G)) −→ Ω/G

sending S to the G-orbit of (H, V ) where H is an minimal subgroup of S and V = S(H). The first

goal of this paper is to prove the following result.

(2.4) THEOREM. The map Φ is a bijection.

In fact our second goal is to construct explicitly an inverse of Φ, that is, to construct for each

pair (H, V ) ∈ Ω a simple Mackey functor SH,V with minimal subgroup H and with SH,V (H) = V .

This will be done in Theorem 8.3 and will complete the classification of simple Mackey functors.

3. A characterization of simple Mackey functors

Before embarking on the preparatory work for the classification, we give a characterization of

simple Mackey functors which is based only on the elementary methods of the previous section.

By Proposition 2.1, if X is a family of subgroups closed under subconjugation, then the

subfunctor < M ↓X> generated by the values of a Mackey functor M on X is equal to the sum

of the images of the transfer maps from subgroups in X . Let us denote by Im tX this subfunctor.

There is a dual notion using kernels of restrictions: we denote by Ker rX the subfunctor of M

defined by

(Ker rX )(K) =
⋂

X∈X
X≤K

Ker rK
X .

One checks that Ker rX is indeed a subfunctor in a fashion similar to the proof of Proposition 2.1.

Now let H be a minimal subgroup of M and take X to be the subconjugacy closure of H.

Then only the conjugates of H actually come into play and we have

(Im tX )(K) =
∑

g∈G
gH≤K

Im tKgH ,

(Ker rX )(K) =
⋂

g∈G
gH≤K

Ker rK
gH .

We use this notation for the following characterization of simple Mackey functors.



(3.1) THEOREM. Let S be a Mackey functor for G, let H be a minimal subgroup of S and

let X be the subconjugacy closure of H. Then S is a simple Mackey functor if and only if the

following three conditions are satisfied.

(i) Ker rX = 0 ,

(ii) Im tX = S ,

(iii) S(H) is a simple kNG(H)-module.

Proof. Assume S is simple. Since (Ker rX )(H) = 0 , Ker rX is a proper subfunctor, hence is

zero. The other two conditions have been already proved in (2.3).

Assume now that the three conditions hold and let T be a non-zero subfunctor of S. Then

there exists a subgroup K such that T (K) 6= 0. Now by (i)

(Ker rX )(K) =
⋂

g∈G
gH≤K

Ker rK
gH = 0

and therefore there exists g ∈ G such that gH ≤ K and T (K) 6⊆ Ker rK
gH . It follows that

rK
gH(T (K)) 6= 0 and so T (gH) 6= 0. By conjugation, we obtain T (H) 6= 0. But since T is a

subfunctor of S, T (H) is a kNG(H)-submodule of S(H) and so T (H) = S(H) by (iii). By

conjugation, we now have T (xH) = S(xH) for all x ∈ G. By (ii) we deduce

S(K) = (Im tX )(K) =
∑

x∈G
xH≤K

tKxH T (xH) ⊆ T (K)

and this proves that T = S.

Note that since S vanishes on proper subgroups of H, both conditions (i) and (ii) imply that

S(K) = 0 if K does not contain a conjugate of H, that is, H is the unique minimal subgroup of S

up to conjugation.

In the same vein as the proposition above, we prove a related result which will be used in

Section 9.

(3.2) PROPOSITION. Let X be a family of subgroups of G closed under subconjugation.

Let M be a Mackey functor for G satisfying M = Im tX and Ker rX = 0. If the Mackey functor

M ↓X on X decomposes as a direct sum of Mackey functors M ↓X=
⊕

i Ni , then M decomposes

as M =
⊕

i Mi , where Mi =<Ni > . Moreover Ni = (Mi)↓X .

Proof. Let Mi =< Ni > . By Proposition 2.1, (Mi) ↓X= Ni . Now since M is generated by

M ↓X , it is clear that M =
∑

i Mi and we have to show that this sum is direct. Let mi ∈ Mi(K)

with
∑

i mi = 0 . Then for every X ∈ X with X ≤ K , we have
∑

i rK
X (mi) = 0 . Since

rK
X (mi) ∈ (Mi)↓X (X) = Ni(X) , we obtain rK

X (mi) = 0 and therefore mi ∈ (Ker rX )(K) = 0.



4. Restriction and induction.

In this section, we recall the definition of restriction and induction for Mackey functors. We

first use the approach using G-sets, which is particularly convenient here, but we then translate

the definitions in terms of the elementary approach.

