
STRATIFICATIONS AND MACKEY FUNCTORS II:
GLOBALLY DEFINED MACKEY FUNCTORS

PETER WEBB

Abstract. We describe structural properties of globally defined
Mackey functors related to the stratification theory of algebras.
We show that over a field of characteristic zero they form a highest
weight category and we also determine precisely when this category
is semisimple. This approach is used to show that the Cartan
matrix is often symmetric and non-singular, and we are able to
compute finite parts of it in some instances. We also develop a
theory of vertices of globally defined Mackey functors in the spirit
of group representation theory, as well as giving information about
extensions between simple functors.

1. Introduction

Globally defined Mackey functors have been shown during the last
20 years or so to have applications in several directions. In [32] they
were used to give a method for computing group cohomology, and also
a new proof of the theorem of Benson-Feshbach and Martino-Priddy
on stable decomposition of classifying spaces of finite groups. In [12, 9]
they were used in a fundamental way in the determination of the Dade
group of endopermutation modules. In [10, 11] applications were made
in which the group of units in the Burnside ring is determined, and
in which a description is given of the G-sets which give isomorphic
rational representations.

In this paper we describe structural properties of globally defined
Mackey functors related to the stratification theory of algebras. We
show that over a field of characteristic zero they form a highest weight
category and we also determine precisely when this category is semisim-
ple. This approach is used to show that the Cartan matrix is often
symmetric and non-singular, and we are able to compute finite parts
of it in some instances. We also develop a theory of vertices of globally

2000 Mathematics Subject Classification. Primary 19A22; Secondary 16E20,
20C20.

Key words and phrases. Mackey functor, biset, stratification, Burnside ring,
highest weight category.

Partially supported by the NSF and by MSRI.
1



2 PETER WEBB

defined Mackey functors in the spirit of group representation theory, as
well as giving information about extensions between simple functors.

The globally defined Mackey functors which we will consider depend
on a choice of classes of finite groups X , Y and D. Fixing a commuta-
tive ring R with a 1, such a globally defined Mackey functor specifies
for each group in D an R-module, and possesses operations of restric-
tion and induction for each injective group homomorphism, as well as
an operation of inflation for each surjective group homomorphism with
kernel in X , and an operation of deflation for each surjective group
homomorphism with kernel in Y . We are mainly interested in this pa-
per in globally defined Mackey functors which are finitely generated
R-modules at each group in D, and every ring R which we consider
explicitly will be Noetherian. With these assumptions, these globally
defined Mackey functors form an abelian category which we denote
MackX ,YR (D), or simply MackX ,YR if we wish to suppress D from the
notation. It will, however, be apparent that at several points the hy-
potheses of finite generation are unnecessary, and on occasion we point
this out. The definitions will be reviewed fully in Section 2.

In studying stratifications of MackX ,YR (D) — in the sense of [17], for
example — we require the collection of simple objects to have either
a poset structure or more generally the structure of a preordered set.
The simple globally defined Mackey functors were parametrized in [7]
as functors SH,V where H is a finite group inD taken up to isomorphism
and V is a simple ROut(H)-module. There is a natural preorder on
the set of such pairs (H, V ) where we put (H, V ) ≤ (K,W ) if and only
if K is isomorphic to a section of H, where by a section we mean a
quotient of a subgroup. Taking K = H, this has the property that
(H,V ) ≤ (H,W ) no matter what V and W are. We may also consider
the partial order on the set of such pairs defined as the partial order
for which (H, V ) < (K,W ) if and only if K is isomorphic to a proper
section of H, this being a more stringent relation than the preorder.
Neither the preorder nor the partial order we have just defined make
reference to the second element V in a pair (H,V ).

We now state one of our principal results.

Theorem 7.2. Let R be a field of characteristic zero. With respect
to the partial order on the simple objects defined above, and when D is
finite, MackX ,YR (D) is a highest weight category. When D is not finite,

MackX ,YR (D) is still a highest weight category, except that indecompos-
able injectives might conceivably not be unions of their subobjects of
finite length.
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In this theorem we take the definition of highest weight category which
appears in [16], and the finiteness condition on injectives is one which
appears in that definition. When we are dealing with modules for a
finite-dimensional algebra (as is the case in our situation when D is

finite) this condition is automatically satisfied. In fact, MackX ,YR (D)
may be identified as the category of modules for an algebra defined in
section 2 called the global Mackey algebra, and it follows when D is
finite that this algebra is quasi-hereditary. When D is not finite the
finiteness condition on injectives needs to be verified, and at the time
of writing we have failed to do this.

This issue with finiteness conditions does not affect our calculations
or applications at all, since all these may be done using suitable finite
sets of groups D and – as we show in section 7 – the highest weight
structure on MackX ,YR (D) is compatible with restricting the domain of
definition from D to smaller collections of groups. Thus we can deduce
the validity of BGG reciprocity, for example, which is used in a key
way in section 8.

The proof of Theorem 7.2 is the culmination of several sections where
we study the globally defined Mackey functors ∆H,U which play the role
of the standard objects in the highest weight category, and also the
dually defined functors ∇H,U . These functors are defined in Section 5,
first in an explicit manner and then by showing that they have a certain
adjoint property. We establish many of their properties, including in
Theorem 6.3 the fact that over an arbitrary ring R (not just a field
of characteristic zero), each projective globally defined Mackey functor
has a filtration with factors ∆H,U where U is a direct summand of a
permutation module for ROut(H). Later in Proposition 6.6 strong
forms of the usual Ext properties between the functors ∆ and the
dually constructed functors ∇ are given, while earlier in Theorem 5.10
it is shown that Ext groups between simple functors may be computed
within the ∆ and ∇ functors.

In the case of ordinary Mackey functors (which have no inflation
or deflation operations) over a field of characteristic zero the functors
∆H,V are simple and in fact the category of Mackey functors is semisim-
ple (see [30]). For globally defined Mackey functors this need not be
the case, as indicated in the following result.

Theorem 9.5. Let R be a field of characteristic zero and all the class
of all finite groups. Then MackX ,YR (all) is semisimple if and only if
X = Y = 1.



4 PETER WEBB

This result implies the semisimplicity of endomorphism rings of globally
defined Mackey functors when X = Y = 1, and these rings include the
Grothendieck rings of bisets which have trivial stabilizers on each side.
This implication is presented in Theorem 9.6.

We are able to use the fact that MackX ,YR (D) is a highest weight
category when R is a field of characteristic zero and D is finite to
compute the Cartan matrix of globally defined Mackey functors over
an arbitrary field. This is done in Section 8 and some specific Cartan
matrices are computed in Section 11. The calculation exploits two
techniques, the first being BGG reciprocity, which applies whenever
we have a highest weight category. We combine this with the ‘Brauer-
Cartan square’ of Geck and Rouquier [22]. This is a generalized version
of the decomposition theory of Brauer, extended to a situation where in
characteristic zero we have an algebra which is not semisimple. Using
these methods we are able to prove:

Theorem 8.5. Let R be an algebraically closed field and suppose that
X = Y. Then the Cartan matrix of globally defined Mackey functors is
symmetric.

Theorem 8.6. Let R be a field and in case R has positive character-
istic suppose that X = Y. Then the Cartan matrix of globally defined
Mackey functors is non-singular.

The Cartan matrix is infinite, and by ‘non-singular’ we mean that the
columns of the matrix are linearly independent. We speculate that the
Cartan matrix is non-singular in all cases without the restriction that
X = Y in positive characteristic, but our proof fails to establish this.

As a corollary of Theorem 7.2 we have an application to classify-
ing spaces of finite groups. We denote by (BG+)∧p the p-completed
spectrum obtained from the classifying space BG of G with a disjoint
point adjoined. We are interested in stable homotopy classes of maps
[(BG+)∧p , (BH+)∧p ].

Corollary10.2. Let D be a finite set of groups closed under taking
sections and let p be a prime. Then the p-complete spectrum

B =
∨
G∈D

(BG+)∧p

has the property that the algebra [B,B]⊗ZpQp is quasi-hereditary. Here
Zp and Qp denote the p-adic integers and the p-adic rationals.

As explained in [32], the full subcategory of the category of spectra
whose objects are wedge sums of summands of the the spectra (BG+)∧p ,
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is equivalent to a full subcategory of Mackall,1
Zp whose objects are certain

projective functors, and this is the connection between Corollary 10.2
and Theorem 7.2. We apply the theory in Section 11.4 to compute the
Cartan matrices both of [B,B]⊗Zp Qp and of [B,B]⊗Zp Fp when p = 2
and D = {1, C2, C4, C8, (C2)2, D8, Q8}.

Prior to all this in our exposition, we introduce in Section 3 a the-
ory of relative projectivity for globally defined Mackey functors. This
is defined with respect to changes in the class of groups D on which
the functors are defined, using the notion of induction ↑DE and restric-

tion ↓DE between MackX ,YR (E) and MackX ,YR (D) when E ⊆ D. Relative
projectivity is defined in the usual way using these operations and the
main result here is the following.

Theorem 3.9. Let M be a globally defined Mackey functor. There is
a unique minimal set of groups E, closed under taking sections, relative
to which M is projective. Furthermore M ∼= M ↓DE ↑DE , and M ↓DE is
(up to isomorphism) the only Mackey functor N defined on E with the
property that M ∼= N ↑DE .

We call the minimal set E the vertex of M . This result does not depend
on the ground ring R or require that M be indecomposable, unlike
the case of group representations. We also show — again, unlike the
case of group representations — that induction from and restriction
to a vertex are inverse operations. We determine the vertices of the
projective functors in Proposition 3.10 and of the standard functors
∆ in Corollary 5.4. In Proposition 5.11 we provide a condition on the
vertices of simple functors for there to be a non-split extension between
them.

In Section 2 we review definitions and basic lemmas, and give a
proof of the equivalence of the definitions of globally defined Mackey
functors by means of axioms on the one hand, and as functors on a
certain category on the other hand. Later in Section 4 we discuss the
ascending and descending filtration of globally defined Mackey functors
which are fundamental in the highest weight category structure, and
we relate them to the constructions of Brauer quotient and its dual,
the restriction kernel.

We take the opportunity to comment on the different terminology
which has been used for the functors which we here call globally defined
Mackey functors. The same terminology in this generality was used in
[33]. On page 278 of [18] these functors are introduced in the special
case Y = 1, where they are called ‘global Mackey functors’. These
same functors with the condition Y = 1 appear in [28] where they are
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called ‘functors with Mackey structure’ and also in [32] where they are
called ‘inflation functors’. In the last reference the functors which arise
when X = Y = 1 are called ‘global Mackey functors’. In [9, 10, 11]
the term ‘biset functors’ is used in a situation where X and Y are
both taken to be all finite groups. The term ‘globally defined Mackey
functor’ is intended to include all of the special cases, and they are all
considered in this paper. It seems to the present author that another
good possibility would be to use ‘global Mackey functor’ as the term
which includes all the special cases, but one would have to ignore the
fact that this has already been used twice to mean different things.

2. Definitions of globally defined Mackey functors and
preliminary lemmas

Globally defined Mackey functors may be defined in several ways:
as functors on a certain category, as modules for an algebra, and by
means of axioms. In this section we review the notation and definitions
we will use and provide a proof of the equivalence of the axiomatic
definition with the functorial definition, since this has not appeared in
print before. Lemmas from this section will be crucial later on.

By a section of a group G we mean a homomorphic image of a sub-
group of G. We will often refer to a ‘set of groups closed under taking
sections’, and by this we mean a set of groups with the property that
every section of every group in the set is isomorphic to a group in the
set. Strictly speaking it is abuse of terminology since a set of groups
which is genuinely closed under taking sections contains every group
isomorphic to a group in the set, and so is no longer a set. We will
refer to sets of groups which are closed under taking extensions in a
similar spirit. The groups we consider in such a context will always be
finite.

We define a generalization of the double Burnside ring, which has its
origins in [37], [27], [25] and [1]. Let G and H be finite groups. By a
(G,H)-biset we mean a set Ω = GΩH with commuting actions of G and
H, with G acting from the left and H from the right. This is the same
as specifying a G×H-set, since we may employ the device of converting
the right H-action into a left action by means of the antiautomorphism
h 7→ h−1. Let X and Y be sets of finite groups closed under taking
sections and extensions. We define AX ,YZ (G,H) to be the Grothendieck
group of finite (G,H)-bisets which have the property that the stabilizer
in G of each point in Ω lies in X , and the stabilizer in H of each point
in Ω lies in Y . Thus AX ,YZ (G,H) is a free abelian group with basis the
transitive such bisets (transitive with respect to the action of G×H),
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and in this group we identity a non-transitive biset with the sum of
the bisets given by its orbits. Fixing a commutative ring R with a 1
we put AX ,YR (G,H) = R ⊗Z A

X ,Y
Z (G,H). The special case Aall,1

R (G,G)
is the double Burnside ring, where ‘all’ means a set of finite groups
representing every isomorphism class, and 1 is a set containing just a
group with one element.

We next define a category CX ,YR (D) which is a more general form of
a category defined in [27, 1] where it is called the Burnside category.
In generality it was considered by Bouc [7]. Let D be a set of finite

groups closed under taking sections. The objects of CX ,YR (D) are the
groups in D. If G and H are such groups we define the morphisms in
CX ,YR (D) from H to G to be Hom(H,G) = AX ,YR (G,H), a convention
which makes sense since we will be applying morphisms from the left.
Thus this set of morphisms is a free R-module with basis the transi-
tive bisets GΩH whose G-stabilizers lie in X and whose H-stablizers
lie in Y . Composition of morphisms is defined to be R-bilinear, and
on homomorphisms which are actually bisets it is defined to be the
amalgamated product:

GΩH ◦ HΨK := Ω×H Ψ,

where Ω ×H Ψ means the set of orbits of H on Ω × Ψ under the ac-
tion h(ω, ψ) = (ωh−1, hψ). We let MackX ,YR (D) denote the category of

R-linear functors CX ,YR (D) → R-mod. These are the functors we call
globally defined Mackey functors. Many of the definitions and construc-
tions we will give, such as of the functors ∆, are the same regardless
of what D is and on occasion we suppress D from the notation.

Globally defined Mackey functors may be regarded as modules for an
algebra µX ,YR (D) which we term the global Mackey algebra. The general
construction of such an algebra starting from an additive category can
be traced back to [21, Chap. II], and we describe it in our particular
case. Working with a set of finite groups D which is closed under taking
sections we put

µX ,YR (D) =
⊕
G,H∈D

AX ,YR (G,H)

as an R-module, and define the multiplication of two elements which
lie in these summands to be the same as composition in CX ,YR (D) if the
elements can be composed, and zero otherwise. It is immediate that
a globally defined Mackey functor M may be regarded as a µX ,YR (D)-
module

⊕
H∈DM(H), with the action of a biset GΩH on the summand

M(H) being given by M(GΩH), and zero on the other summands.
Conversely, for each group G in D there is an idempotent GGG ∈
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AX ,YR (G,G) ⊆ µX ,YR (D), and each µX ,YR (D)-module U gives rise to a
globally defined Mackey functor M where M(G) = GGG · U . This

procedure produces an equivalence of categories between MackX ,YR (D)

and µX ,YR (D)-modules U which have the property that U =
⊕

G∈D GGG·
U . Observe that µX ,YR (D) possesses an identity element if and only if
D is finite, the identity element being eD =

∑
G∈D GGG.

It is useful to define globally defined Mackey functors by means of
axioms, and such a set of such axioms was given in [33], extending
axioms given for more restrictive kinds of functors in [32]. We will use
these axioms in Section 5 to show that the functors ∆H,V we construct
are indeed globally defined Mackey functors. We repeat the axioms
from [33].

Let X and Y be sets of finite groups closed under taking sections
and extensions, let D be a set of finite groups closed under taking
sections, and let R be a commutative ring. We say that a globally
defined Mackey functor over R, defined on D, with respect to X and
Y , is a specification M which consists of an R-module M(G) for each
finite group G, together with for each homomorphism α : G→ K with
Kerα ∈ Y an R-module homomorphism α∗ : M(G) → M(K) and
for each homomorphism β : G → K with Ker β ∈ X an R-module
homomorphism β∗ : M(K)→ M(G). These morphisms should satisfy
the following relations:

(1) (αγ)∗ = α∗γ∗ and (βδ)∗ = δ∗β∗ always, whenever these are
defined;

(2) whenever α : G→ G is an inner automorphism then α∗ = 1 =
α∗;

(3) for every commutative diagram of groups

G
β−→ H

γ

x xα
β−1(K) −→

δ
K

in which α and γ are inclusions and β and δ are surjections
we have α∗β∗ = δ∗γ

∗ whenever Ker β ∈ Y , and β∗α∗ = γ∗δ
∗

whenever Ker β ∈ X ;
(4) for every commutative diagram

G
γ−→ H/KerαKer β

β

x xδ
H −→

α
K
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in which α, β, γ and δ are all surjections, with Ker β ∈ Y and
Kerα ∈ X , we have β∗α

∗ = γ∗δ∗;
(5) (Mackey axiom) for every pair of subgroups G,K ≤ H of every

group H we have

(ιHK)∗(ιHG )∗ =
∑

h∈[K\H/G]

(ιKK∩hG)∗ch∗(ι
G
Kh∩G)∗

where ιHK : K ↪→ H and ιHG : G ↪→ H etc. are the inclusion maps
and ch : Kh∩G→ K∩ hG is the homomorphism ch(x) = hxh−1.

We should note that certain things which are required for these ax-
ioms to make sense, do in fact hold. Thus in both (3) and (4), if
Ker β ∈ Y then Ker δ ∈ Y also; in (1), if Kerα ∈ Y and Ker γ ∈ Y
then Kerαγ ∈ Y also; and so on. The axiom here which did not ap-
pear in [32] is (4), and it implies in particular that if α : H → K is an
isomorphism, then (α−1)∗ = α∗ and (α−1)∗ = α∗.

We will indicate a proof that the definition of a globally defined
Mackey functor just given is really the same as the definition given in
terms of bisets. The key to seeing this is Bouc’s lemma which decom-
poses bisets into bisets of a certain kind which on the next pages we
will call special, and which we now define. Suppose we have a group
homomorphism G → K. We may regard the set K as a (G,K)-biset

GKK with G acting from the left by first applying the homomorphism
to K and then multiplying from the left within K, and with K acting
by right multiplication. In a similar way we may also obtain from this
homomorphism a (K,G)-biset KKG. By a special biset we mean any
biset of the form GKK or KKG where the homomorphism G → K is
required to be either the inclusion of a subgroup or an epimorphism.

