STRATIFICATIONS AND MACKEY FUNCTORS II:
GLOBALLY DEFINED MACKEY FUNCTORS

PETER WEBB

ABSTRACT. We describe structural properties of globally defined
Mackey functors related to the stratification theory of algebras.
We show that over a field of characteristic zero they form a highest
weight category and we also determine precisely when this category
is semisimple. This approach is used to show that the Cartan
matrix is often symmetric and non-singular, and we are able to
compute finite parts of it in some instances. We also develop a
theory of vertices of globally defined Mackey functors in the spirit
of group representation theory, as well as giving information about
extensions between simple functors.

1. INTRODUCTION

Globally defined Mackey functors have been shown during the last
20 years or so to have applications in several directions. In [32] they
were used to give a method for computing group cohomology, and also
a new proof of the theorem of Benson-Feshbach and Martino-Priddy
on stable decomposition of classifying spaces of finite groups. In [12, 9]
they were used in a fundamental way in the determination of the Dade
group of endopermutation modules. In [10, 11] applications were made
in which the group of units in the Burnside ring is determined, and
in which a description is given of the G-sets which give isomorphic
rational representations.

In this paper we describe structural properties of globally defined
Mackey functors related to the stratification theory of algebras. We
show that over a field of characteristic zero they form a highest weight
category and we also determine precisely when this category is semisim-
ple. This approach is used to show that the Cartan matrix is often
symmetric and non-singular, and we are able to compute finite parts
of it in some instances. We also develop a theory of vertices of globally
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defined Mackey functors in the spirit of group representation theory, as
well as giving information about extensions between simple functors.

The globally defined Mackey functors which we will consider depend
on a choice of classes of finite groups X, Y and D. Fixing a commuta-
tive ring R with a 1, such a globally defined Mackey functor specifies
for each group in D an R-module, and possesses operations of restric-
tion and induction for each injective group homomorphism, as well as
an operation of inflation for each surjective group homomorphism with
kernel in X, and an operation of deflation for each surjective group
homomorphism with kernel in ). We are mainly interested in this pa-
per in globally defined Mackey functors which are finitely generated
R-modules at each group in D, and every ring R which we consider
explicitly will be Noetherian. With these assumptions, these globally
defined Mackey functors form an abelian category which we denote
Mackg’y (D), or simply Mack;f’y if we wish to suppress D from the
notation. It will, however, be apparent that at several points the hy-
potheses of finite generation are unnecessary, and on occasion we point
this out. The definitions will be reviewed fully in Section 2.

In studying stratifications of Macky™ (D) — in the sense of [17], for
example — we require the collection of simple objects to have either
a poset structure or more generally the structure of a preordered set.
The simple globally defined Mackey functors were parametrized in [7]
as functors Sy where H is a finite group in D taken up to isomorphism
and V is a simple R Out(H )-module. There is a natural preorder on
the set of such pairs (H, V') where we put (H,V) < (K, W) if and only
if K is isomorphic to a section of H, where by a section we mean a
quotient of a subgroup. Taking K = H, this has the property that
(H,V) < (H,W) no matter what V' and W are. We may also consider
the partial order on the set of such pairs defined as the partial order
for which (H,V) < (K,W) if and only if K is isomorphic to a proper
section of H, this being a more stringent relation than the preorder.
Neither the preorder nor the partial order we have just defined make
reference to the second element V' in a pair (H,V).

We now state one of our principal results.

Theorem 7.2. Let R be a field of characteristic zero. With respect
to the partial order on the simple objects defined above, and when D is
finite, Mack;f’y (D) is a highest weight category. When D is not finite,
Mackg’y (D) is still a highest weight category, except that indecompos-
able injectives might conceiwably not be unions of their subobjects of
finite length.
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In this theorem we take the definition of highest weight category which
appears in [16], and the finiteness condition on injectives is one which
appears in that definition. When we are dealing with modules for a
finite-dimensional algebra (as is the case in our situation when D is
finite) this condition is automatically satisfied. In fact, Macky™ (D)
may be identified as the category of modules for an algebra defined in
section 2 called the global Mackey algebra, and it follows when D is
finite that this algebra is quasi-hereditary. When D is not finite the
finiteness condition on injectives needs to be verified, and at the time
of writing we have failed to do this.