Let H be a subgroup of G. There is an obvious restriction functor from the category of (left)

G-sets to the category of H-sets, mapping a G-set X to the H-set X ↓G
H , defined to be X with

the restriction to H of the action of G. There is also an induction functor mapping an H-set Y

to the G-set Y ↑G
H= G ×H Y , defined to be the quotient of G × Y by the equivalence relation ∼,

where (gh, y) ∼ (g, hy) for every h ∈ H. Induction behaves very well on transitive H-sets, for

(H/K)↑G
H
∼= G/K.

(4.1) LEMMA. The induction functor ↑G
H : H-sets → G-sets is left adjoint to the restriction

functor ↓G
H : G-sets → H-sets .

Proof. This is standard. The counit and unit of the adjunction are

ε : (G ×H X ↓G
H) → X and η : Y → (G ×H Y )↓G

H .

Here ε maps the class of (g, x) to gx and η maps y to the class of (1, y).

It should be noted that ↑G
H is not the right adjoint of ↓G

H in the category of G-sets.

Now letting Mack(G) denote the category of Mackey functors for G we have restriction and

induction functors

↓G
H : Mack(G) → Mack(H)

↑G
H : Mack(H) → Mack(G)

defined (on G-sets) by

M ↓G
H (Y ) = M(Y ↑G

H).

M ↑G
H (X) = M(X ↓G

H).

These functors satisfy relationships inherited from the corresponding operations for G-sets.



(4.2) PROPOSITION. The induction functor ↑G
H : Mack(H) → Mack(G) is both the left

and the right adjoint of the restriction functor ↓G
H : Mack(G) → Mack(H) .

Proof. First we show that ↑G
H is left adjoint to ↓G

H , that is we show that there is a natural

bijection

HomMack(G)(M ↑G
H , N) ∼= HomMack(H)(M, N ↓G

H).

We do this by defining the counit and unit of the proposed adjunction

p(N) : N ↓G
H↑G

H → N q(M) : M → M ↑G
H↓G

H

so as to be natural in M and N . We specify these natural transformations by defining their

evaluation on each G-set X and H-set Y as follows:

p(N) = N∗(ε) : N(X ↓G
H↑G

H) = N ↓G
H↑G

H (X) −→ N(X)

q(M) = M∗(η) : M(Y ) −→ M(Y ↑G
H↓G

H) = M ↑G
H↓G

H (Y )

where ε and η are the maps defined in Lemma 4.1, and where N∗ denotes the covariant functor

which is part of the definition of the Mackey functor N (and similarly for M∗).

Naturality of p and q with respect to M and N follows from the naturality of ε and η. To

show that they give an adjunction we have to verify that the composites

N ↓G
H

q(N↓G
H)

−→ N ↓G
H↑G

H↓G
H

p(N)↓G
H−→ N ↓G

H

M ↑G
H

q(M)↑G
H−→ M ↑G

H↓G
H↑G

H

p(M↑G
H)

−→ M ↑G
H

are the identities 1N↓G
H

and 1M↑G
H

respectively. This is so because these composites are N∗ and M∗

applied to

Y ↑G
H

η(Y )↑G
H−→ Y ↑G

H↓G
H↑G

H

ε(Y↑G
H)

−→ Y ↑G
H

X ↓G
H

η(X↓G
H)

−→ X ↓G
H↑G

H↓G
H

ε(X)↓G
H−→ X ↓G

H

respectively. These last two composites are the identity in both cases because ε and η are the

counit and unit of the adjunction between induction and restriction of G-sets.

The proof that ↑G
H is right adjoint to ↓G

H is very similar. We define the counit and unit of the

adjunction to be

u(M) : M ↑G
H↓G

H → M v(N) : N → N ↓G
H↑G

H

u(M) = M∗(η) : M ↑G
H↓G

H (Y ) = M(Y ↑G
H↓G

H) −→ M(Y )

v(N) = N∗(ε) : N(X) −→ N ↓G
H↑G

H (X) = N(X ↓G
H↑G

H).



The verification that this gives an adjunction proceeds exactly as before, except now we work with

M∗ and N∗ instead of M∗ and N∗.

Now we translate the above constructions in terms of the elementary approach to Mackey

functors. First since (H/K)↑G
H= G/K, the definition of restriction gives

N ↓G
H (K) = N ↓G

H (H/K) = N((H/K)↑G
H) = N(G/K) = N(K)

and therefore the restriction of Mackey functors consists simply in restricting our attention to

subgroups of H. This is the obvious restriction procedure one would expect. Induction however is

more involved.