Using these special bisets we may see how a functor in MackX ,YR (D)
gives rise to a functor which satisfies the above axioms, and vice-versa.
For, given F ∈ MackX ,YR (D), we may define M(G) = F (G) on finite
groups G; whenever α : G → K with Kerα ∈ Y we define α∗ =
F (KKG) : M(G)→ M(K); and whenever β : G→ K with Ker β ∈ X
we define β∗ = F (GKK) : M(K) → M(G). The fact that M satisfies
the axioms listed above is now a consequence of the following easily-
verified isomorphisms of bisets: for axiom (1), HHG ◦GGK

∼= HHK and
its reverse KGG ◦ GHH

∼= KHH ; for axiom (2), if α : G → G is inner
then GGG with G acting via α on one side and straight multiplication
on the other side is isomorphic to GGG with G acting via straight
multiplication on both sides; for axiom (3), KHH ◦ HHG

∼= KKβ−1(K) ◦
β−1(K)GG and its reverse when β : G→ H is epi and K ≤ H; for axiom
(4), writing L = H/KerαKer β we have GLL ◦ LLK ∼= GGH ◦ HKK .
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Finally if G,K ≤ H we have KHH ◦ HHG
∼=
⋃
h∈[K\H/G] KKKh∩G ◦

Kh∩GGG which gives axiom (5).
It is conversely the case that an object M satisfying the above axioms

(1) – (5) gives rise to a functor F in MackX ,YR (D), and this part of the
argument uses the following lemma of Bouc. It is closely related to a
result known as ‘Goursat’s lemma’ and which can be found as Exercise
8 to Chapter 1, Section 4 of [13].

Lemma 2.1. (Bouc [7]) Let G and K be finite groups. Every transitive
(G,K)-biset Ω is isomorphic to one of the form GGA◦AHH◦HHB◦BKK

with A ≤ G, B ≤ K and H a homomorphic image of each of A and B:
A � H � B. Furthermore StabG(ω) ∈ X for all ω in Ω if and only
if Ker(A → H) ∈ X , and StabK(ω) ∈ Y for all ω in Ω if and only if
Ker(B → H) ∈ Y.

Using this result, if we are given an object M satisfying axioms (1)

– (5) above we may define a functor F ∈ MackX ,YR (D) as follows: on
objects we put F (G) = M(G). We may write any morphism Ω : K →
G in the form Ω =

∑t
i=1 λiΩi where λi ∈ R and the Ωi are transitive

(G,K)-bisets. We put F (Ω) =
∑t

i=1 λiF (Ωi) where the F (Ωi) are
defined as follows. We write Ωi

∼= GGAi ◦ AiHiHi ◦ HiHiBi ◦ BiKK using

Bouc’s Lemma where G
αi←↩Ai

βi
�Hi

γi
�Bi

δi
↪→K; we set F (Ωi) = αi∗β

∗
i γi∗δ

∗
i .

We now need to explain why it is that the construction of F just
given is independent of choices, and does indeed specify a functor. The
independence of choices will follow from the next lemma which is also
crucial in later sections.

Lemma 2.2. Let A and U be subgroups of G, let B and W be sub-

groups of K, and suppose we are given morphisms G
α←↩A

β
�H

γ
�B

δ
↪→K

and G
π←↩U

ρ
�V

σ
�W

τ
↪→K where α, δ, π, τ are inclusion morphisms and

β, γ, ρ, σ are surjections. Then

GGA ◦ AHH ◦ HHB ◦ BKK
∼= GGU ◦ UVV ◦ V VW ◦ WKK

as (G,K)-bisets if and only if there is a commutative diagram

A
β−→ H

γ←− B

cx

y θ

y ycy
U

ρ−→ V
σ←− W

for some elements x ∈ G, y ∈ K and a group isomorphism θ. Here cx
and cy denote conjugation homomorphisms and U = xA, W = yB.
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Proof. It is convenient to identify each (G,K)-biset Ω as a left G×K-
set where the action of G×K on Ω is given by (g, k)ω = gωk−1. Under
this identification, if Ω is a transitive set then Ω ∼= G×K/ StabG×K(ω)
where ω may be taken to be any element of Ω. Writing the elements of
the composite GGA◦AHH◦HHB◦BKK as equivalence classes [g, h1, h2, k]
of quadruples (g, h1, h2, k) where g ∈ G, h1, h2 ∈ H and k ∈ K, we
have

StabG×K([1, 1, 1, 1]) = {(g, k)
∣∣ (g, 1, 1, k−1) ∼ (1, 1, 1, 1)}.

Now (g, 1, 1, k−1) ∼ (1, 1, 1, 1) entails g ∈ A and k ∈ K, and then
(g, 1, 1, k−1) ∼ (1, β(g), γ(k−1), 1) ∼ (1, β(g)γ(k−1), 1, 1), which is equiv-
alent to (1, 1, 1, 1) precisely if β(g) = γ(k). Thus

StabG×K([1, 1, 1, 1]) = {(g, k) ∈ A×B
∣∣ β(g) = γ(k)}.

Using the fact that G × K-sets of the form G × K/ Stab(ω) are
isomorphic if and only if the stabilizer groups are conjugate, we see
that

GGA ◦ AHH ◦ HHB ◦ BKK
∼= GGU ◦ UVV ◦ V VW ◦ WKK

if and only if {(g, k) ∈ A × B
∣∣ β(g) = γ(k)} is conjugate to {(g, k) ∈

U ×W
∣∣ ρ(g) = σ(k)}. This happens precisely if there exist x ∈ G and

y ∈ K with xA = U and yB = W so that

β(g) = γ(k)⇔ ρ(xg) = σ(yk) for all g ∈ A and k ∈ B. (∗)

If there exists a commutative diagram as in the statement of the lemma
then this condition is clearly satisfied. Conversely, if (∗) is satisfied
and g ∈ A then β(g) = 1 = γ(1) if and only if ρ(xg) = σ(y1) =
1, so cx : Ker β → Ker ρ is an isomorphism. Hence cx induces an
isomorphism θ : H → V , which is immediately seen to be the same as
the isomorphism induced by cy. This completes the proof. �

To see now why the definition of the functor F (given the axiomat-
ically defined M), is independent of choices we observe that in an
expression Ω =

∑t
i=1 λiΩi the λi ∈ R are determined, and the Ωi

are determined up to isomorphism. We thus need to see that if we
write Ωi in two isomorphic ways, in the manner of the lemma, then
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α∗β
∗γ∗δ

∗ = π∗ρ
∗σ∗τ

∗. But now using the axioms for M we have

α∗β
∗γ∗δ

∗ = α∗β
∗θ∗θ∗γ∗δ

∗

= α∗(θβ)∗(θγ)∗δ
∗

= α∗(ρcg)
∗(σch)∗δ

∗

= α∗c
∗
gρ
∗σ∗ch∗δ

∗

= α∗cg−1∗ρ
∗σ∗c

∗
h−1δ∗

= (αcg−1)∗ρ
∗σ∗(δch−1)∗

= (cg−1π)∗ρ
∗σ∗(ch−1τ)∗

= cg−1∗π∗ρ
∗σ∗τ

∗c∗h−1

= π∗ρ
∗σ∗τ

∗

as required.
We need also to see that F is a functor, namely F (Ω◦Ψ) = F (Ω)F (Ψ)

always holds. To see this, recall that we first defined F on special bisets
of the form GKK and KKG where the morphism G → K is either an
inclusion of subgroups or a surjection. We then used Bouc’s Lemma 2.1
to extend the definition to all morphisms by composition. We thus see
that F will be a functor precisely if it satisfies F (Ω ◦Ψ) = F (Ω)F (Ψ)
when Ω and Ψ are taken to be special bisets. Since there are four kinds
of special biset, depending on whether G acts from the left or the right,
and whether the homomorphism is an inclusion or a surjection, this
gives 4 · 4 = 16 different types of composite which F should preserve.

For each of these 16 composites Ω◦Ψ when Ω and Ψ are special, either
the composite is already a product of the kind prescribed by Bouc’s
Lemma 2.1 (by adjoining bisets of the form GGG as necessary one may
extend the product of length 2 to a product of length 4), or else it may
be expressed as a linear combination of products of that kind. In the
former case, the definition of F guarantees that F (Ω◦Ψ) = F (Ω)F (Ψ).
In the latter case, if Ω◦Ψ =

∑t
i=1 λiΩi where the Ωi are transitive, the

definition of F (Ω ◦Ψ) is
∑t

i=1 λiF (Ωi), and F will preserve composites

precisely if F (Ω) ◦ F (Ψ) =
∑t

i=1 λiF (Ωi). In each of the 16 cases, one
of the axioms which M satisfies implies this equality. We summarize
which axiom must be used in Table 1, leaving the entry blank when
the composite is already one of the products in the form of Lemma
2.1. This completes the proof that an object M satisfying the axioms
(1) – (5) gives rise to a functor F in MackX ,YR (D) in the way we have
described.

We conclude this section of definitions and basic results by men-
tioning the contravariant functor ∗ : MackX ,YR → MackY,XR which is a
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Table 1. Axioms for the decomposition of products of
special bisets Ω ◦Ψ.

Ψ

Ψ = KKG Ψ = KGG

inclusion epi inclusion epi

Ω Ω = GGK inclusion Axiom 1

epi Axiom 1 Axiom 1 Axiom 4

Ω = GKK inclusion Axiom 5 Axiom 3 Axiom 1 Axiom 1

epi Axiom 3 Axiom 1

duality between the full subcategories of MackX ,YR and MackY,XR whose
objects are functors M for which every M(G) is a finitely generated

projective R-module. For each functor M in MackX ,YR we put M∗(G) =
HomR(M(G), R). For each (H,G)-biset HΩG there is an opposite (G,H)-
biset G(Ωop)H which has the same underlying set as Ω and where the
left and right actions of G and H are obtained from Ω via the antiau-
tomorphisms g 7→ g−1 and h 7→ h−1 of G and H. Now the morphism
M∗(HΩG) : M∗(G)→M∗(H) is defined to be M(G(Ωop)H)∗.

3. Restriction, induction and the vertex

In this section we study the restriction and induction of globally
defined Mackey functors between different domains of definition. We
describe the effect on simple and projective functors, and conclude with
a theory of vertices of globally defined Mackey functors analogous in
spirit to the theory of vertices and sources in group representation the-
ory. There are some differences between the two theories: we will show
that induction always sends indecomposables to indecomposables; and
if an indecomposable functor is projective relative to a set of groups,
its restriction to those groups is again indecomposable. A feature of
these results is that we do not need to put any special hypothesis on
the commutative ring R: we do not invoke the Krull-Schmidt theorem
and the theory works perfectly well over Z, for example.

Suppose we have two section-closed sets of finite groups E ⊆ D and
consider the categories of globally defined Mackey functors defined on
them. The restriction functor MackX ,YR (D) → MackX ,YR (E) is given by
restricting the domain of definition of a functor M from D to E . We will
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write M ↓DE for this restricted functor. Restriction is an exact functor,
because exactness of a sequence of globally defined Mackey functors is
determined by exactness at each evaluation on a group. It has a left
adjoint N 7→ N ↑DE = µX ,YR (D) ⊗µX ,YR (E) N called induction and a right

adjoint N 7→M ⇑DE = HomµX ,YR (E)(µ
X ,Y
R (D), N) called coinduction.

Regarding M as a µX ,YR (D)-module we can express restriction to E
in a way which is familiar from other areas of representation theory,
at least when E is finite. In that case we have an idempotent eE =∑

G∈E GGG and it is immediate from the definitions that µX ,YR (E) =

eEµ
X ,Y
R (D)eE and that regarding M as a µX ,YR (D)-module its restriction

is eEM . This is a functor which is described in [23, 6.2] as well as
elsewhere, and the general properties hold here.

We start by recording the effect of restriction on the simple glob-
ally defined Mackey functors. Recall from [7] that the simple globally
defined Mackey functors on a section-closed set of finite groups D are
parametrized by pairs (H,V ) where H is a group in D and V is a
simple ROutH-module. For the moment we will write SDH,V for the
corresponding simple functor defined on D, but later we will omit D
from the notation. It is characterized among simple functors by being
non-zero only on groups which have H as a section, and by the fact
that at H it is SDH,V (H) = V .

Proposition 3.1. Let E ⊆ D be sets of finite groups closed under
taking sections. Then

SDH,V ↓E=

{
SEH,V if H ∈ E
0 if H 6∈ E

Proof. This is immediate from Bouc’s construction of the simple func-
tors in [7], in that the value of a simple functor at a group H is inde-
pendent of the section-closed set of groups containing H. �

Thus the restriction of a simple functor is either simple or zero,
and a complete set of simple functors on the smaller set E arises via
restriction, something which we know in generality from [23, 6.2g], but
here we can also say that restriction preserves the parametrization of
simple functors.

We are about to develop the theory of induction and restriction be-
tween different section-closed sets of finite groups and take inspiration
from the corresponding theory for group representations. We will find
that in several places the theory here is simpler, and stronger results
hold, than for group representations. The first example of this is seen
as part (3) of the next result.
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Proposition 3.2. Let E ⊆ D be sets of finite groups closed under
taking sections. Suppose M is a globally defined Mackey functor defined
on E. Then

(1) M ↑DE is generated by its values on groups in E.
(2) M ↑DE ↓DE ∼= M , and
(3) if M is indecomposable then M ↑DE is indecomposable.

Proof. (1) This comes directly from the definition of M ↑DE as a tensor
product.

(2) From the definition of the global Mackey algebra, when we regard

µX ,YR (D) as a (µX ,YR (E), µX ,YR (E))-bimodule it is isomorphic to the direct

sum of µX ,YR (E) and a summand on which the action is zero, and so

M ↑DE ↓DE = (µX ,YR (D)⊗µX ,YR (E) M) ↓DE ∼= µX ,YR (E)⊗µX ,YR (E) M
∼= M

as left µX ,YR (E)-modules.
(3) The induced functor M ↑DE is generated by its values on E . Thus

if M ↑DE = M1⊕M2 is a direct sum decomposition then M1 and M2 are
also be generated by their values on E . Hence if both M1 and M2 are
non-zero, they must be non-zero on E . In this case M ∼= M ↑DE ↓DE =
M1 ↓DE ⊕M2 ↓DE is a non-trivial decomposition of M , which is not
possible. Thus one of M1 and M2 must be zero. �

In [32] and [7] it is shown that when R is a field or a discrete valua-
tion ring the simple functor SH,V has a projective cover PH,V , and it is a
summand of the representable functor HomCX ,YR

(G, ) with multiplic-

ity equal to dimSH,V (G)/ dim EndROutH(V ). We observe that these
indecomposable projective functors behave well under restriction and
induction.

Proposition 3.3. Let E ⊆ D be sets of finite groups closed under
taking sections, suppose that R is a field or a discrete valuation ring,
and let H be a group in E. Let P EH,V and PDH,V be the projective covers

of the simple functors SEH,V and SDH,V as functors defined on E and D,

respectively. Then PDH,V ↓DE = P EH,V and P EH,V ↑DE = PDH,V .

Proof. Induction from E to D sends projectives to projectives (since it
is left adjoint to an exact functor) and preserves indecomposability (by
Proposition 3.1(3)), so P EH,V ↑DE is an indecomposable projective func-

tor. Since SDH,V ↓E= SEH,V , by adjointness there is a non-zero morphism

SEH,V ↑DE→ SDH,V , which must be a surjection. There is also a surjec-

tion P EH,V ↑DE→ SEH,V ↑DE , and hence SDH,V is a homomorphic image of

P EH,V ↑DE . It follows that P EH,V ↑DE = PDH,V .

Finally, P EH,V = P EH,V ↑DE ↓DE = PDH,V ↓DE , by 3.2(2). �
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The above ideas may be developed into a theory of relative projectiv-
ity of globally defined Mackey functors. In the context of section-closed
sets of groups E ⊆ D we will say that a functor M defined on D is pro-
jective relative to E (or E-projective) if and only if the canonical counit
homomorphism M ↓DE ↑DE→ M is a split epimorphism. This condition
is equivalent to a number of other conditions, and many of these are
listed in [3, Prop. VI.3.6] in a context which does not have to do with
group representations. Thus M is E-projective if and only if M is a
direct summand of M ↓DE ↑DE , which happens if and only if M is a direct
summand of N ↑DE for some functor N defined on E . (The argument
which proves this is standard, and given in [2] in a way which does
not depend on the properties of group representations.) In fact the
situation we are now considering is less delicate than this as we see in
the next proposition, which is a strengthening of a result which in a
slightly different context is due to Xu [38]. Part (2) of this result is a
partial converse to Proposition 3.2(3).

Proposition 3.4. Let E ⊆ D be sets of finite groups closed under
taking sections and let M be a globally defined Mackey functor defined
on D.

(1) If M is E-projective then the counit homomorphism M ↓DE ↑DE→
M is an isomorphism, so that M ∼= M ↓DE ↑DE .

(2) If M is E-projective and indecomposable then M ↓DE is also in-
decomposable.

Proof. (1) The hypothesis is that the counit homomorphism is split. On
evaluation at groups G in E this homomorphism is an isomorphism, so
that a splitting provides a decomposition M ↓DE ↑DE ∼= M ⊕M ′ where
M ′(G) = 0 for all G in E . Now M ↓DE ↑DE is generated by its values on
G in E , and hence so is M ′ since it is an image of M . It follows that
M ′ = 0 and the counit is an isomorphism.

(2) If M ↓DE = N1 ⊕N2 decomposes then

M ∼= M ↓DE ↑DE = N1 ↑DE ⊕N2 ↑DE
also decomposes, and if M is indecomposable this cannot happen. �

Corollary 3.5. Let E ⊆ D be sets of finite groups closed under taking
sections, let M be a globally defined Mackey functor defined on D and
let N be a globally defined Mackey functor defined on E. Suppose that
M and N are indecomposable.

(1) If M is a summand of N ↑DE then N ∼= M ↓DE .
(2) If M is projective relative to E and N is a summand of M ↓DE

then M ∼= N ↑DE .
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Proof. (1) By Proposition 3.2 (3), N ↑DE is indecomposable, so that
M ∼= N ↑DE and N ∼= N ↑DE ↓DE ∼= M ↓DE by 3.2(2).

(2) By Proposition 3.4(2) we see that M ↓DE is indecomposable and
hence equal to N . The statement follows from Proposition 3.4(1). �

We will show that there is always a unique minimal section-closed
set of finite groups relative to which an indecomposable functor is pro-
jective. This will follow from the next result, for which we introduce
some notation. We suppose that D and E are sets of finite groups closed
under taking sections, but do not assume this time that E ⊆ D. Let us
write DµE =

⊕
G∈D
H∈E

AX ,YR (G,H). This is an R-submodule of µX ,YR and

it is a (µX ,YR (D), µX ,YR (E))-bimodule. Its significance is that if G is a
further set of finite groups closed under taking sections which contains
both D and E then M ↑GE↓GD∼= DµE ⊗µX ,YR (E) M .

Proposition 3.6. Let D and E be sets of finite groups closed under
taking sections and let D∩E denote a set of groups whose isomorphism
types are exactly those in both D and E. Then multiplication induces
an isomorphism

Dµ(D∩E) ⊗µX ,YR (D∩E) (D∩E)µE → DµE .

Proof. From the definition DµE has as a basis the transitive (G,H)-
bisets where G ∈ D and H ∈ E . By Bouc’s Lemma 2.1 these can all
be written in the form (GGA ◦ AJJ) ◦ (JJB ◦ BHH). Since necessarily
J ∈ D ∩ E this shows that the multiplication map is surjective.

In what follows all tensor products are taken over µX ,YR (D ∩ E), and
we leave this out of the notation to simplify matters. Consider an
element ∑

G,J,K,H,i

λG,J,K,H,i(GΩiJ ⊗ KΨiH)

which lies in the kernel of the multiplication map, so∑
G,J,K,H,i

λG,J,K,H,i(GΩiJ ◦ KΨiH) = 0.