This issue with finiteness conditions does not affect our calculations
or applications at all, since all these may be done using suitable finite
sets of groups D and — as we show in section 7 — the highest weight
structure on Mackg’y (D) is compatible with restricting the domain of
definition from D to smaller collections of groups. Thus we can deduce
the validity of BGG reciprocity, for example, which is used in a key
way in section 8.

The proof of Theorem 7.2 is the culmination of several sections where
we study the globally defined Mackey functors Ay ¢y which play the role
of the standard objects in the highest weight category, and also the
dually defined functors Vg 7. These functors are defined in Section 5,
first in an explicit manner and then by showing that they have a certain
adjoint property. We establish many of their properties, including in
Theorem 6.3 the fact that over an arbitrary ring R (not just a field
of characteristic zero), each projective globally defined Mackey functor
has a filtration with factors Ay where U is a direct summand of a
permutation module for ROut(H). Later in Proposition 6.6 strong
forms of the usual Ext properties between the functors A and the
dually constructed functors V are given, while earlier in Theorem 5.10
it is shown that Ext groups between simple functors may be computed
within the A and V functors.

In the case of ordinary Mackey functors (which have no inflation
or deflation operations) over a field of characteristic zero the functors
Apy are simple and in fact the category of Mackey functors is semisim-
ple (see [30]). For globally defined Mackey functors this need not be
the case, as indicated in the following result.

Theorem 9.5. Let R be a field of characteristic zero and all the class
of all finite groups. Then Mackg’y(all) is semisimple if and only if
X=)Y=1.
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This result implies the semisimplicity of endomorphism rings of globally
defined Mackey functors when X = ) = 1, and these rings include the
Grothendieck rings of bisets which have trivial stabilizers on each side.
This implication is presented in Theorem 9.6.

We are able to use the fact that Macky™ (D) is a highest weight
category when R is a field of characteristic zero and D is finite to
compute the Cartan matrix of globally defined Mackey functors over
an arbitrary field. This is done in Section 8 and some specific Cartan
matrices are computed in Section 11. The calculation exploits two
techniques, the first being BGG reciprocity, which applies whenever
we have a highest weight category. We combine this with the ‘Brauer-
Cartan square’ of Geck and Rouquier [22]. This is a generalized version
of the decomposition theory of Brauer, extended to a situation where in
characteristic zero we have an algebra which is not semisimple. Using
these methods we are able to prove:

Theorem 8.5. Let R be an algebraically closed field and suppose that
X =Y. Then the Cartan matriz of globally defined Mackey functors is
symmetric.

Theorem 8.6. Let R be a field and in case R has positive character-
istic suppose that X = Y. Then the Cartan matriz of globally defined
Mackey functors is non-singular.

The Cartan matrix is infinite, and by ‘non-singular’ we mean that the
columns of the matrix are linearly independent. We speculate that the
Cartan matrix is non-singular in all cases without the restriction that
X =) in positive characteristic, but our proof fails to establish this.

As a corollary of Theorem 7.2 we have an application to classify-
ing spaces of finite groups. We denote by (BG); the p-completed
spectrum obtained from the classifying space BG of G with a disjoint
point adjoined. We are interested in stable homotopy classes of maps
(BG.)}, (BH.),).

Corollary10.2. Let D be a finite set of groups closed under taking
sections and let p be a prime. Then the p-complete spectrum

B=\/(BG),
GeD

has the property that the algebra [B, B|®z, Q, is quasi-hereditary. Here
Z, and Q, denote the p-adic integers and the p-adic rationals.