(4.3) PROPOSITION. Let M be a Mackey functor for the subgroup H of G. Then

M ↑G
H (K) ∼=

⊕

g∈[K\G/H]

M(H ∩ Kg) .

Writing xg for the component in M(H ∩ Kg) of an element x ∈ M ↑G
H (K) and letting L ≤ K,

y ∈ M ↑G
H (L), x ∈ M ↑G

H (K) and s ∈ G, we have

rK
L (x)g = rH∩Kg

H∩Lg (xg)

tKL (y)g =
∑

u∈[L\K/K∩gH]

tH∩Kug

H∩Lug (yug)

cs(x)g = xs−1g

.

The proof of the proposition is left as an exercise for the reader. Note that one can also

define an induced functor using the formulae in (4.3), and then check the axioms. This is Sasaki’s

approach in [Sa, Definition 2.9], attributed to Yoshida. Proposition 4.3 is Lemma 2.2 of that paper.

See also [T 2, Section 11].

We end this section with a trivial but useful result.

(4.4) PROPOSITION. The induction functor is an exact functor. In particular if L → M

is a monomorphism (resp. epimorphism) of Mackey functors for H, then the induced morphism

L↑G
H → M ↑G

H is a monomorphism (resp. epimorphism) of Mackey functors for G.

Proof. The morphism L↑G
H → M ↑G

H evaluated on a G-set X is by definition the evaluation of

L → M on the H-set X ↓G
H , which is a monomorphism (resp. epimorphism) by assumption. More

generally the exactness of induction follows in the same manner. It is also easy to give a proof

using the elementary approach to induction.



5. Inflation.

Let N be a normal subgroup of G with quotient Q = G/N . Given a Mackey functor M for Q

we define a Mackey functor InfG
Q M called the inflation of M from Q to G, as follows:

InfG
Q M(H) =

{

0 if H 6≥ N
M(H/N) if H ≥ N.

The restriction and transfer morphisms rK
H , tKH are zero unless N ⊆ H ⊆ K in which case they are

the mappings r
K/N
H/N , t

K/N
H/N for M . Similarly conjugations are inherited from M .

We now describe the adjoints of the inflation functor. Given a Mackey functor L on G we

define Mackey functors L+ and L− on Q as follows.

L+(K/N) = L(K)
/

∑

J≤K
J 6≥N

tKJ L(J)

L−(K/N) =
⋂

J≤K
J 6≥N

Ker rK
J

Restriction, transfer and conjugation mappings come from those for L, for which we rely on the

fact that those mappings for L preserve the sum of images of transfers and the intersection of

kernels of restrictions.

(5.1) PROPOSITION. + is left adjoint to InfG
Q, and − is right adjoint to InfG

Q.

Proof. Let L be a Mackey functor for G and M a Mackey functor for Q. Any morphism

α : L → InfG
Q M is necessarily zero on L(J) with J 6≥ N , and hence must vanish on

∑

J≤K

J 6≥N

tKJ L(J)

for each subgroup K. Thus α induces a morphism L+ → M . Conversely, for any morphism

β : L+ → M we construct a morphism L → InfG
Q M by defining it to be zero on L(J) when J 6≥ N ,

and defining it to be the composite

L(K) → L(K)/
∑

J≤K

J 6≥N

tKJ L(J) = L+(K/N) → M(K/N) = InfG
Q M(K)

when K ≥ N . The fact that this composite vanishes on
∑

J≤K

J 6≥N

tKJ L(J) ensures that it is gen-

uinely a morphism of Mackey functors. By these constructions we establish a natural bijection

Hom(L, InfG
Q M) ↔ Hom(L+, M) which shows that + is left adjoint to InfG

Q. The proof that − is

right adjoint to InfG
Q is similar.

The fact that inflated functors vanish on subgroups not containing the normal subgroup is

important for the following result which will turn out to be crucial in the classification of simple

functors.



(5.2) PROPOSITION. Let H be a subgroup of G and L a Mackey functor for the group

NG(H) = NG(H)/H. Then the Mackey functor M = (Inf
NG(H)

NG(H)
L) ↑G

NG(H) for the group G

satisfies M(H) = L(1).

Proof. Proposition 4.3 gives

M(K) =
⊕

g∈[K\G/NG(H)]

(Inf
NG(H)

NG(H)
L)(NG(H) ∩ Kg).

The only non-zero terms have NG(H) ∩ Kg ≥ H, in other words Kg ≥ H. When K = H this

condition becomes g ∈ NG(H), but there is only one double coset representative with this property,

namely 1, so M(H) = (Inf
NG(H)

NG(H)
L)(H) = L(1).