We will show that the first sum with the tensor product is zero. Firstly
we may assume in this sum that J = K since the idempotent JJJ lies in
µX ,YR (D ∩ E) and GΩiJ⊗KΨiH = GΩiJ◦JJJ⊗KΨiH = GΩiJ⊗JJJ◦KΨiH .
This is zero if K 6∼= J .

Next we may assume that G ∈ D and H ∈ E are fixed, since we may
multiply all formulas on the left by GGG and on the right by HHH to
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get an element of the tensor product∑
J,i

λG,J,J,H,i(GΩiJ ⊗ JΨiH)

for which ∑
J,i

λG,J,J,H,i(GΩiJ ◦ JΨiH) = 0.

We now claim that we may express each GΩiJ ⊗ JΨiH as a linear
combination of terms of the form

(GGAj ◦ AjJjJj)⊗ (JjJjBj ◦ BjHH)

where each of the four bisets is of the kind which appears in Bouc’s
Lemma 2.1. Simplifying the notation and omitting subscripts i and j,
we may assume that Ω and Ψ are transitive and write Ω = GGA◦ABB ◦
BBC ◦ CJJ and Ψ = JJD ◦DEE ◦ EEF ◦ FHH . Note that B,C, J,D and
E are all groups which occur in D∩E since these groups are all sections
of J . This means we can write

Ω⊗Ψ = (GGA ◦ ABB)⊗ (BBC ◦ CJJ ◦ JJD ◦ DEE ◦ EEF ◦ FHH)

by passing the terms in D ∩ E across the tensor product. By Bouc’s
Lemma 2.1 we can express the term on the right of the tensor product
as a sum of terms of the form BBK ◦ KLL ◦ LLM ◦MHH where now B,
K and L are groups which appear in D ∩ E . Thus Ω ⊗ Ψ is a sum of
terms

(GGA ◦ ABB)⊗(BBK ◦ KLL ◦ LLM ◦ MHH)

= (GGA ◦ ABB ◦B BK ◦ KLL)⊗ (LLM ◦ MHH)

where we have obtained the expression on the right of the equality by
passing two terms across the tensor product. We now write the product
of four terms on the left of the last tensor product as a sum of terms
of the form GGN ◦ NPP ◦ PPQ ◦ QLL where P is a section of L, and so
Ω⊗Ψ is a sum of terms

(GGN ◦ NPP ◦ PPQ ◦ QLL)⊗ (LLM ◦ MHH)

= (GGN ◦ NPP )⊗ (PPQ ◦ QLL ◦ LLM ◦ MHH).

Again, we have obtained the expression on the right of the equality
by passing two terms across the tensor product. Iterating this process
where we pass two terms across the tensor product and rewrite the
new product, at each stage the group adjacent to the tensor product
is a section of the previous one. Thus the process must reach a stage
where each group adjacent to the tensor product is isomorphic to the
previous one, and when this happens the biset which is passed across
the tensor product is a copy of that group acted upon regularly, except
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that the action may be twisted by an isomorphism. By incorporating
such an isomorphism in the action on this group from the other side,
we express each GΩiJ ⊗ JΨiH as claimed.

We have now produced a linear combination of tensor products

(GGAj ◦ AjJjJj)⊗ (JjJjBj ◦ BjHH)

in which each biset is special and such that the corresponding linear
combination of products

GGAj ◦ AjJjJj ◦ JjJjBj ◦ BjHH

is zero. But such expressions, taken up to isomorphism, are basis ele-
ments of DµE , and so for each isomorphism type the sum of the coeffi-
cients of the corresponding tensor products is zero. Lemma 2.2 implies
that if G◦J◦J◦H ∼= G◦J ′◦J ′◦H then G◦J⊗J◦H = G◦J ′⊗J ′◦H and
it follows that the linear combination of tensors we were considering
must be zero. �

Corollary 3.7. Let E1 ⊆ D and E2 ⊆ D be sets of finite groups which
are closed under taking sections and let M be a globally defined Mackey
functor defined on D which is projective relative to E1 and also projec-
tive relative to E2. Then M is projective relative to E1 ∩ E2.

Proof. We haveM ∼= M ↓DE1↑
D
E1
∼= M ↓DE2↑

D
E2 so thatM ∼= M ↓DE1↑

D
E1↓
D
E2↑
D
E2 .

Now for any Mackey functor N defined on E1 we have

N ↑DE1↓
D
E2 = µX ,YR (D)⊗µX ,YR (E1) N

= E2µE1 ⊗µX ,YR (E1) N

∼= E2µ(E2∩E1) ⊗µX ,YR (E2∩E1) (E2∩E1)µE1 ⊗µX ,YR (E1) N

∼= E2µ(E2∩E1) ⊗µX ,YR (E2∩E1) N ↓
E1
E1∩E2

∼= N ↓E1E1∩E2↑
E2
E1∩E2

using 3.6. Thus M ∼= M ↓DE1↓
E1
E1∩E2↑

E2
E1∩E2↑

D
E2
∼= M ↓DE1∩E2↑

D
E1∩E2 as re-

quired. �

Corollary 3.8. Let E1, E2, D and G be sets of finite groups which are
closed under taking sections with E1 ⊆ D, E2 ⊆ D and D ⊆ G. Let M
be a globally defined Mackey functor defined on D which is projective
relative to E1. Then

(1) M ↑GD is projective relative to E1, and
(2) M ↓DE2 is projective relative to E1 ∩ E2.

Proof. The first statement is immediate from the transitivity of in-
duction. For the second statement, suppose that M is a summand of
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N ↑DE1 . Then M ↓DE2 is a summand of N ↑DE1↓
D
E2 , which is isomorphic

to N ↓E1E1∩E2↑
E2
E1∩E2 as in the last result and hence M ↓DE2 is projective

relative to E1 ∩ E2. �

Theorem 3.9. Let M be a globally defined Mackey functor. There is
a unique minimal set of groups E, closed under taking sections, relative
to which M is projective. Furthermore M ∼= M ↓DE ↑DE , and M ↓DE is
(up to isomorphism) the only Mackey functor N defined on E with the
property that M ∼= N ↑DE .

Proof. From the last result we see that E is the intersection of the sets of
groups (closed under taking sections) relative to which M is projective.
If M ∼= N ↑DE then N ∼= N ↑DE ↓DE = M ↓DE determines N uniquely. �

We may call the set of groups E in the above theorem the vertex of
the globally defined Mackey functor M .

Proposition 3.10. Let H be a group and V a simple ROut(H)-
module. The representable functor HomCX ,YR (D)(H, ) and the inde-

composable projective functor PH,V (assuming R is a field or a discrete
valuation ring) both have vertex the set of sections of H.

Proof. Let E be the set of sections of H. As a µX ,YR (D)-module the
representable functor is

µX ,YR (D) · HHH = µX ,YR (D)⊗µX ,YR (E) µ
X ,Y
R (E) · HHH

so that this functor is projective relative to E . The vertex cannot be
any smaller, since the functor is generated by its value at H, and not
by its values on smaller groups.

We have seen in Proposition 3.3 that PH,V is projective relative to
E , and again it is not projective relative to any smaller set of groups,
because it is not generated by its values on such groups. �

4. Filtrations, Brauer quotients and restriction kernels

In this section we describe an ascending filtration and a descend-
ing filtration of each globally defined Mackey functor associated to an
ordering of isomorphism types of finite groups. When we show in Sec-
tion 7 that globally defined Mackey functors form a highest weight cat-
egory over a field of characteristic zero, we will see that the ascending
filtration of each projective functor refines to a filtration with standard
factors ∆, and the descending filtration of each injective functor refines
to a filtration with costandard factors ∇. Prior to that application we
develop the properties of these filtrations, relating them to the Brauer
quotient and restriction kernel constructions.



STRATIFICATIONS AND MACKEY FUNCTORS II 21

Suppose that E is a set of finite groups. We define

IEM = 〈M(J)
∣∣ J ∈ E〉

to be the subfunctor of M generated by its values on groups in E . Thus
IEM is the smallest subfunctor of M whose value on all the groups
J ∈ E is M(J).

It is useful to speak of a globally defined Mackey functor M be-
ing cogenerated by subsets XH ⊆ M(H) where H ranges over finite
groups. By this we mean that every morphism of globally defined
Mackey functors M → M ′ which is injective on all the subsets XH is
necessarily a monomorphism. Given a set of finite groups E we de-
fine REM to be the largest subfunctor of M satisfying the condition
that M(γ) : REM(K) → M(J) is the zero map for every morphism

γ : K → J in CX ,YR with J ∈ E . We see that M/REM takes the same
values as M on groups in E , and is cogenerated by these values. We
may call it the quotient of M cogenerated by its values on groups in E .

In the next proposition we write ‘all’ to denote a set of representatives
of all isomorphism classes of finite groups.

Proposition 4.1. Let M be a globally defined Mackey functor and let
E, E1 and E2 be sets of groups with E1 ⊆ E2.

(1) I∅M = RallM = 0 and R∅M = IallM = M .
(2) IE1M ⊆ IE2M and RE1M ⊇ RE2M .
(3) If E is closed under taking sections then

IEM(K) =
∑
γ:G→K
G∈E

ImM(γ) and REM(K) =
⋂

γ:K→G
G∈E

KerM(γ).

(4) If E1 ⊆ E2 then IE2M/IE1M is generated by its values on the
subgroups in E2−E1 and RE1M/RE2M is cogenerated by its val-
ues on the subgroups in E2 − E1. If additionally E1 and E2 are
closed under taking sections then IE2M/IE1M and RE1M/RE2M
are zero on groups which do not contain a group in E2 − E1 as
a section.

(5) IE(M1⊕M2) = IEM1⊕IEM2 and RE(M1⊕M2) = REM1⊕REM2.

Proof. (1) and (2) are self-evident.
(3) The right hand side of the expression for IEM(K) equals the

subfunctor of M generated by its values on groups in E , since the right
side is certainly contained in this subfunctor, and it is a subfunctor
itself since on applying any morphism in CX ,YR (D) by functoriality of
M to a term on the right, the result factors through another of the
terms on the right, by Bouc’s Lemma 2.1 and using the hypothesis
that E is section-closed. A similar argument applies to the expression
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for REM(K). Everything on the right goes to zero under morphisms
M(γ) where the codomain of γ lies in E , but we need to check that the
expression on the right does define a subfunctor. This again follows
from Bouc’s Lemma.

In (4), we have from the definitions that IE2M is generated by IE1M
and the values of M on the groups in E2 − E1. Hence IE2M/IE1M
is generated by its values on the subgroups in E2 − E1 alone. The
statement about cogeneration is dual. Suppose now that E1 and E2 are
closed under taking sections. If all sections of a group which lie in E2 lie
in E1 then IE2M and IE1M take the same values on this group by (3),
and so the quotient functor is zero on such a group. Thus the quotient
functor is only non-zero on groups which contain a section in E2 − E1.
Again the statement about RE1M/RE2M is dual.

(5) is immediate. �

In the next result we assume that R is a field and show that the
subfunctors IEM and REM are dual to each other, in the same way
as in [34, Prop. 2.2]. We recall from Section 2 that for each functor

M in MackX ,YR there is a dual functor M∗ in MackY,XR with M∗(G) =
HomR(M(G), R). If N ⊆M is a subfunctor, let us put N⊥(K) = {f ∈
M∗(K)

∣∣ f |N(K) = 0}. Then by a standard piece of linear algebra if

N1 ⊆ N2 ⊆M we have (N2/N1)∗ ∼= N⊥1 /N
⊥
2 .

Proposition 4.2. Let M be a globally defined Mackey functor over a
field R and let E, E1 and E2 be sets of finite groups closed under taking
sections. Then (IEM)⊥ = RE(M

∗) and (REM)⊥ = IE(M
∗). Thus if

E1 ⊆ E2 we have

(IE2M/IE1M)∗ ∼= (IE1M)⊥/(IE2M)⊥ = RE1(M
∗)/RE2(M

∗)

and

(RE1M/RE2M)∗ ∼= (RE2M)⊥/(RE1M)⊥ = IE2(M
∗)/IE1(M

∗).

Assuming dimM(G) is finite always and identifying M with its double
dual we have (IE(M

∗))∗ = REM and (RE(M
∗))∗ = IEM .

Proof. This is the same as [34, Prop. 2.2]. �

Proposition 4.1 says that the mappings E 7→ IEM and E 7→ REM
are order preserving and order reversing maps from the lattice of sets
of isomorphism types of finite groups to the lattice of subfunctors of
M . Using this we may construct filtrations of M by ordering the iso-
morphism classes of finite groups as 1 = H1, H2, H3, . . . in such a way
that if Hi is isomorphic to a section of Hj then i ≤ j. Let us write
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Mi = I{H1,...,Hi}M and M i = R{H1,...,Hi}M with M0 = 0 and M0 = M .
We produce in this way an ascending filtration

0 = M0 ⊆M1 ⊆ · · · ⊆M

and a descending filtration

M = M0 ⊇M1 ⊇ · · ·

of M associated to the list H1, H2, . . .. The last results apply to the
terms of these filtrations, and we have for all i:

(1) (M ⊕N)i = Mi ⊕Ni;
(2) Mi/Mi−1 is generated by its value at Hi and is only non-zero

on groups which have Hi as a section;
(3) Mi = M∗i∗ when R is a field and the values of M are finite

dimensional, with similar statements holding for the M i.

We are interested in the factors Mi/Mi−1 and M i−1/M i of these
filtrations. Evidently these are associated in some way to the group
Hi, but they depend also on the ordering of the rest of the list of
isomorphism classes of groups and need not be uniquely determined by
Hi. We will see from the next result that as the position of a particular
group H varies between different lists, there is a largest such factor
associated to H, which occurs when H appears as early as possible in
a list. We will also be interested in the values of the factors Mi/Mi−1

and M i−1/M i at Hi which are in fact determined independently of the
position of Hi in the list of subgroups. To do this we make the following
definitions.

The Brauer quotient of M at H is defined to be

M(H) = M(H)/
∑
γ:J→H

H not a section of J

ImM(γ).

We also define the restriction kernel of M at H, namely

M(H) =
⋂

γ:H→J
H not a section of J

KerM(γ).

We have defined these constructions over an arbitrary commutative ring
R and when R is a field our definitions agree in spirit with the usual
ones. When R is a local ring it is usual to factor out in addition the
radical of the ring from these expressions (see [29]). This is something
we do not do here, so that our terminology differs from that suggested
by other contexts. One possibility would have been to devise a different
name for our Brauer quotient, such as the ‘transfer quotient’ or the
‘covariant quotient’ but we have avoided doing this.
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The next result shows that a listing of finite groups with larger num-
ber of groups appearing prior to a given group H gives rise to smaller
quotients at the stage corresponding to H in both the ascending and
descending filtrations of M , while the values of these quotients at H
remain fixed.

Proposition 4.3. Let M be a globally defined Mackey functor, let H
be a group and let E, F be sets of finite groups with E ⊆ F .

(1) The inclusion mapping induces an epimorphism

IE∪{H}M/IEM → IF∪{H}M/IFM

and a monomorphism

RFM/RF∪{H}M → REM/RE∪{H}M.

(2) If E is section-closed and contains every proper section of H,
but not H itself, then

(IE∪{H}M/IEM)(H) ∼= M(H)

and

(REM/RE∪{H}M)(H) ∼= M(H).

Proof. (1) The proof is the same as that of [34, Prop. 2.3(a)].
(2) We have from Proposition 4.1

IEM(H) =
∑
γ:G→H
G∈E

ImM(γ)

=
∑
γ:G→H

G a proper section ofH

ImM(γ)

since every γ : G → H with G ∈ E factors through a proper section
of H. Since IE∪{H}M(H) = M(H), the quotient is M(H). This estab-
lishes the first formula, and the proof of the second is very similar. �

We conclude that the Brauer quotient and restriction kernel are dual
in a certain sense.

Corollary 4.4. Let M be a globally defined Mackey functor over a field
R whose values are all finite dimensional. For each group H we have
M(H) = (M∗(H))∗.

Proof. This is a consequence of Proposition 4.2 and Proposition 4.3(2).
�
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Taking a list of isomorphism types of groups 1 = H1, H2, . . . in which
the sections of each group Hi always appear earlier than Hi, we see that
for each group G = Hi in the list there is a unique largest possibility
for the functor Mi/Mi−1 obtained from a list in which Hi appears as
early as possible. This happens when H1, H2, . . . , Hi are exactly the
sections of Hi. Let us write ≤ G for the set of sections of G and < G
for the set of proper sections of G. We define

M(G) := I≤GM/I<GM and M (G) := R<GM/R≤GM.

We summarize the properties of these constructions.

Corollary 4.5. Let 1 = H1, H2, . . . be a list of groups in which the
sections of each group Hi always appear earlier than Hi and let M be
a globally defined Mackey functor. In the ascending and descending fil-
trations of M , the factors Mi/Mi−1 and M i−1/M i are only non-zero on
groups which have Hi as a section. We always have (Mi/Mi−1)(Hi) ∼=
M(Hi) and (M i−1/M i)(Hi) ∼= M(Hi). In particular M(Hi) is only non-

zero on groups which have Hi as a section and M(Hi)(Hi) = M(Hi).
Furthermore Mi/Mi−1 is a homomorphic image of M(Hi) and M i−1/M i

is a subfunctor of M (Hi).

We conclude this section with a well-known result.

Proposition 4.6. Let f : N → M be a morphism of globally defined
Mackey functors.

(1) If the composite morphism N(H)→M(H)→M(H) is surjec-
tive for every subgroup H then f is an epimorphism.

(2) If the composite morphism N(H) → N(H) → M(H) is injec-
tive for every subgroup H then f is an monomorphism.

Proof. The proof is the same as the proof of [34, Prop. 2.5].
(1) Let 0 = M0 ⊆ M1 ⊆ · · · be an ascending filtration of M in

the sense defined after Proposition 4.2. We show by induction that
Mi ⊆ Im f , which is certainly true when i = 0. Assuming that
Mi−1 ⊆ Im f we also know that (Mi ∩ Im f)/Mi−1 = Mi/Mi−1 since
this is generated by (Mi/Mi−1)(Hi) by Proposition 4.1(4), which equals
M(Hi) by Proposition 4.3(2) and is covered by f . Hence Mi ⊆ Im f .
Since M =

⋃
Mi we have M ⊆ Im f .

The proof of (2) is dual. �

5. The functors ∆H,V and ∇H,V

We now construct the functors which play the role of standard and
costandard objects in MackX ,YR . The idea to consider functors of this
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type can be traced back at least to Lewis [24]. The functors which
we call ∇H,V here were also defined in a more restricted setting in [32]
where they were denoted JH,V . We choose to define these functors by a
direct explicit construction and in subsequent sections we will need to
know some of the information which this produces. The functors can
also be defined using the adjoint properties which they satisfy and I
am grateful to the referee for pointing out that this approach can also
be made explicit and may be shorter. We sketch the approach after
Proposition 5.2. The functors we will define will have as their domain
a section-closed set of finite groups D. However, none of the definitions
or arguments depend on D and so we omit D from the notation.