As explained in [32], the full subcategory of the category of spectra
whose objects are wedge sums of summands of the the spectra (BG.);),
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is equivalent to a full subcategory of Mackazli’l whose objects are certain
projective functors, and this is the connection between Corollary 10.2
and Theorem 7.2. We apply the theory in Section 11.4 to compute the
Cartan matrices both of [B, B] ®z, Q, and of [B, B] ®z, F, when p = 2
and D = {1, CQ, 04, Cg, (02)2, DS, Qg}

Prior to all this in our exposition, we introduce in Section 3 a the-
ory of relative projectivity for globally defined Mackey functors. This
is defined with respect to changes in the class of groups D on which
the functors are defined, using the notion of induction 1% and restric-
tion |2 between Macky™ (€) and Mackyy™ (D) when £ C D. Relative
projectivity is defined in the usual way using these operations and the
main result here is the following.

Theorem 3.9. Let M be a globally defined Mackey functor. There is
a unique minimal set of groups £, closed under taking sections, relative
to which M is projective. Furthermore M = M |P12 and M |% is
(up to isomorphism) the only Mackey functor N defined on € with the
property that M = N 12,

We call the minimal set £ the vertex of M. This result does not depend
on the ground ring R or require that M be indecomposable, unlike
the case of group representations. We also show — again, unlike the
case of group representations — that induction from and restriction
to a vertex are inverse operations. We determine the vertices of the
projective functors in Proposition 3.10 and of the standard functors
A in Corollary 5.4. In Proposition 5.11 we provide a condition on the
vertices of simple functors for there to be a non-split extension between
them.

In Section 2 we review definitions and basic lemmas, and give a
proof of the equivalence of the definitions of globally defined Mackey
functors by means of axioms on the one hand, and as functors on a
certain category on the other hand. Later in Section 4 we discuss the
ascending and descending filtration of globally defined Mackey functors
which are fundamental in the highest weight category structure, and
we relate them to the constructions of Brauer quotient and its dual,
the restriction kernel.

We take the opportunity to comment on the different terminology
which has been used for the functors which we here call globally defined
Mackey functors. The same terminology in this generality was used in
[33]. On page 278 of [18] these functors are introduced in the special
case ) = 1, where they are called ‘global Mackey functors’. These
same functors with the condition )) = 1 appear in [28] where they are
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called ‘functors with Mackey structure’ and also in [32] where they are
called ‘inflation functors’. In the last reference the functors which arise
when X = ) = 1 are called ‘global Mackey functors’. In [9, 10, 11]
the term ‘biset functors’ is used in a situation where X and ) are
both taken to be all finite groups. The term ‘globally defined Mackey
functor’ is intended to include all of the special cases, and they are all
considered in this paper. It seems to the present author that another
good possibility would be to use ‘global Mackey functor’ as the term
which includes all the special cases, but one would have to ignore the
fact that this has already been used twice to mean different things.

2. DEFINITIONS OF GLOBALLY DEFINED MACKEY FUNCTORS AND
PRELIMINARY LEMMAS

Globally defined Mackey functors may be defined in several ways:
as functors on a certain category, as modules for an algebra, and by
means of axioms. In this section we review the notation and definitions
we will use and provide a proof of the equivalence of the axiomatic
definition with the functorial definition, since this has not appeared in
print before. Lemmas from this section will be crucial later on.

By a section of a group G we mean a homomorphic image of a sub-
group of G. We will often refer to a ‘set of groups closed under taking
sections’, and by this we mean a set of groups with the property that
every section of every group in the set is isomorphic to a group in the
set. Strictly speaking it is abuse of terminology since a set of groups
which is genuinely closed under taking sections contains every group
isomorphic to a group in the set, and so is no longer a set. We will
refer to sets of groups which are closed under taking extensions in a
similar spirit. The groups we consider in such a context will always be
finite.

We define a generalization of the double Burnside ring, which has its
origins in [37], [27], [25] and [1]. Let G and H be finite groups. By a
(G, H)-biset we mean a set ) = Qpy with commuting actions of G' and
H, with G acting from the left and H from the right. This is the same
as specifying a G x H-set, since we may employ the device of converting
the right H-action into a left action by means of the antiautomorphism
h — h~!. Let X and Y be sets of finite groups closed under taking
sections and extensions. We define A5 > (G, H) to be the Grothendieck
group of finite (G, H)-bisets which have the property that the stabilizer
in G of each point in €2 lies in X', and the stabilizer in H of each point
in  lies in ). Thus Ag’y (G, H) is a free abelian group with basis the
transitive such bisets (transitive with respect to the action of G x H),
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and in this group we identity a non-transitive biset with the sum of
the bisets given by its orbits. Fixing a commutative ring R with a 1
we put AxY (G, H) = R®z Ay Y (G, H). The special case A% (G, Q)
is the double Burnside ring, where ‘all’ means a set of finite groups
representing every isomorphism class, and 1 is a set containing just a
group with one element.