6. Fixed point and fixed quotient Mackey functors

Let V be a (left) kG-module. We define the fixed point Mackey functor FPV to be the Mackey

functor such that FPV (H) = V H , where V H denotes the set of all H-fixed points in V . The fixed

quotient Mackey functor FQV is the Mackey functor such that FQV (H) = VH , where VH denotes

the largest quotient of V on which H acts trivially. For FPV , the restriction rH
K : V H → V K is the

inclusion of fixed points and the transfer tHK : V K → V H is the relative trace map sending x ∈ V K

to
∑

h∈[H/K] h·x. Similarly for FQV , the restriction rH
K : VH → VK is induced by multiplication by

∑

h∈[K\H] h and the transfer tHK : VK → VH is the surjection of fixed quotients. For both Mackey

functors, the conjugation cg is multiplication by g. Evidently FPV (1) = V = FQV (1).

It is clear that a homomorphism V → W of kG-modules induces morphisms of Mackey functors

FPV → FPW and FQV → FQW . Thus FP and FQ define two (fully faithful) functors from the

category kG-mod of left kG-modules to the category Mack(G).

There is also an obvious forgetful functor E : Mack(G) → kG-mod mapping a Mackey functor

M to its evaluation M(1) at the trivial subgroup 1 of G.

(6.1) PROPOSITION. The left adjoint of E is FQ, and the right adjoint of E is FP .

Explicitly let M be a Mackey functor for G and V a kG-module.

(i) Given any morphism of kG-modules α : M(1) → V , there exists a unique morphism of Mackey

functors M → FPV which extends α.

(ii) Given any morphism of kG-modules β : V → M(1), there exists a unique morphism of Mackey

functors FQV → M which extends β.

Proof. (i) We define αH : M(H) → V H = FPV (H) as the composition αH = αrH
1 . In

particular α1 = α. The image of αrH
1 is contained in V H , because for h ∈ H, since h acts trivially



on M(H) and commutes with α, we have ch α rH
1 = αr

hH
h1 ch = α rH

1 . Furthermore, commutativity

of the following diagram implies that our choice of αH is unique.

M(H)
αH−→ V H

rH
1





y





y
inclusion

M(1) −→
α

V

We verify the two equations
αH tHK = tHK αK

αK rH
K = rH

K αH .

Substituting αH into the first equation and using Mackey’s axiom we obtain

αH tHK = α rH
1 tHK = α

∑

h∈[H/K]

ch rK
1 =

∑

h∈[H/K]

h · α rK
1 = tHK α rK

1 = tHK αK .

Treating the second equation similarly, we obtain

αK rH
K = α rK

1 rH
K = αrH

1 = αH = rH
K αH

since rH
K for the Mackey functor FPV is inclusion V H ⊆ V K . This proves that the proposed mor-

phism of Mackey functors commutes with transfers and restrictions. It commutes with conjugations

because both mappings in its definition do.

(ii) We define βH : VH → M(H) to be the unique map making the following diagram commu-

tative.
VH

βH
−→ M(H)

quotient

x





x




tH
1

V
β

−→ M(1)

Then one verifies that β is a morphism of Mackey functors in a way which is dual to that of part

(i).

(6.2) Remark. There is a duality for Mackey functors which interchanges FP and FQ, so that the

arguments for FQ are indeed dual of those for FP in a more precise way. In more detail, for any

Mackey functor M , one defines the dual M ∗ of M by M∗(H) = M(H)∗, the dual of the vector

space M(H). The restriction maps for M ∗ are the dual maps of the transfers for M , while the

transfer maps for M∗ are the dual maps of the restrictions for M . Morover the conjugation by g in

M∗ is the dual of the conjugation by g−1 in M . It is not difficult to prove that (FPV )∗ ∼= FQV ∗

where V ∗ is the dual (contragredient) representation of V .



7. Simple Mackey functors with trivial minimal subgroup

In this section, we classify the simple Mackey functors S = S1,V with trivial minimal subgroup

(that is, such that S(1) 6= 0). They are parameterised by pairs (1, V ) where 1 is the trivial subgroup

and V a simple kG-module. We first describe S1,V explicitly.

(7.1) LEMMA. Let V be a simple kG-module.

(i) The fixed point functor FPV has a unique minimal subfunctor S1,V , identified by

S1,V (H) = Im(tH1 : V → V H). In particular, S1,V is a simple Mackey functor.