We fix a finite group H, and for each finite group G we consider the
set of sections of G isomorphic to H with kernel in X . To be very
specific about this we define

SecX (G,H) = {α : A � H
∣∣ A ≤ G, Kerα ∈ X}.

Whenever V is an ROutH-module we put

∆XH,V (G) = (
⊕

α∈SecX (G,H)

αV )G×AutH

and
∇YH,V (G) = (

⊕
α∈SecY (G,H)

αV )G×AutH

where each αV is a copy of V , the subscript and superscript G×AutH
mean fixed quotient and fixed points, and there is an action of G ×
AutH on the direct sum (before taking fixed quotient and fixed points)
specified as follows: if v = αv ∈ αV , g ∈ G and γ ∈ AutH then

(g, γ)(αv) = γαcg−1γ(v)

where the (left) superscript on a vector indicates the copy of V to which
it belongs. Here cg(x) = gxg−1 is conjugation by g.

We describe more fully the structure as G × AutH-modules of the
direct sums which appear in the definitions of ∆H,V and ∇H,V . There is
an action of G×AutH on each of SecX (G,H) and SecY(G,H) given by
composition, as follows: if φ ∈ AutH and g ∈ G, for any α : A � H,
we have

(g, φ) · α : Ag
cg−1

−→A α−→H φ−→H.
We see that in the action of G×AutH on the direct sum given above,
the subspaces αV are permuted in the way just given, and the direct
sum is an induced module.

For any section α : A � H where A ≤ G we define

NG(α) = NG(A) ∩NG(Ker(α)).
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There is a homomorphism NG(α) → Aut(H) which sends g ∈ NG(α)
to the automorphism of H induced by cg. The stabilizer in G×AutH
of the subspace αV is

StabG×AutH(αV ) = {(g, γ)
∣∣ γαcg−1 = α}

= {(g, γ)
∣∣ cg ∈ NG(α), γ is induced by cg}

∼= NG(α)

via the diagonal embeddingNG(α)→ G×AutH which has components
the inclusion NG(α) ↪→ G and the homomorphism NG(α) → AutH.
In the given action of G×AutH on

⊕
αV , this diagonal subgroup acts

on αV via projection to AutH, so identifying it with NG(α) the action
on αV is via the map NG(α)→ AutH. Now⊕

α∈SecX (G,H)

αV ∼=
⊕

α∈[AutH\ SecX (G,H)/G]

αV ↑G×AutH
NG(α) .

Thus we have the following expressions for ∆ and ∇.

Proposition 5.1.

∆H,V (G) ∼=
⊕

α∈[AutH\SecX (G,H)/G]

αVNG(α)

and
∇H,V (G) ∼=

⊕
α∈[AutH\ SecY (G,H)/G]

αV NG(α)

Proof. We take fixed quotients and fixed points in the previous expres-
sion and use the isomorphisms (W ↑GL)G ∼= WL and (W ↑GL)G ∼= WL

for the fixed quotients and fixed points of an induced module. �

We now make ∆H,V into a functor, and define first a covariant mor-
phism

φ∗ : ∆H,V (G)→ ∆H,V (G1)

associated to any group homomorphism φ : G → G1. (We only need
to define φ∗ when Kerφ ∈ Y , but this condition does not make an
appearance in the definition.) Suppose that α : A → H is a section
of G, where A ≤ G, and consider φ|A : A → G1. It may happen that
Ker(φ|A) ⊆ Kerα, and in this case we can factor α as α = α̂ ◦ φ|A
where α̂ : φ(A)→ H is a section of G1. We may express this situation
by saying that there is a commutative diagram

G ≥ A
α−→ H

φ|A

y ↗ α̂

G1 ≥ φ(A)
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Observe in this case that Ker α̂ ∼= Kerα/Ker(φ|A) ∈ X since X is
section-closed. With this notation we define a morphism

φ̄∗ :
⊕

α∈SecX (G,H)

αV →
⊕

α∈SecX (G1,H)

αV

by

φ̄∗(
αv) =

{
α̂v if Kerφ|A ⊆ Kerα

0 otherwise.

To define φ∗ we observe that φ̄∗ commutes with the action of G ×
Aut(H) on the direct sums, and so induces a map on fixed quotients.
We define φ∗ to be the composite φ∗ = cores ◦φ̄∗, where cores is the
canonical projection of fixed quotients between φG×AutH and G1 ×
AutH, as follows:

(
⊕

α∈SecX (G,H)

αV )G×AutH
φ̄∗−→(

⊕
α∈SecX (G1,H)

αV )φG×AutH

cores−→(
⊕

α∈SecX (G1,H)

αV )G1×AutH .

Next we define the contravariant morphism φ∗ : ∆H,V (G)→ ∆H,V (G1)
associated to a group homomorphism φ : G1 → G for which Kerφ ∈ X .
If α : A→ H is a section of G, where A ≤ G, we consider the subgroup
φ−1A ≤ G1, and it may happen that the composite α̃ = αφ|φ−1A :
φ−1A → H is surjective. In this situation Ker α̃ ∈ X since it appears
in a short exact sequence 1 → Kerφ → Ker α̃ → Kerα ∩ φφ−1A → 1
and X is extension-closed. We define

φ̄∗ :
⊕

α∈SecX (G,H)

αV →
⊕

α∈SecX (G1,H)

αV

by

φ̄∗(αv) =

{
α̃v if α̃ is surjective

0 otherwise.

This time the non-zero situation may be expressed by saying there is
a commutative diagram

G1 ≥ φ−1A
α̃−→ H

φ

y ↗ α

G ≥ A

Again φ̄∗ commutes with the action of G1×AutH on the direct sums
and induces a map on fixed quotients. We define φ∗ to be the composite
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φ∗ = φ̄∗ ◦ res, where res is the restriction map in group homology (the
relative trace) between G and φG1, as follows:

(
⊕

α∈SecX (G,H)

αV )G×AutH
res=tr−→ (

⊕
α∈SecX (G,H)

αV )φG1×AutH

φ̄∗−→(
⊕

α1∈SecX (G1,H)

α1V )G1×AutH .

We may show that ∆H,V is indeed a globally defined Mackey functor
with respect to X and Y . This may be done by verifying that axioms
(1) – (5) of Section 2 are satisfied, which is a routine but notationally
complex task.

We similarly make ∇H,V into a functor by using the operations dual
to those of ∆H,V . Suppose that φ : G→ G1 is a group homomorphism
with Kerφ ∈ Y . We define φ∗ : ∇H,V (G) → ∇H,V (G1). As before, if
α : A → H is a section of G, where A ≤ G and Kerα ∈ X , we put
α = α̂φ if Ker(φ|A) ⊆ Kerα. We may express this by saying that there
is a commutative diagram

G ≥ A
α−→ H

φ|A

y ↗
α̂

G1 ≥ φ(A)

Note in this case that Ker α̂ ∼= Kerα/(Kerφ|A) ∈ Y since Y is section-
closed. In the direct sum

⊕
α∈SecY (G,H)

αV we put

φ̄∗(
αv) =

{
α̂v if Ker(φ|A) ⊆ Kerα

0 otherwise.

Now φ̄∗ commutes with the action of G×AutH on the direct sum, and
we define φ∗ to be the composite φ∗ = cores ◦φ̄∗ as follows:

(
⊕

α∈SecY (G,H)

αV )G×AutH φ̄∗−→(
⊕

α1∈SecY (G1,H)

α1V )φG×AutH

cores−→(
⊕

α1∈SecY (G1,H)

α1V )G1×AutH .

If φ : G1 → G and Kerφ ∈ X we put

φ̄∗(αv) =
∑

G1≥K1
φ→A α→H

αφv

where the sum is over all subgroups K1 ≤ G1 such that αφ(K1) = H
and K1∩Kerαφ ∈ Y . Now φ̄∗ commutes with the action of G1×AutH
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and we define φ∗ = φ̄∗ ◦ res as follows:

(
⊕

α∈SecY (G,H)

αV )G×AutH res−→(
⊕

α∈SecY (G,H)

αV )φG1×AutH

φ̄∗−→(
⊕

α1∈SecY (G1,H)

α1V )G1×AutH

where res is the restriction map in group cohomology from G×AutH
to φG1 × AutH. In the same way as before we may verify that ∇H,V

is a globally defined Mackey functor using the axioms in Section 2.
The functors ∇H,V enjoy the same formal properties as the func-

tors JH,V defined in [24] and [32], and the ∆H,V enjoy dual properties.
Perhaps the most important of these is an adjoint property.

Proposition 5.2. For each subgroup H the functor

MackX ,YR → ROutH-mod

specified by M 7→ M(H) has left adjoint V 7→ ∆H,V . Similarly the
functor specified by M 7→ M(H) has right adjoint V 7→ ∇H,V . The
natural isomorphisms

HomMackX ,YR
(∆H,V ,M)→ HomROutH(V,M(H))

and
HomMackX ,YR

(M,∇H,V )→ HomROutH(M(H), V )

are given by evaluating morphisms at H.

Proof. We show that HomMackX ,YR
(∆H,V ,M) ∼= HomROutH(V,M(H)),

omitting the proof of the corresponding statement for ∇H,V , since it
is similar. The isomorphism from left to right is η 7→ ηH , namely the
effect of the natural transformation η at the group H. Observe that
the image of the ROut(H)-module homomorphism ηH : V → M(H)
is indeed contained in M(H) since if γ : H → J is a morphism where
H is not a section of J then ∆H,V (J) = 0 and since the diagram

∆H,V (H)
ηH−→ M(H)y∆H,V (γ)

yM(γ)

∆H,V (J)
ηJ−→ M(J)

commutes we deduce that M(γ)ηH = 0.
For the isomorphism in the direction right to left, suppose that

θ : V → M(H) is an ROutH-module homomorphism. We define
a natural transformation θG : ∆H,V (G) → M(G) as follows. First we
define a map θ′ :

⊕
α∈SecX (G,H)

αV → M(G) by specifying that it has
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component ι∗α
∗θ on the summand αV , where H is expressed as a sec-

tion of G by maps G
ι←↩K

α
�H. By computation we see that the action

of G×AutH on the direct sum is trivialized after applying θ′: if g ∈ G,
γ ∈ AutG and αv ∈ αV we have

θ′((g, γ)(αv)) = θ′(γαcg−1γ(v))

= ι∗(γαcg−1)∗θ(γ(v))

= ι∗cgα
∗γ∗γ∗θ(v)

= ι∗α
∗θ(v)

= θ′(αv).

Thus θ′ induces a map θ : ∆H,V (G)→M(G) on the fixed quotient.
The proof concludes with a verification that θ is indeed a natural

transformation, and that the constructions η 7→ ηH and θ 7→ φ are
mutually inverse, which may be checked by computation. �

The adjoint properties of Proposition 5.2 may be used to define ∆H,V

and ∇H,V , and this approach to the definition is much faster than the
one we have taken. It does, however, leave the question of whether such
adjoints exist, and does not immediately give an explicit description of
the values of the functors. I am grateful to the referee for pointing out
that an explicit description may be deduced as follows. We define

∇H,V (K) := HomROutH(AX ,YR ( , K)(H), V )

noting with hindsight that the term on the right is isomorphic to
HomMackX ,YR

(AX ,YR ( , K),∇H,V ) which by Yoneda’s lemma is ∇H,V (K).

From this definition the functorial dependence on K may be deduced,
as well as the fact that the definition extends to the natural isomor-
phism of Proposition 5.2. An expression for

AX ,YR ( , K)(H) = AX ,YR ( , K)(H)(H)

is given in step 2 of the proof of Theorem 6.3, and this immediately
yields the description in Proposition 5.1. When V is finite dimensional
we can deduce the corresponding properties for ∆H,V using the duality
statement of Corollary 5.9.

Corollary 5.3. Let H be a group and let H be the full subcategory of
MackX ,YR whose objects are the functors M with M(K) = 0 if K is a
proper section of H. The functor M 7→M(H) from H to ROutH-mod
has left adjoint V 7→ ∆H,V and right adjoint V 7→ ∇H,V . Thus there
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are natural isomorphisms

HomH(∆H,V ,M) ∼= HomROutH(V,M(H))

HomH(M,∇H,V ) ∼= HomROutH(M(H), V )

Proof. For such a globally defined Mackey functor M we have M(H) =
M(H) = M(H) and so the adjunction isomorphisms of Proposition 5.2
become the ones stated. �

Several properties of the ∆ and ∇ functors follow from their identi-
fication as adjoints, and we state these in the next results.

Corollary 5.4. Let E ⊆ D be sets of finite groups which are closed
under taking sections and let H be a group in E. Writing E∆H,V and
D∆H,V for the functors defined on E and D we have E∆H,V = D∆H,V ↓DE
and D∆H,V

∼= E∆H,V ↑DE . Furthermore D∆H,V is generated by its value
at H, and has the set of sections of H as its vertex.

Proof. The definition of E∆H,V is the same as the definition of D∆H,V

on groups in E , and this establishes the restriction formula. For the
induction formula we exploit the fact that V 7→ D∆H,V is left adjoint
to M 7→ M(H). The latter functor can be written as a composite
M 7→ M ↓DE 7→ M(H) and so its left adjoint factors as a composite of
left adjoints V 7→ E∆H,V 7→ E∆H,V ↑DE . The isomorphism follows from
this.

We see that D∆H,V is projective relative to every set of finite groups
which contains the sections of H, and it is not projective to any smaller
set since it is zero on proper sections of H. Thus the vertex is as
claimed.

Any functor is generated by its values on groups in its vertex, and
since H is the only such group on which D∆H,V is non-zero, this functor
is generated by its value at H. �

Evidently a similar statement to that of Corollary 5.4 is true for the
∇H,V provided we develop a theory of relative injectivity dual to that
of relative projectivity, using the right adjoint to the restriction functor
instead of the left. In any case it is clear that ∇H,V is cogenerated by
its value at H.

Corollary 5.5. Let H be a group and let V be an ROutH-module
which has a unique simple quotient U (up to isomorphism). Then ∆H,V

has a unique simple quotient SH,U . Dually, if V has a simple socle
U then ∇H,V has a simple socle isomorphic to SH,U . If R is a field
or a complete discrete valuation ring then ∆H,V is an image of the
indecomposable projective PH,U and ∇H,V is isomorphic to a subfunctor
of the indecomposable injective IH,U .
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Proof. The natural transformation ∆H,V → SH,U , which by Corol-
lary 5.3 extends the homomorphism V → U , is non-zero, so it is an
epimorphism since SH,U is simple. If a simple functor SK,W is an im-
age of ∆H,V then H is a section of K (since ∆H,V (K) = 0 unless H
is a section of K), and in fact we must have K ∼= H since otherwise
SK,W (H) = 0 and the map from ∆H,V would be zero by Corollary 5.3.
We now see that U ∼= W since SH,W (H) = W is a simple image of V .
The statement about ∇H,V is proved dually, and the remaining state-
ments are immediate consequences of what we have already shown. �

The following interpretation is well known and will be used in Sec-
tion 11 when we compute the values of simple functors.

Corollary 5.6. Let V be a simple ROut(H)-module. Then SH,V ∼=
∆H,V /R{H}∆H,V is the quotient of ∆H,V cogenerated by its value at H,
and SH,V ∼= I{H}∇H,V is the subfunctor of ∇H,V generated by its value
at H.

Proof. By Corollary 5.5 the simple socle of ∇H,V contains ∇H,V (H),
and hence is generated by this value. The statement about ∆H,V is
dual. �

Corollary 5.7. Consider the ascending and descending filtrations of a
Mackey functor M associated to a list 1 = H1, H2, . . . of isomorphism
types of groups, listed so that the sections of each Hi always appear
earlier than Hi. For each i there is an epimorphism

∆Hi,M(Hi)
→Mi/Mi−1

and a monomorphism

M i−1/M i → ∇Hi,M(Hi).

Proof. By Corollary 4.5 we know that Mi/Mi−1 and M i−1/M i vanish on
groups which do not haveHi as a section, and we have (Mi/Mi−1)(Hi) =
M(Hi) and (M i−1/M i)(Hi) = M(Hi). Thus by the adjoint property
of 5.3 we have morphisms as claimed. Since Mi/Mi−1 is generated
by its value at Hi the first is an epimorphism, and since M i−1/M i is
cogenerated by its value at Hi the second is a monomorphism. �

The last result allows us to bound the dimension of the evaluation
of a globally defined Mackey functor in terms of its Brauer quotients
and restriction kernels.
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Corollary 5.8. Let M be a globally defined Mackey functor defined
over a field R. For each group G we have

dimM(G) ≤
∑

H a section of G
up to isomorphism

dim ∆H,M(H)(G)

and

dimM(G) ≤
∑

H a section of G
up to isomorphism

dim∇H,M(H)(G).

Proof. We take a list 1 = H1, H2, . . . of isomorphism types of groups,
so that the sections of each Hi always appear earlier than Hi. Now
dimM(G) =

∑
dim(Mi/Mi−1)(G) and each of these dimensions in

the sum is bounded by dim ∆Hi,M(Hi)
(G), by Corollary 5.7. Note that

Mi/Mi−1(G) and ∆Hi,M(Hi)
(G) are only non-zero when Hi is a section

of G, so that the sums we are dealing with are finite. The second
inequality is proved similarly. �

The bounds given in Corollary 5.8 are best possible in general. In-
deed, it will be proved that the first inequality is an equality whenever
M is projective, from which we can deduce by duality that the second
inequality is an equality whenever M is injective.

We next state the behaviour of ∆H,V and ∇H,V under the duality

between MackX ,YR and MackY,XR and for this we write the functors in

MackX ,YR as ∆XH,V and ∇YH,V .

Corollary 5.9. Assume that R is a field, let H be a group and let V
be a finite dimensional ROutH-module. We have (∆XH,V )∗ ∼= ∇XH,V ∗
and (∇YH,V )∗ ∼= ∆YH,V ∗ as functors in MackY,XR .

Proof. We observe that (∆XH,V )∗(H) = V ∗, and also that (∆XH,V )∗ sat-

isfies the right adjoint property which characterizes ∇XH,V ∗ , thus estab-
lishing the first isomorphism. The second follows similarly. �

We may use the adjoint properties of the ∆ and ∇ functors to give
information about the Ext groups of simple globally defined Mackey
functors. The approach we take is exactly the same as in [31, Section
14] and the arguments presented there go through here also.

Theorem 5.10. Let SH,V , SK,W be simple globally defined Mackey func-
tors over a field R.

(1) If Ext1
µX ,YR

(SH,V , SK,W ) 6= 0 then either H is a section of K or

K is a section of H.
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(2) If H = K then

dim Ext(SH,V , SH,W ) =multiplicity of SH,W

in the second Loewy layer of ∆H,PV .

=multiplicity of SH,V

in the second socle layer of ∇H,PW

The evaluation at H induces a morphism

Ext1
µX ,YR

(SH,V , SH,W )→ Ext1
ROutH(V,W )

which is injective. In particular

dim Ext1
µX ,YR

(SH,V , SH,W ) ≤ dim Ext1
ROutH(V,W ).

(3) If K is a proper section of H then

dim ExtµX ,YR
(SH,V , SK,W ) =multiplicity of SH,V

in the second socle layer of ∇K,W .