We next define a category Cg’y(D) which is a more general form of
a category defined in [27, 1] where it is called the Burnside category.
In generality it was considered by Bouc [7]. Let D be a set of finite
groups closed under taking sections. The objects of C;{,y (D) are the
groups in D. If G and H are such groups we define the morphisms in
CxY (D) from H to G to be Hom(H,G) = AxY(G, H), a convention
which makes sense since we will be applying morphisms from the left.
Thus this set of morphisms is a free R-module with basis the transi-
tive bisets €y whose G-stabilizers lie in X and whose H-stablizers
lie in ). Composition of morphisms is defined to be R-bilinear, and
on homomorphisms which are actually bisets it is defined to be the
amalgamated product:

GQHOH\DK Z:QXH\D,

where €2 X g ¥ means the set of orbits of H on {2 x ¥ under the ac-
tion h(w,1p) = (wh™*, hap). We let Macky™” (D) denote the category of
R-linear functors Cj~ (D) — R-mod. These are the functors we call
globally defined Mackey functors. Many of the definitions and construc-
tions we will give, such as of the functors A, are the same regardless
of what D is and on occasion we suppress D from the notation.

Globally defined Mackey functors may be regarded as modules for an
algebra uﬁ’y(D) which we term the global Mackey algebra. The general
construction of such an algebra starting from an additive category can
be traced back to [21, Chap. II], and we describe it in our particular
case. Working with a set of finite groups D which is closed under taking
sections we put

wr> (D)= @ AY(G,H)
G,HeD

as an R-module, and define the multiplication of two elements which
lie in these summands to be the same as composition in Cj™ (D) if the
elements can be composed, and zero otherwise. It is immediate that
a globally defined Mackey functor M may be regarded as a /Lg’y (D)-
module @, ., M (H), with the action of a biset Q25 on the summand
M(H) being given by M(5Qy), and zero on the other summands.
Conversely, for each group G in D there is an idempotent oGg €
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ARY(G,G) C (D), and each > (D)-module U gives rise to a
globally defined Mackey functor M where M(G) = ¢Gg - U. This
procedure produces an equivalence of categories between Mackg’y (D)
and 5y~ (D)-modules U which have the property that U = DPoep cGa-

U. Observe that pg’y(l)) possesses an identity element if and only if
D is finite, the identity element being ep = > . cGa-

It is useful to define globally defined Mackey functors by means of
axioms, and such a set of such axioms was given in [33], extending
axioms given for more restrictive kinds of functors in [32]. We will use
these axioms in Section 5 to show that the functors Ag ;- we construct
are indeed globally defined Mackey functors. We repeat the axioms
from [33].

Let X and ) be sets of finite groups closed under taking sections
and extensions, let D be a set of finite groups closed under taking
sections, and let R be a commutative ring. We say that a globally
defined Mackey functor over R, defined on D, with respect to X and
Y, is a specification M which consists of an R-module M(G) for each
finite group G, together with for each homomorphism « : G — K with
Kera € Y an R-module homomorphism «, : M(G) — M(K) and
for each homomorphism 3 : G — K with Ker € X an R-module
homomorphism §* : M(K) — M(G). These morphisms should satisfy
the following relations:

(1) (a7)s = auys and (B)* = 6*(* always, whenever these are
defined;

(2) whenever a : G — G is an inner automorphism then a, = 1 =
a’;