(ii) The fixed quotient functor FQV has a unique simple quotient functor S1,V , identified by

S1,V (H) = VH/Ker(rH
1 : VH → V1).

(iii) The simple Mackey functors S1,V defined in (i) and (ii) are isomorphic.

Proof. (i) Let 0 6= M be a subfunctor of FPV . For some subgroup K ≤ G, M(K) 6= 0.

Since rK
1 : FPV (K) → FPV (1) is the inclusion of fixed points we have M(1) 6= 0. But then

M(1) = V since M(1) is a kG-submodule of the simple module V . Therefore M contains the

subfunctor < FPV (1) > generated by FPV (1) = V . But this latter functor is precisely S1,V (see

Proposition 2.1 applied with X = {1}).

(ii) The proof is similar to (i), using a dual argument.

(iii) The adjointness property of either FPV or FQV (Proposition 6.1) applied to the situation

FQV (1) = V = FPV (1) yields a morphism α : FQV → FPV . Because the transfer maps tHK for

FQV are always surjective, the same holds for the image of α, and hence the value of the image

at a subgroup K is tK1 V = S1,V (K). Thus the image of α is S1,V . Since FQV has a unique simple

quotient, it is mapped isomorphically onto S1,V .

(7.2) THEOREM. The simple Mackey functors with trivial minimal subgroup are precisely

the Mackey functors S1,V with V a simple kG-module. Moreover S1,V
∼= S1,W if and only if

V ∼= W .

Proof. We have already seen in Lemma 7.1 that the functors S1,V are simple. On the other

hand if M is a simple Mackey functor with M(1) 6= 0 then M(1) = V is a simple kG-module

by Proposition 2.3. Moreover the identity morphism M(1) = V extends uniquely to a morphism

α : M → FPV by Proposition 6.1. By simplicity of M , the kernel of α (which is obviously a

subfunctor of M) is zero and therefore α gives an isomorphism from M to the unique simple

subfunctor S1,V of FPV . The second claim is clear since on the one hand V determines S1,V as

the unique minimal subfunctor of FPV and on the other hand S1,V determines V as its evaluation

at 1.



8. The classification of simple Mackey functors

In this section we classify the simple Mackey functors S = SH,V . As mentioned in Section 2,

they are parameterised by pairs (H, V ) where H is a minimal subgroup of S (defined up to con-

jugacy) and V = S(H) is a simple kNG(H)-module. First we describe SH,V explicitly. We write

SG
H,V = SH,V in order to emphasize that it is a Mackey functor for G.

Let H be a subgroup of G and let V be a simple kNG(H)-module. Let S
NG(H)
1,V be the simple

Mackey functor for the group NG(H) constructed in the previous section. Thus S
NG(H)
1,V is the

unique minimal subfunctor of the fixed point functor FPV .

(8.1) LEMMA. Let H be a subgroup of G and let V be a simple kNG(H)-module.

(i) M = (Inf
NG(H)

NG(H)
FPV ) ↑G

NG(H) has a unique minimal subfunctor SG
H,V , generated by

M(H) = V . This minimal subfunctor is isomorphic to (Inf
NG(H)

NG(H)
S

NG(H)
1,V ) ↑G

NG(H) .

(ii) (Inf
NG(H)

NG(H)
FQV ) ↑G

NG(H) has a unique maximal subfunctor. The quotient is isomorphic to

SG
H,V

∼= (Inf
NG(H)

NG(H)
S

NG(H)
1,V ) ↑G

NG(H) .

Proof. (i) Let T be any subfunctor of M . We show that T (H) = M(H), so that T ⊇<M(H)>.

From this it will follow that the Mackey functor < M(H) > generated by M(H) is the unique

minimal subfunctor of M . By Proposition 5.2, M(H) = FPV (1) = V is a simple kNG(H)-module.

Since T (H) is a kNG(H)-submodule of M(H), it suffices to prove that T (H) 6= 0. For simplicity,

we write Inf instead of Inf
NG(H)

NG(H)
.

By adjointness properties (Propositions 4.2, 5.1 and 6.1) we have

HomMack(G) (T, M) ∼= HomMack(NG(H)) (T ↓G
NG(H) , Inf FPV )

∼= HomMack(NG(H))

(

(T ↓G
NG(H))

+ , FPV

)

∼= HomkNG(H)

(

(T ↓G
NG(H))

+(1) , V
)

= HomkNG(H)

(

(T ↓G
NG(H)) (H

/

∑

J≤H

J 6≥H

tHJ T (J)) , V
)

= HomkNG(H) (T (H), V )

the last equality coming from the fact that M and hence T vanish on proper subgroups of H.