(4) If H is a proper section of K then

dim ExtµX ,YR
(SH,V , SK,W ) =multiplicity of SK,W

in the second Loewy layer of ∆H,V .

We comment that by virtue of the duality between MackX ,YR and

MackY,XR each of statements (3) and (4) is equivalent to another state-
ment in the dual category in which multiplicities in the second Loewy
layer of a ∆ are interchanged with multiplicities in the second socle
layer of a ∇. We leave it to the reader to formulate this.

Proof. Suppose we have a non-split extension 0 → SK,W → M →
SH,V → 0 and that K is not a section of H. We will show that H
is a section of K. This Mackey functor M vanishes on groups which
are proper sections of H and so by Corollary 5.3 the identity map on
M(H) extends to a morphism ∆H,M(H) → M . Since the extension is
non-split, M has SH,V as its unique simple quotient, and so is generated
by its value at H. It follows that M is an image of ∆H,M(H), and this is
a functor which is only non-zero on groups which have H as a section.
Thus K has H as a section. This proves part (1).

In the proof of the remaining parts we use the fact that

dim ExtµX ,YR
(SH,V , SK,W ) = n

if and only if n is the largest number r for which there is an extension

(∗) 0→ (SK,W )r →M → SH,V → 0

in which SH,V is the semisimple quotient of M .
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Assume that H = K. To prove (2) we observe by Corollary 5.5 that
∆H,PV has a simple top isomorphic to SH,V , and so if SH,W occurs with
multiplicity r in the second Loewy layer of ∆H,PV then an extension
(*) exists. On the other hand, given an extension (*) we may lift the
projective cover PV → V to an ROut(H)-module hommorphism PV →
M(H) which corresponds by Corollary 5.3 to a morphism ∆H,PV →M
which is an epimorphism since it surjects onto SH,V , the composite
PV → M(H) → V being surjective. This shows that SH,V occurs at
least r times in the second Loewy layer of ∆H,PV thus proving the first
equality of (2). The second equality is proved by a dual argument.

We prove that the morphism ExtµX ,YR
(SH,V , SH,W )→ ExtROutH(V,W )

is injective in the same way as the corresponding statement of [31, 14.3].
Suppose we have a non-split short exact sequence of functors

0→ SH,W →M → SH,V → 0.

Evaluating at H this gives a short exact sequence of ROut(H)-modules

0→ W →M(H)→ V → 0

which we show is non-split. If it were to split, the splitting V →M(H)
would extend uniquely to a morphism ∆H,V →M by adjointness, and
the image of this morphism must be SH,V since otherwise it would be
the whole of M , which is not possible since ∆H,V (H) = V . This pro-
vides a morphism which splits the original sequence, thus completing
the proof of (2).

Part (3) is proved by a dual argument to (4) and we only give the
proof of (4), which in turn is similar to the proof of the first part of
(2). This time assume H is a proper section of K. If ∆H,V has SK,W
appearing r times in its second Loewy layer then certainly there exists
an short exact sequence (*). On the other hand in any sequence (*) we
have M(H) ∼= V and so this isomorphism on V extends uniquely by
adjointness to a morphism ∆H,V → M which is an epimorphism since
it covers SH,V . This forces SK,W to occur at least r times in the second
Loewy layer of ∆H,V . We conclude that the maximal possibility for
R equals the multiplicity of SK,W in the second Loewy layer of ∆H,V ,
which proves the result. �

We now add to the information given in Theorem 5.10 in one respect.

Proposition 5.11. If Ext(SH,V , SK,W ) 6= 0 then either H lies in the
vertex of SK,W or K lies in the vertex of SH,V .

Proof. We already know from 5.10 that to have a non-split extension
either H must be a section of K or K must be a section of H. Suppose
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that H is a section of K and that

0→ SK,W →M → SH,V → 0

is a non-split extension. Let D be the vertex of SH,V . If K is not a
group in D then the restriction of the sequence to D has the form

0→ 0→M ↓D→ SH,V ↓D→ 0

which is split. Therefore by one of the equivalent conditions listed in [3,
Prop. VI.3.6] the original sequence must split, which is a contradiction.
Therefore K is a group in D. The argument when K is a section of H
is similar. �

6. Projective functors have a ∆-filtration

Our main goal in this section is a proof of Theorem 6.3 which shows
that projective functors always have a filtration with factors of the form
∆H,V where V is a summand of a permutation module. To achieve this

we first examine carefully the rank as a free R-module of AX ,YR (G,K).
The first lemma is really an elaboration of Lemma 2.2, and for it we

consider pairs of epimorphisms of groups A
α−→H β←−B where A is a

subgroup of G and B is a subgroup of K. Thus H is a common ho-
momorphic image of A and B. We will say that two such pairs of
epimorphisms (α, β) and (ρ, σ) are equivalent if there is a commutative
diagram

A
α−→ H

β←− B

cx

y θ

y ycy
U

ρ−→ V
σ←− W

where cx and cy denote conjugation by x ∈ G and y ∈ K, U = xA,
W = yB and θ is an isomorphism.

Lemma 6.1. Let G and K be finite groups.

(1) AX ,YR (G,K) is a free R-module with basis in bijection with the
equivalence classes of pairs (α, β) of epimorphisms α : A→ H,
β : B → H where A ≤ G, B ≤ K, H is a common homomor-
phic image of A and B which is allowed to vary, and such that
Kerα ∈ X and Ker β ∈ Y.

(2) For each fixed group H, AX ,YR ( , K)(H)(G) is a free R-module
with basis in bijection with the equivalence classes of pairs (α, β)
of epimorphisms α : A→ H, β : B → H where A ≤ G, B ≤ K,
and such that Kerα ∈ X and Ker β ∈ Y.
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Proof. (1) From its definition, AX ,YR (G,K) has as a basis the isomor-
phism classes of transitive (G,K)-bisets with left stabilizers in X and
right stabilizers in Y . By Lemma 2.1 these are precisely the bisets
which may be written GGA ◦ AHH ◦ HHB ◦ BKK where A ≤ G, B ≤ K

and A
α−→H β←−B are epimorphisms with Kerα ∈ X and Ker β ∈ Y .

By Lemma 2.2, two such bisets are isomorphic if and only if the pairs
of epimorphisms are equivalent.

(2) If E is a set of finite groups closed under taking sections then

by Proposition 4.1(3) we have that (IEA
X ,Y
R ( , K))(G) is the span of

the transitive bisets which factor through groups in E , namely those

corresponding to pairs A
α−→J β←−B where J ∈ E . We see this by

observing that if γ : J → G is a morphism in CX ,YR with J ∈ E , the

corresponding map AX ,YR (J,K)→ AX ,YR (G,K) is given by composition
with γ, and such a map has image contained in the span of bisets which
factor through groups in E . Equally, every such transitive biset is in
the image of such a morphism, by Bouc’s Lemma 2.1.

Now AX ,YR ( , K)≤H(G) has as a basis the transitive bisets corre-

sponding to pairs A
α−→J β←−B where J is a section of H, and also

AX ,YR ( , K)<H(G) has as a basis the transitive bisets corresponding to

pairs A
α−→J β←−B where J is a proper section of H. From this the

result follows. �

Suppose we have two epimorphisms α : A→ H and β : B → H with
A ≤ G and B ≤ K. As before we put NG(α) = NG(A) ∩NG(Ker(α))
and similarly for NK(β), and we regard Out(H) as a (NK(β), NG(α))-
biset where the actions are given by first applying the composite ho-
momorphisms NK(β)→ Aut(H)→ Out(H) and NG(α)→ Aut(H)→
Out(H), followed by left and right multiplication, respectively.

Lemma 6.2. Given finite groups G, H and K, the number of equiva-
lence classes of pairs (α, β) of epimorphisms with a fixed codomain H,
Kerα ∈ X and Ker β ∈ Y equals∑

α∈[AutH\ SecX (G,H)/G]

∑
β∈[AutH\SecY (K,H)/K]

|NK(β)\Out(H)/NG(α)|.

This number equals

rankRA
X ,Y
R ( , K)(H)(G).

Proof. The pairs of epimorphisms A
α−→H β←−B biject with the set Ω =

SecX (G,H) × SecY(K,H), and the equivalence classes of such pairs
are the orbits of the action of AutH × G × K on this set given by



STRATIFICATIONS AND MACKEY FUNCTORS II 39

(φ, g, k)(α, β) = (φαc−1
g , φβc−1

k ). There is in fact an action of AutH ×
G × AutH × K given by (φ, g, ψ, k)(α, β) = (φαc−1

g , ψβc−1
k ) and the

orbits on Ω under this action are unions of the orbits under the action
of AutH × G × K, since this latter group acts as a subgroup of the
bigger group with AutH embedded diagonally in AutH × AutH.

Consider now two elements (α, β) and (φαc−1
g , ψβc−1

k ) in the same
AutH × G × AutH × K-orbit. The second element lies in the same
AutH×G×K-orbit as (ψ−1φα, β) so that the elements (γα, β) with γ ∈
AutH contain a complete set of representatives of the AutH×G×K-
orbits on the AutH × G × AutH × K-orbit containing (α, β). Two
elements (γ1α, β) and (γ2α, β) lie in the same AutH ×G×K-orbit if
and only if (γ2α, β) = (φγ1αc

−1
x , φβc−1

y ) for certain x ∈ G and y ∈ K,

which entails x ∈ NG(α), y ∈ NG(β), φ = cβ(y) and γ−1
2 φγ1 = cα(x), so

that γ2 = cβ(y)γ1c
−1
α(x). Thus the condition that (γ1α, β) and (γ2α, β) lie

in the same AutH ×G×K-orbit is that γ1 and γ2 represent the same
double coset in NK(β)\AutH/NG(α). These double cosets biject with
the double cosets NK(β)\OutH/NG(α) since InnH is contained in the
image of both NG(α) and NK(β) in AutH.

Since the AutH×G×AutH×K-orbits on SecX (G,H)×SecY(K,H)
are

(AutH\ SecX (G,H)/G)× (AutH\ SecY(K,H)/K),

and each consists of |NK(β)\OutH/NG(α)| orbits of AutH ×G×K,
the first statement follows.

The second statement is part (2) of Lemma 6.1. �

Theorem 6.3. Let R be a commutative ring with 1, let 1 = H1, H2, . . .
be a list of groups in which the sections of each group Hi always appear
earlier than Hi and let P be a projective globally defined Mackey func-
tor. Let Pr = I{H1,...,Hr}P be the terms of the corresponding ascending
filtration of P . Then

Pr/Pr−1
∼= P(Hr)

∼= ∆Hr,P (Hr)
.

In this formula P (Hr) is a direct summand of a permutation ROut(Hr)-
module.

Proof. Step 1. We claim that it suffices to consider the case when P =
AX ,YR ( , K) is a representable functor. This is because an arbitrary
projective P is a direct summand of a direct sum of such functors (see
[32] or [7]) and the assertion of the theorem for a class of functors
implies the same assertion for direct sums and direct summands of
functors in the class.
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Step 2. For each pair of groups H and G we examine the module
AX ,YR ( , K)(H)(G) as an ROut(G)-module, being particularly inter-
ested in the case G = H. It is the permutation module on equivalence
classes of pairs (α, β) as in Lemma 6.1 part 2. The action of ν ∈ AutG
is given by ν(α, β) = (αν−1, β). At this point we have proven that for
the artbirary projective P the module P (Hr) is a direct summand of a
permutation module in view of Corollary 4.5.

Examining the action of ν ∈ AutG further, ν(α, β) ∼ (α, β) if and
only if (αν−1, β) = (φαc−1

g , φβc−1
k ) for some φ ∈ AutH, k ∈ K, g ∈ G,

and this happens if and only if φ lies in the image of NK(β) in Aut(H)
and αν−1 = φαc−1

g . In determining the action of OutG we may replace

ν by c−1
g ν since these represent the same element of OutG, and the

effect of this is that we may assume that g = 1. Now the condition for
ν(α, β) ∼ (α, β) is that ν ∈ StabAutG α, and ν induces φ−1 ∈ NK(β)
on H. When G = H this simplifies, and we have

AX ,YR ( , K)(H)(H) =
⊕

β∈[AutH\ SecY (K,H)/K]

R ↑OutH
NK(β) .

In this formula and what follows we write simply NK(β) instead of the
image of NK(β) in Out(H). The formula will be used in Step 5.

Step 3. We claim that to show that Pr/Pr−1
∼= P(Hr)

∼= ∆Hr,P (Hr)

it suffices to prove the result when R = Z. By step 1 we assume
that P = AX ,YR ( , K) and from the definition we have AX ,YR ( , K) =

R⊗ZA
X ,Y
Z ( , K). Assuming that AX ,YZ ( , K) has an ascending filtra-

tion with ∆ factors as claimed, all terms in the ascending filtration of
AZ( , K) have values which are free abelian groups, so that on tensor-

ing with R we obtain a filtration of AX ,YR ( , K) with ∆-factors of the
required form, since these factors behave well on extending the ground
ring from Z to R.

Step 4. We claim that the result will follow when R = Z if we
can prove it when R is a field. Over Z we wish to show that each of
the epimorphisms ∆Hr,P (Hr)

→ Pr/Pr−1 is an isomorphism, or in other
words that it has zero kernel. All evaluations of these functors are free
abelian groups, so the epimorphisms are split at each evaluation, and
so they will be isomorphisms precisely if after tensoring with any field
they are isomorphisms.
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Step 5. Let us write U = AX ,YR ( , K)(H)(H) and compute rankR ∆H,U(G).
Using the formula

∆H,U(G) =
⊕

α∈[AutH\SecX (G,H)/G]

αUNK(α)

=
⊕

α∈[AutH\SecX (G,H)/G]

⊕
β∈[AutH\ SecY (K,H)/K]

(R ↑OutH
NK(β))

NK(α)

which comes from substituting the result of Step 2, and the fact that

rankR(R ↑OutH
NK(β))

NK(α) = |NK(α)\OutH/NK(β)|
we see that

rankR∆H,U(G)

=
∑

α∈[AutH\ SecX (G,H)/G]

∑
β∈[AutH\SecY (K,H)/K]

|NK(α)\OutH/NK(β)|

= rankRA
X ,Y
R ( , K)(H)(G)

by Lemma 6.2. It follows that for each r the epimorphism ∆Hr,P (Hr)
→

Pr/Pr−1 given by Corollary 5.7 is an isomorphism, since on evaluation
at each group G the two modules have the same dimension. �

We can describe the values of the functors P(H) which are the factors
in the ascending filtration of a projective functor P more explicitly in
one particular case.

Proposition 6.4. Let V be a simple ROutH-module where R is a
field or a local ring. Then PH,V (H) = (PH,V )(H)(H) is the projective
cover PV of V as an ROutH-module.

Proof. Putting nK,W (H) = dimSK,W (H)/ dim End(W ) we have by the

argument of [32, 5.6] that AX ,YR ( , H) ∼=
⊕

K,W P
nK,W (H)
K,W and so using

Lemma 6.1(2) for the first of the following isomorphisms,

ROutH ∼= AX ,YR ( , H)(H)(H) ∼=
⊕

simpleROutH−modulesV

(PH,V )(H)(H)nH,V (H).

For the second isomorphism we note that nK,W (H) = 0 unless K is a
section of H, and for such K, (PK,W )(H) = 0 unless K ∼= H since PK,W
is generated by its value at K. None of the summands in the direct sum
is zero (since PH,V is not generated by its values on proper sections of
H), and their multiplicities nH,V (H) = dimV/ dim End(V ) equal the
multiplicities of the indecomposable summands of ROutH. Thus the
summands in the direct sum are exactly the indecomposable summands
of ROutH, namely the projective covers of the simple modules. The
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fact that (PH,V )(H)(H) has V as an image identifies (PH,V )(H)(H) with
PV . �

We now identify the standard and proper standard quotients of pro-
jectives associated to the preorder on the set which parametrizes the
simple functors. This preorder is (K,W ) ≤ (H, V ) if and only if H
is a section of K. There are dual statements concerning the functors
∇H,PV , ∇H,V in their role as costandard and proper costandard sub-
objects of the indecomposable injectives IH,V . We leave these for the
reader to formulate.

Corollary 6.5. Let R be a field or a local ring.

(1) ∆H,PV is the largest quotient of PH,V all of whose composition
factors have the form SK,W where (K,W ) ≤ (H,V ) (that is,
where H is a section of K).

(2) ∆H,V is the largest quotient of PH,V whose radical only has com-
position factors of the form SK,W where (K,W ) < (H, V ) (or
in other words, where H is a proper section of K).

Proof. (1) By Theorem 6.3 and Proposition 6.4 there is a short exact
sequence 0→M → PH,V → ∆H,PV → 0 where M has a filtration with
factors ∆J,U where J is a proper section of H, and it follows that M
is generated by its values on proper sections of H. From this it follows
that any larger quotient of PH,V than ∆H,PV must have a composition
factor which is non-zero on a proper section of H, and from this the
result follows.

(2) We will show that ∆H,V is the largest quotient of ∆H,PV all of
whose composition factors are SK,W where (K,W ) < (H, V ), except
for the top composition factor SH,V . This will suffice to prove the result
since the largest quotient of PH,V with the same property is certainly
a quotient of ∆H,PV , by part (1).

We consider the short exact sequence of ROutH-modules 0→ L→
PV → V → 0 where L is the radical of PV and apply one of the functors
of Proposition 5.2 to get a sequence

∆H,L → ∆H,PV → ∆H,V → 0.

This sequence is exact since the functor we have applied is a left adjoint.
Now ∆H,L is generated by its value at H, and from this it follows that
any quotient of ∆H,PV larger than ∆H,V must have a composition factor
which is non-zero at H. This implies the result. �

The identification of standard and costandard objects has some im-
mediate consequences to do with the values of Hom and Ext between
∆ and ∇ functors which are listed in [36, Prop. 3.1], for example. In
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our particular situation the general formulas which appear there can
be improved, and we present the stronger versions here.

Proposition 6.6. Let H and K be finite groups, let V be a ROutH-
module let W be an ROutK-module and let M be a globally defined
Mackey functor. We have

(1) Hom(∆H,V ,M) = 0 and Hom(M,∇H,V ) = 0 unless M is non-
zero on a section of H. In particular, Hom(∆H,V ,∆K,W ) = 0
and Hom(∇K,W ,∇H,V ) = 0 unless K is a section of H.

(2)

Hom(∆H,V ,∇K,W ) =

{
HomROutH(V,W ) if H = K,
0 if H 6∼= K,

the isomorphism in case H = K being induced by evaluation at
H.

(3) For any M , if either Ext1(∆H,V ,M) 6= 0 or Ext1(M,∇H,V ) 6=
0 then M is non-zero on some section of H; if V is further
assumed to be projective then M must be non-zero on some
proper section of H.

(4)

Ext1(∆H,V ,∇K,W ) =

{
Ext1

ROutH(V,W ) if H = K,
0 if H 6∼= K.

Proof. (1) and (2) are immediate from the adjoint properties of ∆ and
∇ expressed in Proposition 5.2, together with the fact that ∆H,V and
∇H,V are only non-zero on groups which have H as a section.

For (3) and (4) we calculate Ext1(∆H,V ,∇K,W ) using the start of
a projective resolution which appears as the top row of the following
diagram:

0 −→ K −→ P −→ ∆H,V −→ 0y y ‖

0 −→ X −→ ∆H,P (H) −→ ∆H,V −→ 0.

Here P is a projective globally defined Mackey functor which we take to
be generated at H since ∆H,V is generated at H. Now by Theorem 6.3
P has a ∆-filtration whose top term is I<HP . The map P → ∆H,V

vanishes on I<HP which is generated on proper sections of H, so it
factors as P → P(H) → ∆H,V , and by Theorem 6.3 and Proposition 6.4

P(H)
∼= ∆H,P (H) where P (H) is a projective ROutH-module. This

explains the middle vertical morphism. We define X and K in this
diagram to be the kernels of the horizontal maps on the right. We
see from this diagram that the map K → X is an epimorphism, and
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in fact its kernel has a ∆-filtration with factors generated at proper
sections of H. Consider the short exact sequence of ROutH-modules
0 → I → P (H) → V → 0 where I is defined as the kernel. Since
the functor of Proposition 5.2 is a left adjoint we deduce that ∆H,I →
∆H,P (H) → ∆H,V → 0 is exact, and from this we deduce that X is an
image of ∆H,I and so is generated at H.

We compute Ext by an exact sequence

Hom(P,M)→ Hom(K,M)→ Ext(∆H,V ,M)→ 0.

Since K has a filtration with factors which are generated on sections
of H, we deduce that Hom(K,M) is zero unless M is non-zero on a
section of H, and this proves the very first part of (3). If V =

⊕
PVi is

projective then we could have chosen P =
⊕

PH,Vi so that X = 0 and
K is generated by its values on proper sections of H. We deduce that
Hom(K,M) is zero unless M is non-zero on a proper section of H, and
this proves the second statement of (3) in the case of ∆H,V . The parts
of (3) about ∇H,V follow by duality.

In the situation of (4), we deduce from (3) that the Ext group is
zero unless both H is a section of K and K is a section of H, which
forces H ∼= K. In case H = K with M = ∇H,W , since the kernel
of K → X is generated on proper sections of H any homomorphism
K → ∇H,W must vanish on that kernel. We deduce that the sequence
which computes Ext identifies as

Hom(∆H,P (H),∇H,W )→ Hom(X,∇H,W )→ Ext(∆H,V ,∇H,W )→ 0.

The morphism ∆H,I → X previously described is an isomorphism on
evaluation at H, and so its kernel is generated at groups which have
H as a proper section. It follows from the adjoint property of ∇ that
there is no non-zero homomorphism from this kernel to ∇H,W and so
Hom(X,∇H,W ) → Hom(∆H,I ,∇H,W ) is an isomorphism. Furthermore
by the adjoint properties of ∆ and ∇ we have Hom(∆H,I ,∇H,W ) ∼=
HomROutH(I,W ) and Hom(∆H,P (H),∇H,W ) ∼= HomROutH(P (H),W ).
We deduce that the sequence which computes Ext identifies as

HomROutH(P (H),W )→ HomROutH(I,W )→ Ext(∆H,V ,∇H,W )→ 0.

Since this sequence also computes ExtROutH(V,W ) this completes the
proof. �

We comment that in the situation with H = K in part (4) of the
above result, the isomorphism of Ext groups is induced by evaluation at
H, in the sense that an extension of globally defined Mackey functors
on evaluation at H gives an extension of ROutH-modules.
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7. Highest weight categories of globally defined Mackey
functors

We start this section with the proof of Theorem 7.2 which states that
when R is a field of characteristic zero, MackX ,YR (D) is a highest weight
category (except that we fail to verify one of the finiteness conditions
when D is infinite). After that we show that restriction of functors
from D to a smaller class E preserves the highest weight structure.

Recall from the introduction that we put a partial order on the set

Λ = {(H,V )
∣∣H is a group,

V is a simple ROutH-module,

both taken up to isomorphism}

which is slightly, but importantly, different to the preorder considered
at the end of the last section. The partial order is determined by
putting (H,V ) > (K,W ) if and only if H is a proper section of K.
The point is that with this partial order, pairs (H,V ) and (H,W ) are
only comparable if V ∼= W , which was not the case with the preorder.
It is also possible to work with a partial order which refines this one,
such as that determined by (H,V ) > (K,W ) if and only if |H| < |K|.
The statements of results and the proofs remain the same.

We start by stating the essential features which make a highest
weight category, ignoring for the moment the finiteness conditions.

Proposition 7.1. Let R be a field, H a group and V a simple
ROutH-module.

(1) The functor ∆H,V has a unique simple quotient and ∇H,V has a
unique simple submodule, each isomorphic to SH,V . Moreover,
all the other composition factors of ∆H,V and ∇H,V have the
form SK,W with (K,W ) < (H,V ). Each composition factor
occurs with finite multiplicity, and we have

[∆H,V : SK,W ] = [∇H,V ∗ : SK,W ∗ ].

(2) Assuming R has characteristic zero, the indecomposable projec-
tive PH,V has a finite length filtration in which the top factor is
isomorphic to ∆H,V , the remaining factors being isomorphic to
∆K,W with W simple and (H,V ) < (K,W ).

(3) Assuming R has characteristic zero, the indecomposable injec-
tive IH,V has a finite length filtration in which the bottom factor
is isomorphic to ∇H,V , the remaining factors being isomorphic
to ∇K,W with W simple and (H, V ) < (K,W ).
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Proof. The statements for the ∇H,V follow by duality from the corre-
sponding statements for the ∆H,V using Corollary 5.9 and Corollary 4.4,
and so we only give proofs for the ∆H,V .

(1) We have seen in Corollary 5.5 that ∆H,V has a unique simple
quotient SH,V . Since ∆H,V (H) = SH,V (H) = V the composition factor
SH,V occurs in ∆H,V with multiplicity one, and because ∆H,V (K) = 0
unless H is a section of K, all other composition factors SK,W of ∆H,V

have (K,W ) < (H, V ). Each composition factor multiplicity [∆H,V :
SK,W ] is finite since it is at most the multiplicity [∆H,V (K) : W ] and
dim ∆H,V (K) is finite.

(2) Since PH,V is generated by its value at H we have PH,V =
(PH,V )≤H , and on arranging the sections of H in some order of non-
decreasing size 1 = H1, . . . , Hn = H we obtain a filtration of PH,V in
which the factors are (PH,V )(Hr) = ∆Hr,PH,V (Hr)

by Theorem 6.3. Since

R is a field of characteristic zero we may write PH,V (Hr) = U1⊕· · ·⊕Ut,
a direct sum of simple ROutHr-modules, and now

∆Hr,PH,V (Hr)
∼= ∆Hr,U1 ⊕ · · · ⊕∆Hr,Ut ,

a finite direct sum. Thus PH,V is filtered by ∆K,W with (K,W ) >
(H,V ), except for the factor (PH,V )(H), and each isomorphism type of
∆K,W appears only finitely many times. We saw in Proposition 6.4
that (PH,V )(H)(H) = V — the projective cover of V here — so that
(PH,V )(H)

∼= ∆H,V . Thus ∆H,V occurs precisely once, at the top of the
filtration. �

We come now to one of the main results of this paper.

Theorem 7.2. Let R be a field of characteristic zero. With respect to
the partial order on the simple objects defined above, and when D is
finite, MackX ,YR (D) is a highest weight category. When D is not finite,

MackX ,YR (D) is still a highest weight category, except that indecompos-
able injectives might conceivably not be unions of their subobjects of
finite length.

Proof. We verify the conditions for MackX ,YR (D) to be a highest weight
category given in Definition 3.1 of [16]. In view of Proposition 7.1
we only need to consider the various finiteness conditions which are
required.

When D is finite the global Mackey algebra µX ,YR (D) is finite di-
mensional and the finiteness conditions mentioned in 3.1 of [16] are
automatically satisfied. In this case the proof is complete.

When D contains infinitely many isomorphism classes of groups,
most of the remaining conditions in the definition of a highest weight
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category are straightforward to check. The poset Λ is clearly interval-
finite; and the Grothendieck condition B ∩

⋃
Aα =

⋃
(B ∩ Aα) for

subobjects B and Aα of an object X holds because globally defined
Mackey functors are modules for an algebra. The various IH,V provide
enough injectives. The most complicated thing to verify is that the
IH,V and the ∇H,V are the union of their subobjects of finite length.
We leave this condition unverified. �

We now show that the highest weight structure behaves well under
restriction and induction between section closed sets of finite groups
E ⊆ D. We have already seen in Proposition 3.1 that a simple func-
tor on D restricts to a simple functor with the same parametrization
or zero, and in Proposition 3.3 and Corollary 5.4 we have seen that
indecomposable projective and ∆ functors restrict and induce to each
other, preserving the parametrization. By duality (over a field), the
same thing is true of the indecomposable injective and ∇ functors. It
follows from this that when H is a group in E the composition factor
multiplicites of the SH,V and the filtration multiplicites of the ∆H,V in
the PH,V may be computed by first restricting to E . We can in fact say
more than this.

Proposition 7.3. Let R be a field of characteristic zero, let E ⊆ D be
section-closed sets of finite groups and let DPH,V be an indecomposable

projective object of MackX ,YR (D), where H is a group in E. Suppose
that

0 = Pr ⊆ Pr−1 ⊆ · · · ⊆ P1 ⊆ P0 = PDH,V

is a filtration of DPH,V with ∆ factors. Then on restriction to MackX ,YR (E)
the terms Pi ↓DE are a filtration of EPH,V with factors D∆K,W ↓DE =
E∆K,W , where the left superscripts D and E indicate the domain of def-
inition of these functors. The subfunctors Pi are all projective relative
to E so that we have Pi ∼= Pi ↓DE ↑DE . We have an equality of filtration
multiplicities:

[DPH,V : D∆K,W ] = [EPH,V : E∆K,W ].

Similar statements hold for filtrations of injective functors with ∇ fac-
tors and the corresponding filtration multiplicities.

Proof. The initial statements about restricting the filtration are clear
since restriction is an exact functor and by Corollary 5.4 the ∆ factors
restrict correctly. The statement about filtration multiplicities is a
consequence.
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To prove projectivity relative to E of the Pi, consider the short exact
sequences 0 → Pi+1 ↓DE→ Pi ↓DE→ (Pi/Pi+1) ↓DE→ 0 and apply induc-
tion ↑DE , which is right exact. We deduce that on evaluation at each
group G in D,

dimPi ↓DE ↑DE (G)− dimPi+1 ↓DE ↑DE (G) ≤ dim(Pi/Pi+1) ↓DE ↑DE (G)

with equality for all G if and only if dimPi+1 ↓DE ↑DE→ dimPi ↓DE ↑DE is a
monomorphism. Summing these equalities we obtain

dimPH,V (G) = dimPH,V ↓DE ↑DE (G) ≤
r−1∑
i=0

dim(Pi/Pi+1) ↓DE ↑DE (G)

with equality for all G if and only if the dimPi ↓DE ↑DE form a filtration
of PH,V . The factors Pi/Pi+1 all have the form ∆K,W and we know
that the natural counit map ∆K,W ↓DE ↑DE→ ∆K,W is an isomorphism by
Corollary 5.4. Thus the inequality of dimensions is indeed an equality,
since the terms in the sum are the dimensions of the factors in the
original filtration of PH,V . We deduce that the Pi ↓DE ↑DE form a filtration
of PH,V isomorphic by the natural counit map to the original filtration,
and in particular Pi ∼= Pi ↓DE ↑DE . �

8. The Cartan matrix of globally defined Mackey
functors

In this section we prove when R is a field that the Cartan matrix
of MackX ,YR (D) is non-singular in many circumstances, and that when
X = Y and R is sufficiently large it is symmetric. Here, when we say
that R is sufficiently large we will mean that R is a splitting field for
OutH, for all H in D.

We start by showing symmetry of the Cartan matrix in case R is a
sufficiently large field of characteristic zero. It follows from Proposi-
tion 7.3 that to compute the numbers

c(H,V ),(K,W ) = [PK,W , SH,V ]

which are the entries in the Cartan matrix it suffices to assume D is
a section-closed set of groups which contains K and H, and so for
such a computation we may assume D is finite. Thus MackX ,YR (D) is

a highest weight category by Theorem 7.2, or equivalently µX ,YR (D) is
a quasi-hereditary algebra. We exploit BGG reciprocity [19, Lemma
2.5], which states in this context that [PK,W : ∆J,U ] = [∇J,U : SK,W ].
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Thus

(8.1)

c(H,V ),(K,W ) =
∑
(J,U)

[PK,W : ∆J,U ][∆J,U , SH,V ]

=
∑
(J,U)

[∇J,U : SK,W ][∆J,U , SH,V ]

over a large enough field. We now compute the numbers [∇J,U : SK,W ].

Lemma 8.1. (1) [∇YH,V : SX ,YK,W ] = [∆YH,V ∗ : SY,XK,W ∗ ] where the super-

scripts indicate that the functors on the left belong to MackX ,YR (D)

and the functors on the right belong to MackY,XR (D).
(2) If X = Y and R is a field of characteristic zero we have

[∆H,V ∗ : SK,W ∗ ] = [∆H,V : SK,W ]

and

[∇H,V : SK,W ] = [∆H,V : SK,W ].

Proof. (1) This is an application of the duality ∗ : MackX ,YR → MackY,XR
under which SX ,YK,W → SY,XK,W ∗ , ∆XH,V → ∇XH,V ∗ and ∇YH,V → ∆YH,V ∗ ,
preserving multiplicities in filtrations.

(2) When X = Y and R is a field of characteristic zero we have
for each group G, from Proposition 5.1, that ∆H,V ∗(G) ∼= ∆H,V (G)∗

and ∆H,V (G) ∼= ∇H,V (G) as ROutG-modules, since a module and
its dual have isomorphic fixed points. Also in this case SK,W ∗(G) ∼=
(SK,W )∗(G) ∼= (SK,W (G))∗. Since the multiplicity of a simple functor
as a composition factor in another functor M is determined by the
modules M(G) as G varies (using the method of [32] and [31]), we see
that the composition factors of ∆H,V ∗ are the duals of the composition
factors of ∆H,V , and these are the same as the composition factors of
∇H,V . �

Corollary 8.2. Suppose that X = Y and let R be an algebraically
closed field of characteristic zero. The Cartan matrix of globally defined
Mackey functors MackX ,YR is symmetric.

In fact, we see that to guarantee the symmetry of Cartan invariants
such as

c(H,V ),(K,W ) = c(K,W ),(H,V )

we need only suppose that R is a splitting field for all groups OutL
where L ranges through the sections of H and K.



50 PETER WEBB

Proof. By the last lemma and the preceding remarks we have

c(H,V ),(K,W ) =
∑
(J,U)

[∇J,U : SK,W ][∆J,U , SH,V ]

=
∑
(J,U)

[∆J,U : SK,W ][∆J,U , SH,V ]

which is symmetric in (K,W ) and (H, V ). �

Our next step in proving that the Cartan matrix of globally defined
Mackey functor is symmetric over an arbitrary sufficiently field R when
X = Y is to invoke a generalization of Brauer’s theory of the decompo-
sition map from characteristic zero to characteristic p due to Geck and
Rouquier [22, Sect. 2.3]. For the convenience of the reader we give a
discussion of this generalization adapted to our purposes here. Let O
be a complete discrete valuation ring with quotient field K of charac-
teristic 0 and residue field k of characteristic p. Let A0 be an O-order
in a finite dimensional K-algebra A. We will write CK for the Cartan
matrix of A-modules and Ck for the Cartan matrix of k⊗OA0-modules.
We refer to [5] for standard facts about decomposition modulo p.

Every finite dimensional A-module M contains a full A0-lattice M0

(see [5, 1.9.1]) and now the theorem of Brauer and Nesbitt states that
the composition factors of k⊗OM0 as a k⊗OA0-module are determined
independently of the choice of M0 in M . The assignment [M ] 7→ [k⊗O
M0] is the decomposition map d in the following commutative square:

K0(A)
cK−→ G0(A)

e

x yd
K0(k ⊗O A0)

ck−→ G0(k ⊗O A0)

Here we write K0 for the Grothendieck group of finitely generated pro-
jective modules, and G0 for the Grothendieck group of all finitely gener-
ated modules, the maps cK and ck being the Cartan homomorphisms.
The map e is specified by [P ] 7→ [K ⊗O P̂ ] where P is a projective

k⊗OA0-module and P̂ is a projective A0-module for which k⊗O P̂ ∼= P .
We have bilinear forms

K0(A)×G0(A)→ R and K0(k ⊗O A0)×G0(k ⊗O A0)→ R

given by 〈[P ], [M ]〉 = dimK Hom(P,M) in the first case and 〈[P ], [M ]〉 =
dimk Hom(P,M) in the second, and with respect to these bilinear
forms, in both cases, the classes of indecomposable projective mod-
ules [PS] and the classes of simple modules [S] are dual bases so that
the forms are non-degenerate.
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Theorem 8.3. (Geck and Rouquier [22, Sect. 2.3]) Let K be a splitting
field for A and k a splitting field for k ⊗O A0. With respect to these
bilinear forms, e is the transpose of d. Thus if D is the matrix of e
with respect to the bases of projective modules, then DT is the matrix
of d with respect to the bases of simple modules, and the Cartan matrix
of k ⊗O A0 is given by

Ck = DTCKD.

Proof. The proof is the same as that given in [5, 1.9.6] with the final
statement modified to account for the fact that A need not be semisim-
ple. Let us write the decomposition matrix as D = (dST ) where S
ranges over simple A-modules, T ranges over simple k⊗O A0-modules,
so that D is the transpose of the matrix of d. Then

dST = dim Homk⊗OA0(PT , k ⊗O S0)

= rankO HomA0(P̂T , S0) since P̂T is projective

= dimK HomA(K ⊗O P̂T , S)

= multiplicity of PS as a summand of K ⊗O P̂T .

The last number is the (S, T ) entry of the matrix of e. �

Corollary 8.4. In the above situation, if the Cartan matrix CK of A
is symmetric, then so is the Cartan matrix Ck of k ⊗O A0.

Putting these facts together we obtain one of our main results.

Theorem 8.5. Let R be an algebraically closed field, suppose that X =
Y and let D be a section-closed set of finite groups. Then the Cartan
matrix of globally defined Mackey functors defined on D is symmetric.

We now turn to proving that the Cartan matrix of globally defined
Mackey functors is non-singular. We first say what we mean by this,
bearing in mind that the matrix has infinitely many rows and columns,
and in each row or column infinitely many of the entries may be non-
zero. We can regard a column as determining an element of the product
of copies of R indexed by the simple globally defined Mackey functors.
By saying that the Cartan matrix is non-singular we will mean that
the columns are linearly independent elements of this space.