The inclusion of T in M being a non-zero morphism of the left-hand side, there is a non-zero

homomorphism from T (H) to V and this forces T (H) 6= 0.

We now turn to the second claim in part (i). Since both inflation and induction are exact

functors (cf Proposition 4.4), we may regard (Inf S
NG(H)
1,V ) ↑G

NG(H) as a subfunctor of the functor



M = (Inf FPV ) ↑G
NG(H). Thus it suffices to show that it is generated by M(H). By Proposition 4.3,

for any subgroup K we have the formula

(8.2) (Inf S
NG(H)
1,V ) ↑G

NG(H) (K) =
⊕

g∈[K\G/NG(H)]

(Inf S
NG(H)
1,V )(NG(H) ∩ Kg).

The only non-zero summands satisfy Kg ⊇ H. Fix such a g and consider the value of the functor

at gH. By a similar computation (or by Proposition 5.2) we have

(Inf S
NG(H)
1,V ) ↑G

NG(H) (gH) = (Inf S
NG(H)
1,V )(NG(H) ∩ (gH)g) = (Inf S

NG(H)
1,V )(H)

= V = M(H).

Proposition 4.3 tells us that the transfer tK
gH is equal to t

NG(H)∩Kg

H having codomain the sum-

mand corresponding to g in (8.2). This map is surjective since t
NG(H)∩Kg

H in the Mackey functor

Inf S
NG(H)
1,V is the transfer t

NKg (H)
1 in the Mackey functor S

NG(H)
1,V which is surjective by Lemma 7.1.

It follows from the above analysis that the sum of the transfer maps
∑

g∈G
gH⊆K

tKgH is surjective

onto (Inf S
NG(H)
1,V ) ↑G

NG(H) (K), which completes the proof that the subfunctor (Inf S
NG(H)
1,V ) ↑G

NG(H)

is generated by M(H) = V .

(ii) is proved by a dual argument.

Now we can prove the main result of this paper. Recall from Section 2 that Ω is the set of

pairs (H, V ) where H is a subgroup of G and V a simple kNG(H)-module (up to isomorphism).

Also G acts by conjugation on Ω and we have a map

Φ : Irrk(Mack(G)) −→ Ω/G

which associates to a simple Mackey functor S the G-conjugacy class of (H, V ) where H is a

minimal subgroup of S and V = S(H).

(8.3) THEOREM. The map Φ is a bijection. Its inverse maps a pair (H, V ) to the simple

functor SH,V constructed in Lemma 8.1. In other words the Mackey functors SH,V form a complete

list of non-isomorphic simple Mackey functors (for (H, V ) ∈ Ω/G).

Proof. By Lemma 8.1, the Mackey functors SH,V = SG
H,V = (Inf

NG(H)

NG(H)
S

NG(H)
1,V ) ↑G

NG(H) are

simple. Also by construction H is a minimal subgroup of SH,V and V = SH,V (H). Therefore we

have constructed a right inverse of the map Φ and it suffices to prove that any simple Mackey functor

S is isomorphic to SH,V for H a minimal subgroup of S and V = S(H). For simplicity, we write

again Inf instead of Inf
NG(H)

NG(H)
. Since SH,V is the unique minimal subfunctor of (Inf FPV ) ↑G

NG(H) ,

we only need to establish the existence of a non-zero morphism α : S → (Inf FPV ) ↑G
NG(H) . Indeed

by simplicity of S, the kernel of α (which is obviously a subfunctor of S) is zero and therefore α



gives an isomorphism from S to the unique simple subfunctor SH,V of (Inf FPV ) ↑G
NG(H) . The

existence of α follows from a sequence of adjunctions which we have already encountered in the

proof of Lemma 8.1.

HomMack(G) (S , (Inf FPV ) ↑G
NG(H))

∼= HomMack(NG(H)) (S ↓G
NG(H) , Inf FPV )

∼= HomMack(NG(H))

(

(S ↓G
NG(H))

+ , FPV

)

∼= HomkNG(H)

(

(S ↓G
NG(H))

+(1) , V
)

= HomkNG(H)

(

(S ↓G
NG(H)) (H

/

∑

J≤H

J 6≥H

tHJ S(J)) , V
)

= HomkNG(H) (S(H), V ) .

The last homomorphism group is non-zero because S(H) = V and so the proof is complete.

9. Invertible group order

In this section we assume that our base field k has characteristic zero or prime to the order

of the group G. In other words we assume that |G| is invertible in k. Then we have the following

semi-simplicity result, analogous to Maschke’s theorem.

(9.1) THEOREM. Assume that |G| is invertible in k. Then every Mackey functor for G

over k is a direct sum of simple Mackey functors.

As in the case of modules, the statement is equivalent to the claim that every subfunctor of

M is a direct summand of M (as a Mackey functor), or also that every short exact sequence of

Mackey functors splits.

(9.2) LEMMA. Assume that |G| is invertible in k. Then the simple Mackey functor SH,V is

equal to (Inf
NG(H)

NG(H)
FPV ) ↑G

NG(H) .

Proof. By Lemma 8.1, we know that SH,V = (Inf
NG(H)

NG(H)
S

NG(H)
1,V ) ↑G

NG(H) where S
NG(H)
1,V

is the unique simple subfunctor of FPV for the group NG(H). Thus it suffices to prove that

S
NG(H)
1,V = FPV and so we may assume that H = 1. By Lemma 7.1, we have

S1,V (K) = Im(tK1 : V → V K) ⊆ V K = FPV (K)

for every subgroup K. Therefore it suffices to prove that tK
1 is surjective onto V K . But this is

clear since for x ∈ V K , we have x = |K|−1 tK1 (x).



First proof of (9.1). This proof is based on one of the main results of [T 1]. For a Mackey

functor M and for each subgroup H, we define

M(H) = M(H)
/

∑

K<H

tHK(M(K))

and we let P(M) denote the set of subgroups H such that M(H) 6= 0 (called primordial subgroups

in [T 1]). The group G acts by conjugation on P(M). Now recall that the twin functor TM of M

is defined by

TM(H) =
(

⊕

K≤H

M(K)
)H

where the exponent H denotes the set of H-fixed points in the direct sum with respect to the con-

jugation action which is part of the definition of a Mackey functor. If we let R(M) =
⊕

K≤G M(K)

with its natural conjugation action, then TM(H) ⊆ R(M)H , by taking zero for the components

indexed by a subgroup K not contained in H. It is easy to see that TM is a subfunctor of the

fixed-point functor FPR(M).

The result of [T 1] which we need asserts that when |G| is invertible, every Mackey functor M

is isomorphic to its twin functor TM . This is Corollary 4.4 in [T 1] for Mackey functors endowed

with a multiplicative structure (called G-functors in [T 1]), but as mentioned in Theorem 12.3 of

that paper, the result also holds for arbitrary Mackey functors (called module G-functors in [T 1]).

Thus it sufices to prove our theorem for TM instead of M .

Now we claim that

(9.3) TM ∼=
⊕

H∈[P(M)/G]

(

Inf
NG(H)

NG(H)
(FPM(H))

)

↑G
NG(H) .

The proof is exactly the same as that of Proposition 11.4 in [T 2]. Let K be a subgroup of G.

Then

TM(K) =
(

⊕

P≤K

M(P )
)K

=
⊕

P∈[P(M)/G]

(

⊕

g∈[G/NG(P )]
gP≤K

M(gP )
)K

.

It is clear that this gives a decomposition of TM as a direct sum, so we now fix some P ∈ P(M).

We have

(

⊕

g∈[G/NG(P )]
gP≤K

M(gP )
)K

∼=
⊕

g∈[K\G/NG(P )]
gP≤K

M(gP )NK(gP )

∼=
⊕

g∈[K\G/NG(P )]
P≤Kg

M(P )NKg (P )

=
⊕

g∈[K\G/NG(P )]

(

Inf
NG(P )

NG(P )
(FPM(P ))

)

(NG(P ) ∩ Kg)

=
(

Inf
NG(P )

NG(P )
(FPM(P ))

)

↑G
NG(P ) (K) .



The proof that these isomorphisms commute with restriction, transfer and conjugation is left to

the reader.

We have now to prove that each summand in (9.3) is a direct sum of simple Mackey functors.

By Maschke’s theorem for the group NG(H), the kNG(H)-module M(H) is a direct sum of simple

submodules Vi . Therefore FPM(H)
∼=

⊕

i FPVi
and since both inflation and induction commute

with direct sums, we see that the summand indexed by H in (9.3) is a direct sum of Mackey functors

of the form
(

Inf
NG(H)

NG(H)
(FPV )

)

↑G
NG(H) where V is a simple kNG(H)-module. By Lemma 9.2, every

such Mackey functor is simple.

Second proof of (9.1). This proof is based on the following well-known result which is a

consequence of the analysis of the action of the Burnside ring functor on an arbitrary Mackey

functor M (using the semi-simplicity of the Burnside algebra over a field in which |G| is invertible).