Theorem 8.6. Let R be a field, let D be a section-closed set of finite
groups, and in case R has positive characteristic suppose that X = Y.
Then the Cartan matrix of the category MackX ,YR (D) of globally defined
Mackey functors defined on D is non-singular.
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Proof. Step 1. We claim that it is sufficient to show that the result is
true for all finite such sets of groups D. For, if [P ] denotes the column
of the Cartan matrix corresponding to an indecomposable projective
P and we have a linear combination

∑n
i=1 λi[Pi] = 0, then there is a

finite set of groups D closed under sections such that all the Pi are
generated by their values in D. Now by Proposition 3.3 the Pi ↓D
are indecomposable projectives defined on D corresponding to distinct
columns of the Cartan matrix of D, and

∑n
i=1 λi[Pi ↓D] = 0. Assuming

that the Cartan matrix for globally defined Mackey functors defined
on D is non-singular, we deduce that λi = 0 for all i.

Step 2. We show that we may assume R is a splitting field. To
establish this, let R ⊂ R1 be any separable field extension and consider
the corresponding homomorphism of Grothendieck groups

G0(MackX ,YR (D))→ G0(MackX ,YR1
(D)).

Note that if S is any simple globally defined Mackey functor defined
over R then the class [R1⊗RS] is a sum of simple classes which are dis-
joint from the simple classes which arise from the other non-isomorphic
simples T , by considering the effect of an idempotent eS ∈ µX ,YR (D) for
which eSS = S and eST = 0. The effect on indecomposable projectives
PS is therefore similar, and [R1⊗R PS] is a sum of classes of projective
covers of composition factors of R1⊗S and therefore disjoint from the
indecomposable projectives which arise starting from a non-isomorphic
PT . Assuming that the classes of indecomposable projectives are inde-
pendent in G0(MackX ,Y‘

R1
(D)) it follows that the [R1 ⊗R PS] are inde-

pendent there, and hence the [PS] are independent in G0(MackX ,YR (D))
since their images are independent.

Step 3. We suppose that D is finite and that K is a large enough
field of characteristic zero. It was explained before Lemma 8.1 that by
BGG reciprocity the Cartan matrix has the form CK = ΓΘ where Θ is
the matrix with entries [∆J,U : SH,V ] and Γ is the matrix with entries
[PH,V : ∆J,U ]. Since both Γ and Θ are unitrianglar it follows that CK is
non-singular in this case, regardless of X and Y . If we assume further
that X = Y then by Lemma 8.1 and BGG reciprocity we have Γ = ΘT ,
and this decomposition will be used in the rest of the proof for positive
characteristic.

Step 4. We assume that R is the field k in a splitting p-modular
system (K,O, k). By Theorem 8.3 the Cartan matrix has the form
Ck = DTCKD where D is the decomposition matrix. Thus on the
assumption that X = Y we have Ck = (ΘD)TΘD. We show that
ΘD has maximal rank, by which we mean rank equal to the number of
simple globally defined Mackey functors on D defined over k. From this
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it will follow that Ck is invertible, as in [31, Lemma 7.4]. (Note that an
important hypothesis was omitted from the statement of [31, Lemma
7.4], namely the hypothesis that the matrices under consideration be
real. The proof given there is valid with this assumption.) Since Θ is
unitriangular, it suffices to show that D has maximal rank. However
this follows by exactly the same argument as that used to prove [31,
Cor. 7.5]: the simple globally defined Mackey functors are determined
by their list of values at groups H as kOut(H)-modules, and for every
group H the decomposition map G0(K Out(H)) → G0(kOut(H)) is
known to be surjective by standard theory.

This completes the proof. �

9. Semisimplicity

The main result in this section is Theorem 9.5, which says that when
R is a field of characteristic zero, MackX ,YR is semisimple if and only if
X = Y = 1. After that we will discuss the semisimplicity of the rings
AX ,YR (G,G). Since we will allow X and Y to vary in this section we

will write the functors SH,V , ∆H,V and ∇H,V as SX ,YH,V , ∆XH,V and ∇YH,V
to remind us of the category MackX ,YR to which they belong. We start
with a more general result.

Proposition 9.1. Let X and Y be sets of finite groups closed under
taking sections and extensions, and let R be a field of characteristic
zero. In MackX ,1R we have that ∇1

H,V = SX ,1H,V is simple and ∆XH,V = PX ,1H,V

is indecomposable projective. In Mack1,Y
R we have that ∆1

H,V = S1,Y
H,V is

simple and ∇YH,V = I1,Y
H,V is indecomposable injective. Thus the values

of the SX ,1H,V and the S1,Y
H,V are independent of X and Y in this situation.

Proof. We start with the explicit description of the simple functors
when X = Y = 1, given in [32]:

S1,1
H,V (G) =

⊕
α:H∼=L≤G

up toG−conjugacy

tr
NG(L)
L (αV )

for each group G. Since R is a field of characteristic zero we have

tr
NG(L)
L (αV ) = αV NG(L) = αVNG(L),

and since the double cosets AutH\ Sec1(G,H)/G biject with the con-
jugacy classes of subgroups of G isomorphic to H we have

dimS1,1
H,V (G) = dim ∆1

H,V (G) = dim∇1
H,V (G).
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Now ∆1
H,V has S1,1

H,V as an image and ∇1
H,V has S1,1

H,V as a subfunctor,

so S1,1
H,V
∼= ∆1

H,V
∼= ∇1

H,V are simple as functors in Mack1,1
R . It follows a

fortiori that ∆1
H,V is simple as a functor in Mack1,Y

R and ∇1
H,V is simple

as a functor in MackX ,1R . From BGG reciprocity (explained before 8.1)
we have

[PX ,1H,V : ∆XJ,U ] = [∇1
J,U : SX ,1H,V ] = δ(H,V ),(J,U)

so that ∆XH,V = PX ,1H,V is indecomposable projective, and by the dual

argument ∇YH,V = I1,Y
H,V is indecomposable injective. �

As a consequence we obtain one of the implications which will appear
in Theorem 9.5.

Corollary 9.2. When R is a field of characteristic zero, Mack1,1
R is

semisimple.

Proof. We take X = Y = 1 in Proposition 9.1 and deduce in this
situation that S1,1

H,V = P 1,1
H,V = I1,1

H,V is simple, injective and projective.
From this semisimplicity follows. �

Here is a more elaborate version of the same ideas:

Corollary 9.3. Let X ′ ⊆ X be closed under taking sections and exten-
sions and let R be a field of characteristic zero. The simple functors in

MackX ,1R restrict to simple functors in MackX
′,1

R . The Cartan matrix of

MackX ,1R is unitriangular. Every functor in MackX ,1 of finite composi-
tion length has finite injective dimension. Similar statements hold for
Mack1,X

R , except that every finite length functor in Mack1,X has finite
projective dimension.

Proof. Aside from the fact that they are defined on different sets of mor-

phisms, both SX ,1H,V and SX
′,1

H,V are the same as ∇1
H,V by Proposition 9.1.

From this it follows that SX ,1H,V restricts to SX
′,1

H,V . Since ∆XH,V = PX ,1H,V ,

again by Proposition 9.1, all composition factors SX ,1K,W of PX ,1H,V have

H a proper section of K, except for a single composition factor SX ,1H,V .
Thus if we order the simple functors so that |H| is non-decreasing the

Cartan matrix of MackX ,1R is unitriangular.

We deduce from this also that Ext(SX ,1K,W , S
X ,1
H,V ) = 0 unless K is

a proper section of H, and from this it follows that the composition
factors of the injective envelope IX ,1H,V of SX ,1H,V are all of the form SX ,1K,W

with K a proper section of H, apart from a single composition factor
SX ,1H,V . This shows that the matrix of composition factor multiplicities of



STRATIFICATIONS AND MACKEY FUNCTORS II 55

the indecomposable injectives is unitriangular, and from this it follows
by duality that the Cartan matrix of Mack1,X

R is unitriangular.

It follows from this also that each finite length functor in Mack1,X
R

has a finite injective resolution. Given such a functor M we may find
a monomorphism to an injective functor so that the cokernel has com-
position factors associated to groups which are all proper sections of
at least one of the groups associated to composition factors of M . Re-
peating this process, the groups get strictly smaller at each stage and
it must eventually terminate. The fact that finite length functors in
Mack1,X have finite projective dimension follows by duality. �

We relate the different functors ∆ and S which arise as X and Y
vary, by way of preparation for Theorem 9.5.

Proposition 9.4. Let X ,Y ,X ′,Y ′ be sets of finite groups closed under
taking sections and extensions. If K is a group lying in both X and

X ′ then SX ,YH,V (K) = SX
′,Y

H,V (K) and ∆XH,V (K) = ∆X
′

H,V (K) for all H and

V . Similarly, if K is a group lying in both Y and Y ′ then SX ,YH,V (K) =

SX ,Y
′

H,V (K) and ∇YH,V (K) = ∇Y ′H,V (K) for all H and V .

Proof. Suppose K lies in both X and X ′ and let D be the full subcat-
egory of CX ,YR whose objects are the sections of K. Now by Proposi-

tion 3.1 SX ,YH,V ↓D and SX
′,Y

H,V ↓D are the simple functors in MackX ,YR (D)

and MackX
′,Y

R (D) parametrized by (H, V ). However MackX ,YR (D) =

MackX
′,Y

R (D) since the groups whose isomorphism types lie in both X
and D are the same as those lying in both X ′ and D. Thus SX ,YH,V (K) =

SX
′,Y

H,V (K). A similar argument proves the corresponding assertion for
∆ using Corollary 5.4.

We deduce the second half of the statement of the proposition from
the first using duality. �

Theorem 9.5. Let X and Y be sets of finite groups closed under taking
sections and extensions, let all be the class of all finite groups, and let
R be a field of characteristic zero. Then MackX ,YR (all) is semisimple if
and only if X = Y = 1.

Proof. We show that if either X 6= 1 or Y 6= 1 then the category of
functors MackX ,YR is not semisimple, the other half of the proof having

been dealt with in Proposition 9.2. Since MackX ,YR is in duality with

MackY,XR , each of these categories is semisimple if the other one is, and
so we will only treat the case X 6= 1. Our approach will be to show that
∆X1,R 6= SX ,Y1,R , and since by Corollary 5.5 ∆X1,R has SX ,Y1,R as its unique



56 PETER WEBB

simple quotient it will follow that ∆X1,R is not a direct sum of simple
functors.

Supposing now that X 6= 1, there is some non-identity group in
X , and hence for some prime p, X contains all p-groups since X is
supposed to be closed under taking extensions and sections. From its
definition we have that ∆all

1,R = b, the Burnside ring functor, regardless
of what Y is. It is shown in [7] that there is a p-group K for which

Sall,all
1,R (K) 6= b(K) (in the terminology of Bouc, a b-group will have this

property). Since K lies in X we have by Proposition 9.4 that

SX ,all
1,R (K) = Sall,all

1,R (K) 6= b(K) = ∆all
1,R(K) = ∆X1,R(K).

In fact the left hand side has smaller dimension than the right since
Sall,all

1,R is an image of b. We claim that dimSX ,Y1,R (K) ≤ dimSX ,all
1,R (K).

This is because we may restrict the category of definition of SX ,all
1,R from

CX ,all
R to CX ,YR , and now it is a functor which must have SX ,Y1,R as a

composition factor since the latter is the only simple functor which
does not vanish at 1. Putting all this together we have dimSX ,Y1,R (K) ≤
dimSX ,all

1,R (K) < dim ∆X1,R(K), and we conclude that SX ,Y1,R 6= ∆X1,R. As

commented earlier this implies that MackX ,YR is not semisimple. �

It is a very interesting question to study the structure of the rings
AX ,YR (G,G) which arise as the endomorphism rings of the objects in

CX ,YR , and also as the endomorphism rings of the representable globally

defined Mackey functors AX ,YR ( , G). It is a theorem of Bouc ([7]
and private communication) and Barker [4] that when R is a field of

characteristic zero the ring Aall,all
R (G,G) is semisimple if and only if G is

cyclic. We conclude this section with a result about the semisimplicity
of such rings for different X and Y .

Theorem 9.6. (1) Let R be a field of characteristic zero and G a
finite group. The ring A1,1

R (G,G) is semisimple.

(2) The ring Aall,1
R (C2, C2) is not semisimple for any choice of ring

R.
(3) The representable functor Aall,1

R ( , C2) is not a direct sum of
simple functors for any choice of ring R.

Proof. (1) This follows from Corollary 9.2 (half of Theorem 9.5) since
the representable functor A1,1

R ( , G) is semisimple and by Yoneda’s

lemma has A1,1
R (G,G) as its endomorphism ring.

(2) We compute the structure of Aall,1
R (C2, C2) in the most direct

way. There are, up to isomorphism, three transitive C2 × C2-bisets
with identity stabilizers in the second factor. These are: the identity
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element in the ring Aall,1
R (C2, C2), which is the set C2 with both C2

factors acting regularly, and which we denote 1; another set C2 with
the second C2 factor acting regularly and the first factor acting trivially,
which we denote A; and lastly the regular representation R of C2×C2.
These bisets form a basis of Aall,1

R (C2, C2). We readily compute that
A ◦ R = 2A and R ◦ A = R, so ARX ,Y(C2, C2) is non-commutative.
Since this ring has dimension 3 it cannot be semisimple, for otherwise
it would have at least a 2 × 2 matrix summand (over an algebraically
closed extension field).

(3) By Yoneda’s lemma, the representable functor Aall,1
R ( , C2) has

Aall,1
R (C2, C2) as its endomorphism ring, and if it were a direct sum of

simple functors its endomorphism ring would be semisimple. �

10. Classifying spaces of finite groups

We describe an application to stable homotopy classes of maps

[(BG+)∧p , (BK+)∧p ]

where BG+ denotes the suspension spectrum constructed from the clas-
sifying space BG to which a base point has been adjoined, and (−)∧p
denotes p-completion. We will see that global Mackey algebras arise
naturally in this context.

Proposition 10.1. Let D be a finite, section-closed set of finite groups
and consider the p-completed suspension spectrum B =

∨
G∈D(BG+)∧p .

Then the endomorphism ring of stable maps [B,B] is Morita equivalent

to the global Mackey algebra µ1,all
Zp (Dp), where Dp consists of the p-

groups in D

Proof. As described in [32], there is an equivalence of categories be-
tween the full subcategory of the category of spectra whose objects
are the wedges of summands of the (BG+)∧p , and the full subcate-

gory of Mackall,1
Zp whose objects are the direct sums of indecomposable

projectives PH,V with H a p-group. The indecomposable summands
of (BG+)∧p all correspond under this equivalence to projectives of the
form PH,V with H a p-subgroup of G, and every PH,V for which H is
a Sylow p-subgroup of G does arise in this way. It follows that the
endomorphism ring [B,B] is isomorphic to EndMackall,1

Zp
(
⊕

H∈Dp P
aH,V
H,V )

where the aH,V are certain multiplicities, each projective PH,V occuring
with non-zero multiplicity. Since these are exactly the indecomposable
projectives in Mackall,1

Zp (Dp) (see [32]), which is the same as the cate-

gory of µall,1
Zp (Dp)-modules, [B,B] is Morita equivalent to the opposite
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ring (µall,1
Zp (Dp))op. This in turn is isomorphic to µ1,all

Zp (Dp) via the anti-
isomorphism which sends a biset to its opposite. �

The following is our main application to the stable maps between
spectra, giving a statement which is outside the context of Mackey
functors.

Corollary 10.2. Let B be the spectrum B =
∨
G∈D(BG+)∧p as above.

Then, on extending scalars to Qp, the endomorphism ring of stable
maps [B,B]⊗Zp Qp is quasi-hereditary.

Proof. This is immediate from Proposition 10.1 and Theorem 7.2. �

In Section 11.4 we will calculate the Cartan matrix of [B,B]⊗Zp Qp

and also of [B,B] ⊗Zp Fp in the case where p = 2 and Dp consists of
the sections of the cyclic, dihedral and quaternion groups of order 8.

11. Calculation of Cartan and decomposition matrices

11.1. Overview of the calculations. The novel feature we have in-
troduced in this paper is that highest weight theory provides a method
for computing the Cartan matrix of MackX ,YR when R is a field of char-
acteristic zero, using formula 8.1 and Corollary 8.2 which states that
the Cartan matrix is symmetric. We then compute Cartan matrices
in positive characteristic by applying Theorem 8.3 which gives a for-
mula in terms of the decomposition matrix and the Cartan matrix in
characteristic zero.

In these calculations we take D to be the set of sections of C8, D8 and
Q8, the cyclic, dihedral and quaternion groups of order 8. For these
groups R = Q and R = F2 are splitting fields for all groups OutH
which arise. The Cartan matrices we compute are thus the Cartan
matrices of the algebras µX ,YR (D) for this choice of D, and by Propo-

sition 3.3 they are also the parts of the Cartan matrices for µX ,YR (all)
whose rows and columns are labelled by pairs (H, V ) where H ∈ D.

To compute decomposition matrices we use the method introduced
in [31] and continued in [32]. To each globally defined Mackey functor
M defined on D we associate the list of evaluations ([M(G)])G∈D where
[M(G)] denotes the element of the Grothendieck group G0(ROutG)
determined by M(G). This list of elements of Grothendieck groups we
call the formal character of M , a term introducted in this context in
[35]. As explained in [35], we may regard the evaluations M(G) as the
weight spaces of M , by analogy with Lie theory. The formal character
of M determines its composition factors, as observed in [32].
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We present the formal character of a functor as a column in a table
where the rows are indexed by pairs (K,W ) where K ranges over all
finite groups and W ranges over simple ROutK-modules. The corre-
sponding entry in the table is the multiplicity with which [W ] appears
in [M(K)]. In the case where the functors M are the simple functors
SH,V this table of values [SH,V (G)] was denoted Ψ in [31] and [32].

The matrices Ψ of formal characters of simple functors are used in sit-
uations where composition factor multiplicities need to be computed.
This arises in the computation of decomposition matrices, since for
these we reduce simple functors from characteristic 0 to characteristic
p and ask for the composition factor multiplicities of the result. In this
situation the formal character of the reduction mod p of a functor is
obtained by reducing mod p each of the terms in the characteristic zero
formal character. We obtain the composition factors of the reduction
by expressing the reduced formal character as a linear combination of
the formal characters of the simple functors in characteristic p. The ma-
trices Ψ are also used in computing Cartan matrices using formula 8.1.
Here we need to know the composition factors of ∆ functors, and these
are obtained by expressing the formal character of the ∆ as a linear
combination of the formal characters of the simple functors.

11.2. Detail of the calculations. These paragraphs are technical
and can be skipped unless the reader has a particular interest in the
calculations.

In calculating the matrices of formal characters of the ∆ and ∇ func-
tors we compute directly the expressions given in Proposition 5.1. The
computation of matrices Ψ of formal characters of the simple func-
tors then proceeds from this using Corollary 5.6 and the remarks at
the start of Section 4 and Proposition 4.1, since SH,V is the quotient
of ∆H,V cogenerated by its value at H. Thus, according to Proposi-
tion 4.1(3), to obtain SH,V (G) we factor out from ∆H,V (G) the value
of the subfunctor

R{H}∆H,V (G) =
⋂

Ω:G→H

Ker ∆H,V (Ω)

where Ω ranges over (H,G)-bisets with G-stabilizers in Y , and because
∆H,V is zero on groups which do not have H as a section, we only need
consider those Ω for which the H-stabilizer is 1 (i.e. which do not factor
through a proper section of H). Such Ω are determined by a section
of G isomorphic to H, or in other words a surjection α : A → H
where A ≤ G. Writing B = Kerα ∈ Y (so that H ∼= A/B) there
is a corresponding biset Ωα = A/B(B\G)G = HHA ◦ AGG. For each
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such section, taken up to conjugacy in G and up to automorphisms of
H, we form the corresponding linear map Ωα : ∆H,V (G) → ∆H,V (H).
Factoring out from ∆H,V (G) the common kernel of all these linear maps
gives SH,V (G).