(9.4) LEMMA. Assume |G| is invertible in k and let M be a Mackey functor for G. Let X

be a family of subgroups of G closed under subconjugation. Then

M = Im tX ⊕ Ker rX .

As in Section 3, we write Im tX and Ker rX for the subfunctors of M defined by

(Im tX )(K) =
∑

X∈X
X≤K

Im tKX and (Ker rX )(K) =
⋂

X∈X
X≤K

Ker rK
X .

The lemma is a very special case of Dress’s induction theorem [Dr, Theorem 4]. For a direct proof,

see [T 1, Proposition 8.5] together with the remarks made in Section 12 of that paper.

For convenience, we shall say that M is X -reduced if either M = Im tX (and so Ker rX = 0)

or M = Ker rX (and so Im tX = 0). Also we shall call M reduced if it is X -reduced for every

subconjugacy closed family of subgroups X .

(9.5) LEMMA. Assume |G| is invertible in k and let M be a Mackey functor for G. Then M

decomposes as a direct sum of reduced subfunctors.

Proof. From the definition of Im tX and Ker rX , it is immediate that any direct summand of

an X -reduced Mackey functor is again X -reduced. Order arbitrarily the set of all subconjugacy

closed families X , say {X1 , . . . ,Xn }. By induction, consider a decomposition of M into direct

summands which are Xi-reduced for all i ≤ k − 1 and let N be one of the summands. By

Lemma 9.4, N = Im tX ⊕ Ker rX . Both Im tX and Ker rX are now Xi-reduced for all i ≤ k.

The result follows by induction.



Now we can finish the proof of (9.1). Let M be a non-zero Mackey functor over k. By

Lemma 9.5, we can assume that M is reduced. For a subgroup H of G, let X (H) be the set of

conjugates of subgroups of H. Since M 6= 0, we have M = Im tX (G), and therefore there exists a

minimal subgroup H such that M = Im tX (H). Then for any K < H, we have Im tX (K) = 0 and

M = Ker rX (K) because M is reduced. In particular M(K) = 0 and it follows that

(9.6) M ↓X (H) (K) =

{

M(K) if K =G H ,
0 if K <G H .

Choose a decomposition of M(H) as a direct sum of simple kNG(H)-modules (which exists by

Maschke’s theorem). This induces a corresponding decomposition of M(gH) for all g ∈ G, and

hence a decomposition of M ↓X (H) as a Mackey functor defined on X (H) (because by (9.6), all

restriction and transfer maps are zero). Since M is X (H)-reduced, Proposition 3.2 applies and

therefore M decomposes as a direct sum of subfunctors Ni such that Ni(H) is a simple kNG(H)-

module. Each Ni is again X (H)-reduced. Thus the three conditions of Theorem 3.1 are satisfied,

proving that Ni is a simple Mackey functor.

The primitive idempotents of the Burnside algebra of G (over a field k in which |G| is invertible)

are indexed by the conjugacy classes of subgroups of G. If eH is the idempotent corresponding to

the conjugacy class of H, then for an arbitrary Mackey functor M over k, we have a subfunctor

MH of M defined by MH(K) = rG
K(eH) · M(K) where the dot denotes the natural action of the

Burnside algebra of K on M(K), see [t D, Proposition 6.2.3] or [T 1, Section 12]. It is not difficult

to show that MH is reduced and that M =
⊕

H MH is the unique decomposition of M into reduced

summands. Moreover MH vanishes on subgroups not containing a conjugate of H (but not on H,

as in (9.6)) and decomposes as a direct sum of simple functors with minimal subgroup H. This

provides a more explicit way of decomposing an arbitrary Mackey functor.

Both proofs of (9.1) rely on two ingredients. The first is the semi-simplicity of the Burnside

algebra over k. This result implies (9.4) (second proof), while in the first proof, the fact that any

Mackey functor is isomorphic to its twin functor is a result of a very similar nature (which actually

implies the semi-simplicity of the Burnside algebra, see [T 1, Section 6]). The second ingredient

is the semi-simplicity of the group algebra kNG(H) which in both proofs allows to decompose a

functor with minimal subgroup H.

The first proof has the merit of making clear which simple functors SH,V appear in a decom-

position of M ; namely V must be one of the direct summand of the semi-simple kNG(H)-module

M(H) = M(H)
/

∑

K<H tHK(M(K)) . The second proof has the advantage of being independent of

the classification of simple functors, since it only uses the simplicity criterion of Theorem 3.1.
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