In fact, ∆H,V (G) itself may be constructed by means of the opposites
of the bisets just considered, but with Kerα ∈ X . Since ∆H,V is
generated by its value at H and is zero on groups which do not have H
as a section, ∆H,V (G) is the sum of all images of maps Ωop

α : ∆H,V (H)→
∆H,V (G). According to the formula of Proposition 5.1 these images lie
in different summands of ∆H,V (G) and so we can recast that formula
as

∆H,V (G) ∼=
⊕

α∈[AutH\ SecX (G,H)/G]

Ωop
α (V ).

Computing R{H}∆H,V (G) is now a question of computing the kernel of
the matrix (ΩβΩop

α )α,β where

α ∈ [AutH\ SecX (G,H)/G], β ∈ [AutH\ SecY(G,H)/G]

and each entry is taken to be the endomorphism of the vector space
V determined by the biset indicated. Thus SH,V (G) identifies as the
cokernel of this matrix, regarded as a quotient of ∆H,V (G). When
dimV = 1 the endomorphism of V determined by each biset ΩβΩop

α is
multiplication by a scalar, and dimSH,V (G) is the rank of the bilinear
form whose matrix has these scalar entries.

We illustrate with a small example by computing Sall,all
C2,R

(Q8) for all
fields R. The quaternion group Q8 has three subgroups A,B and C
which are cyclic of order 4 and a central subgroup Z of order 2. In
the following matrix the rows are indexed by the (C2, Q8)-bisets for
which C2 with trivial stabilizers, and the columns are indexed by their
opposites. With the biset Z\Q8 and its opposite Q8/Z there are three
possible actions of C2, as A/Z, B/Z and C/Z, and each of these three
actions is supposed to occur among the bisets shown.



Q8/A Q8/B Q8/C Q8/Z Q8/Z Q8/Z Q8

A\Q8 1 0 0 0 1 1 0
B\Q8 0 1 0 1 0 1 0
C\Q8 0 0 1 1 1 0 0
Z\Q8 0 1 1 2 0 0 0
Z\Q8 1 0 1 0 2 0 0
Z\Q8 1 1 0 0 0 2 0
Q8 0 0 0 0 0 0 4


As an example, the entry in row 1 column 4 is computed by taking the
biset product (A\Q8) ◦ (Q8/Z) where the second biset has an action
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of C2 via A/Z. This product has two elements permuted freely by the
group C2 on the left, but fixed by the C2 on the right. Since the action
on one side is not free, the biset factors through 1 and acts as zero on
∆C2,R, giving a matrix entry 0. On the other hand when the action on
the right is via B/Z or C/Z the product biset is two elements with a
free action on each side, giving an entry 1. The rank of this matrix is
7 unless R has characteristic 2, when the rank is 6, so we deduce

dimSall,all
C2,R

(Q8) =

{
7 if charR 6= 2,

6 if charR = 2.

Furthermore we see that Out(Q8) ∼= S3 permutes the images of the var-
ious bisets in ∆C2,R(Q8) as two copies of the permutation representa-
tion on three points, together with a copy of the trivial representation,
and this is the ROutQ8-module structure of Sall,all

C2,R
(Q8) except that

in characteristic 2 we lose a copy of the trivial representation. This
information provides an entry in Table 11 and an entry in Table 14.

We give another example with cyclic groups.

Proposition 11.1. Let R be a field and p a prime. Then

dimSall,all
Cpr ,R

(Cpr+s) =


s+ 1 if char(R) 6= p or s = 0,

2 if r = 0, s > 0 and char(R) = p,

1 if r > 0 and char(R) = p,

Proof. When r = 0 the matrix with entries ΩβΩop
α has the form

1 1 1 1
1 p p p
1 p p2 p2

1 p p2 p3

. . .


and provided s > 0 this has rank 2 or s+1 or according as char(R) is or
is not p. When r > 0 the matrix is diagonal with entries 1, p, p2, . . . , ps

and this has rank 1 or s+ 1 according as char(R) is or is not p. In any
case, the matrix has rank 1 when s = 0. �

11.3. Cartan, decomposition and formal character matrices
when X = Y = 1. Theorem 9.5 implies that in characteristic 0 the
Cartan matrix is the identity matrix when X = Y = 1.

We present the matrices Ψ of formal characters of simple functors.
When R is a field of characteristic 0 we have SX ,1H,V = ∇1

H,V indepen-
dently of X by Proposition 9.1, and we compute Table 2 directly from
the expression for ∇1

H,V given in Proposition 5.1. Table 2 will be used
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a second time when we consider X = all and Y = 1. Table 3 appears
already in [32] and we copy it from that source. From these tables we
compute in Tables 4 and 5 the decomposition and Cartan matrices at
the prime 2 using Theorem 8.3.



STRATIFICATIONS AND MACKEY FUNCTORS II 63

Table 2. Formal characters of simple functors over Q

SX ,1H,V = ∇1
H,V over Q

Ψ 1 C2 C4 (C2)2 C8 Q8 D8

1 1 1 −1 1 −1 2 1 −13 −15 −17 1 −1 2 1 −1

1 1 1
C2 1 1 1
C4 1 1 1 1
−1 1

(C2)2 1 1 1 1
−1 1

2 1 1
C8 1 1 1 1 1
−13 1
−15 1 1
−17 1

Q8 1 1 1 1 1
−1 1

2 1 1
D8 1 1 2 1 1 1 1
−1 1 1 1 1

Table 3. Formal characters of simple functors over F2.

S1,1
H,V over F2

Ψ 1 C2 C4 (C2)2 C8 Q8 D8

1 1 1 1 2 1 1 2 1

1 1 1
C2 1 1
C4 1 1

(C2)2 1 1
2 1

C8 1 1
Q8 1 1

2 1
D8 1 2 1
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Table 4. Decomposition matrix from Mack1,1
Q to

Mack1,1
F2

S1,1
H,V over F2

Decomposition 1 C2 C4 (C2)2 C8 Q8 D8

matrix 1 1 1 1 2 1 1 2 1

S1,1
K,W 1 1 1 1 1 1 1 1 1

over Q C2 1 1 1 1 1 1 1 1
C4 1 1 1 1 1 1
−1 1 1

C2 × C2 1 1 2
−1 1

2 1
C8 1 1
−13 1
−15 1
−17 1

Q8 1 1
−1 1

2 1
D8 1 1
−1 1

Table 5. Cartan matrix of Mack1,1
F2

P 1,1
H,V over F2

Cartan matrix 1 C2 C4 (C2)2 C8 Q8 D8

1 1 1 1 2 1 1 2 1

S1,1
K,W 1 1 1 1 1 1 0 1 1 0 1

over F2 C2 1 1 2 2 2 1 2 2 0 2
C4 1 1 2 4 2 1 4 3 1 3

(C2)2 1 1 2 2 4 1 2 2 0 4
2 0 1 1 1 2 1 1 0 1

C8 1 1 2 4 2 1 8 3 1 3
Q8 1 1 2 3 2 1 3 5 1 3

2 0 0 1 0 0 1 1 2 1
D8 1 1 2 3 4 1 3 3 1 9
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11.4. Cartan, decomposition and formal character matrices
when X = all and Y = 1. Observe that for any choice of X and
Y and field R the duality between MackX ,YR and MackY,XR means that

the Cartan matrix of MackY,XR is equal to the matrix of composition fac-

tor multiplicities in the indecomposable injective objects of MackX ,YR .
Provided that R is large enough, this is the transpose of the Cartan
matrix of MackX ,YR . Thus the Cartan matrices of Mackall,1

R which we
will compute in this section are the transposes of the Cartan matri-
ces of Mack1,all

R . By the discussion of Section 10 these are the Cartan
matrices of the algebras [B,B]⊗Zp Qp and [B,B]⊗Zp Fp.

We start by computing the Cartan matrix in characteristic zero. Here
we know that ∆all

H,V = P all,1
H,V by Proposition 9.1, and we present the table

of formal characters of these functors which is computed directly from
Proposition 5.1.

Table 6. Formal characters of projectives P all,1
H,V over Q

P all,1
H,V = ∆all

H,V over Q

Ψ 1 C2 C4 (C2)2 C8 Q8 D8

1 1 1 −1 1 −1 2 1 −13 −15 −17 1 −1 2 1 −1

1 1 1
C2 1 2 1
C4 1 3 2 1
−1 1

(C2)2 1 3 2 1
−1 1

2 1 2 1
C8 1 4 3 2 1
−13 1
−15 2 1
−17 1

Q8 1 4 3 1 1 1
−1 1 1

2 1 2 1 1 1
D8 1 6 7 1 2 2 1
−1 2 4 1 1 2 1

Each formal character of P all,1
H,V is now expressed as a linear combina-

tion of the formal characters of the simple functors given in Table 2,
and this gives the Cartan matrix.



66 PETER WEBB

Table 7. Cartan matrix of Mackall,1
Q

P all,1
H,V = ∆all

H,V over Q

Cartan matrix 1 C2 C4 (C2)2 C8 Q8 D8

1 1 1 −1 1 −1 2 1 −13 −15 −17 1 −1 2 1 −1

Sall,1
K,W 1 1 1

C2 1 1 1
C4 1 1 1 1
−1 1

(C2)2 1 1 1 1
−1 1

2 1 1
C8 1 1 1 1 1
−13 1
−15 1
−17 1

Q8 1 1 1 1 1
−1 1 1

2 1 1 1
D8 1 1 2 1 1 1
−1 1 1 1

We turn to the situation where R = F2 and compute the matrix Ψ
of formal characters of simple functors, then the decomposition ma-
trix from characteristic zero to characteristic 2, and finally the Cartan
matrix in characteristic 2 using Theorem 8.3. The matrix Ψ has in ef-
fect been computed previously by people who obtained explicit stable
decompositions of classifying spaces of p-groups (see [26] for a sur-
vey). It was shown in [32, Theorem 6.2] when H is a p-group that
the multiplicity of a summand parametrized by a pair (H,V ) as a
stable summand of the p-completed classifying space (BG+)∧p equals

dimSall,1
H,V (G)/ dim EndFp OutH(V ), and since R = Fp is a splitting field

here, this equals dimSall,1
H,V (G). The multiplicities of all of these stable

summands for the groups we consider here are stated in [6], for exam-
ple. There is one case where these multiplicities fail to pin down the
F2 OutG-module structure of Sall,1

H,V (G) which is the case when H = C2

and G = (C2)2, and this is quickly resolved from the description of the
simple functor given in [32].
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Table 8. Formal characters of simple functors over F2.

Sall,1
H,V over F2

Ψ 1 C2 C4 (C2)2 C8 Q8 D8

1 1 1 1 2 1 1 2 1

1 1 1
C2 1 1 1
C4 1 1 1

(C2)2 1 1 1
2 1 1

C8 1 1 1
Q8 1 1 1

2 1
D8 1 1 2 2 1

Table 9. Decomposition matrix from Mackall,1
Q to Mackall,1

F2

Sall,1
H,V over F2

Decomposition 1 C2 C4 (C2)2 C8 Q8 D8

matrix 1 1 1 1 2 1 1 2 1

Sall,1
K,W 1 1 1

over Q C2 1 1 1 1 1 1 1
C4 1 1 1 1 1 1
−1 1 1

(C2)2 1 1 2
−1 1

2 1
C8 1 1
−13 1
−15 1
−17 1

Q8 1 1
−1 1

2 1
D8 1 1
−1 1
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Table 10. Cartan matrix of Mackall,1
F2

P all,1
H,V over F2

Cartan matrix 1 C2 C4 (C2)2 C8 Q8 D8

1 1 1 1 2 1 1 2 1

Sall,1
K,W 1 1 1 0 0 0 0 0 0 0 0

over F2 C2 1 1 1 1 1 0 1 1 0 1
C4 1 2 2 4 2 0 4 3 1 3

(C2)2 1 2 2 2 4 0 2 2 0 4
2 0 1 1 1 1 1 1 0 1

C8 1 3 3 6 3 0 10 5 2 5
Q8 1 3 3 4 5 0 4 6 1 6

2 1 2 3 2 1 3 3 2 3
D8 1 5 7 8 10 2 8 8 1 16

11.5. Cartan, decomposition and formal character matrices
when X = Y = all. Fewer of the calculations we need in this sit-
uation can be taken from the literature. In [7] the projective functor
P1,Q is identified as the Burnside ring functor and its unique simple quo-
tient S1,Q as the rational character ring functor. The other composition
factors of P1,Q are also determined in terms of a combinatorial condi-
tion, and apart from S1,Q the only other composition factors indexed
by p-groups have the form S(Cp)2,Q. In [8, 14, 15] further calculations
are made of some simple functors over fields of positive characteristic,
and these serve as useful checks of our method here, which is the one
described in Section 11.2.
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Table 11. Formal characters of simple functors Sall,all
H,V

over Q

Sall,all
H,V over Q

Ψ 1 C2 C4 (C2)2 C8 Q8 D8

1 1 1 −1 1 −1 2 1 −13 −15 −17 1 −1 2 1 −1

1 1 1
C2 1 2 1
C4 1 3 2 1
−1 1

(C2)2 1 2 2 1
−1 1

2 1 2 1
C8 1 4 3 2 1
−13 1
−15 2 1
−17 1

Q8 1 3 3 1 1 1
−1 1 1

2 1 2 1 1 1
D8 1 4 7 1 2 2 1
−1 1 4 1 1 2 1
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Table 12. Composition factor multiplicities in
Mackall,all

Q of ∆all
H,V

∆all
H,V over Q

[∆all
H,V , S

all,all
K,W ] 1 C2 C4 (C2)2 C8 Q8 D8

1 1 1 −1 1 −1 2 1 −13 −15 −17 1 −1 2 1 −1

Sall,all
K,W 1 1 1

C2 1 1
C4 1 1
−1 1

(C2)2 1 1 1
−1 1

2 1
C8 1 1
−13 1
−15 1
−17 1

Q8 1 1
−1 1

2 1
D8 1 1
−1 1

At this point we record a consequence of the calculation of the com-
position factors of the ∆ functors.

Proposition 11.2. Let R be a field of characteristic zero, and let
H,K ∈ {1, C2, C4, C8, (C2)2, Q8, D8}.

(1) The projective functors P all,all
H,V in Mackall,all

R are equal to the cor-

responding functors ∆all
H,V except in the case (H,V ) = ((C2)2, 1).

In that case P all,all
(C2)2,1 has a subfunctor isomorphic to ∆all

1,1 with

quotient ∆all
(C2)2,1. In the cases when P all,all

H,V = ∆all
H,V it follows

that P all,all
H,V (G) = 0 unless G has H as a section.

(2) We have dim Ext1

µall,all
R

(Sall,all
H,V , Sall,all

K,W ) = 0 unless one of (H,V )

and (K,W ) is (1, 1) and the other is ((C2)2, 1), in which case
the dimension is 1.

Proof. (1) This follows from Lemma 8.1 and BGG reciprocity, which

show that the composition factor multiplicity [∆all
H,V : Sall,all

K,W ] equals the
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filtration multiplicity [P all,all
K,W : ∆all

H,V ]. For a given K this can only be
non-zero when H is a section of K, and so Table 12 gives complete
information about the non-zero multiplicities under consideration.

(2) We apply Theorem 5.10 and duality. �
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Table 13. Cartan matrix of Mackall,all
Q

P all,all
H,V over Q

Cartan matrix 1 C2 C4 (C2)2 C8 Q8 D8

1 1 1 −1 1 −1 2 1 −13 −15 −17 1 −1 2 1 −1

Sall,all
K,W 1 1 1 1

C2 1 1
C4 1 1
−1 1

(C2)2 1 1 2
−1 1

2 1
C8 1 1
−13 1
−15 1
−17 1

Q8 1 1
−1 1

2 1
D8 1 1
−1 1

Table 14. Formal characters of simple functors over F2.

Sall,all
H,V over F2

Ψ 1 C2 C4 (C2)2 C8 Q8 D8

1 1 1 1 2 1 1 2 1

1 1 1
C2 1 2 1
C4 1 2 1 1

(C2)2 1 2 2 1
2 1 2 1

C8 1 2 1 1 1
Q8 1 2 2 1 1

2 1 2 1
D8 1 5 9 1 2 1
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Table 15. Decomposition matrix from Mackall,all
Q to Mackall,all

F2

Sall,all
H,V over F2

Decomposition 1 C2 C4 (C2)2 C8 Q8 D8

matrix 1 1 1 1 2 1 1 2 1

Sall,all
K,W 1 1 1 1 1 1

over Q C2 1 1 1 1 1 2
C4 1 1 1 1 1 1
−1 1 1

(C2)2 1 1 2
−1 1

2 1 2
C8 1 1
−13 1
−15 1
−17 1

Q8 1 1
−1 1

2 1
D8 1 1
−1 1

Table 16. Cartan matrix of Mackall,all
F2

P all,all
H,V over F2

Cartan matrix 1 C2 C4 (C2)2 C8 Q8 D8

1 1 1 1 2 1 1 2 1

Sall,all
K,W 1 1 1 0 1 1 0 1 1 0 2

over F2 C2 1 0 1 1 0 0 1 1 0 2
C4 1 1 1 4 1 0 4 3 1 5

(C2)2 1 1 0 1 3 0 1 1 0 4
2 0 0 0 0 1 0 0 0 2

C8 1 1 1 4 1 0 8 3 1 5
Q8 1 1 1 3 1 0 3 5 1 5

2 0 0 1 0 0 1 1 2 1
D8 1 2 2 5 4 2 5 5 1 19
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[21] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. Franc. 90 (1962), 323-
448.

[22] M. Geck and R. Rouquier, Centers and simple modules for Iwahori-Hecke
algebras, pp. 251–272 in Finite reductive groups (Luminy, 1994), Progr. Math.
141, Birkhuser Boston, Boston, MA, 1997.

[23] J.A. Green, Polynmial representations of GLn, Lecture Notes in Math. 830,
Springer-Verlag 1980.



STRATIFICATIONS AND MACKEY FUNCTORS II 75

[24] L.G. Lewis, Jr., The theory of Green functors, unpublished notes, 1981.
[25] L.G. Lewis, Jr., J.P. May and J.E. McClure, Classifying G-spaces and the

Segal conjecture, pp. 165–179 in: R.M. Kane et al (eds.), Current Trends in
Algebraic Topology, CMS Conference Proc. 2 (1982).

[26] J.R. Martino, Classifying spaces and their maps, pp. 161–198 in ‘Homotopy
theory and its applications’ (Cocoyoc 1993), Contemp. Math. 188, American
Math. Soc. 1995.

[27] H. Miller, Letter to J.F. Adams, 1981.
[28] P. Symonds, A splitting principle for group representations, Comment. Math.

Helv. 66 (1991), 169–184.
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