(3) for every commutative diagram of groups

¢ L H

»J Ta

FUK) — K
in which « and v are inclusions and § and ¢ are surjections
we have o*f, = 0,7" whenever Ker§ € ), and [*a, = 7,0*

whenever Ker § € X;
(4) for every commutative diagram

G - H/KeraKerf

dl E

H — K
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in which «a, 3,7 and 0 are all surjections, with Ker 5 € ) and
Kera € X, we have f,a* = v*,;

(5) (Mackey axiom) for every pair of subgroups G, K < H of every
group H we have

(1) ()« = Z (Lgth)*Ch*(LlG(hnG)*
he[K\H/G]|

where (2 : K — H and (£ : G — H etc. are the inclusion maps
and ¢;, : K"NG — KN"G is the homomorphism ¢y, (z) = hah™.

We should note that certain things which are required for these ax-
ioms to make sense, do in fact hold. Thus in both (3) and (4), if
Kerg € Y then Kerd € Y also; in (1), if Kera € Y and Kery € Y
then Keray € Y also; and so on. The axiom here which did not ap-
pear in [32] is (4), and it implies in particular that if o : H — K is an
isomorphism, then (a™'), = a* and (a™1)* = a,.

We will indicate a proof that the definition of a globally defined
Mackey functor just given is really the same as the definition given in
terms of bisets. The key to seeing this is Bouc’s lemma which decom-
poses bisets into bisets of a certain kind which on the next pages we
will call special, and which we now define. Suppose we have a group
homomorphism G — K. We may regard the set K as a (G, K)-biset
oKk with G acting from the left by first applying the homomorphism
to K and then multiplying from the left within K, and with K acting
by right multiplication. In a similar way we may also obtain from this
homomorphism a (K, G)-biset xKg. By a special biset we mean any
biset of the form K or xKs where the homomorphism G — K is
required to be either the inclusion of a subgroup or an epimorphism.

Using these special bisets we may see how a functor in Mack;f’y (D)
gives rise to a functor which satisfies the above axioms, and vice-versa.
For, given F' € Macky” (D), we may define M(G) = F(G) on finite
groups G; whenever o : G — K with Kera € Y we define a, =
F(kKg) : M(G) — M(K); and whenever §: G — K with Kerg € X
we define f* = F(¢Kk) : M(K) — M(G). The fact that M satisfies
the axioms listed above is now a consequence of the following easily-
verified isomorphisms of bisets: for axiom (1), yHgocGgr = yHg and
its reverse xGg o gHy = g Hpy; for axiom (2), if & : G — G is inner
then oG with G acting via « on one side and straight multiplication
on the other side is isomorphic to ¢G¢ with G acting via straight
multiplication on both sides; for axiom (3), xkHy o yHa = gk Kg-1(x) 0
s-1(x)Ga and its reverse when 3 : G — H is epi and K < H; for axiom
(4), writing L = H/KeraKer 3 we have gL o [ Lx = oGy o yKk.
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Finally if G,K < H we have xHy o yHg = Uhe[K\H/G] kK gnng ©
xrhnaGe which gives axiom (5).

It is conversely the case that an object M satisfying the above axioms
(1) — (5) gives rise to a functor F in Macky™ (D), and this part of the
argument uses the following lemma of Bouc. It is closely related to a

result known as ‘Goursat’s lemma’ and which can be found as Exercise
8 to Chapter 1, Section 4 of [13].

Lemma 2.1. (Bouc [7]) Let G and K be finite groups. Every transitive
(G, K)-biset Q is isomorphic to one of the form ¢GaoaHyogHpop Kk
with A < G, B < K and H a homomorphic image of each of A and B:
A — H « B. Furthermore Stabg(w) € X for all w in Q if and only
if Ker(A — H) € X, and Stabg(w) € Y for all w in Q if and only if
Ker(B— H) € ).

Using this result, if we are given an object M satisfying axioms (1)
— (5) above we may define a functor F' € Macky” (D) as follows: on
objects we put F'(G) = M(G). We may write any morphism 2 : K —
G in the form Q) = 23:1 X, where \; € R and the §Q; are transitive
(G, K)-bisets. We put F(Q) = I, MF() where the F(£;) are
defined as follows. We write €); = ¢G4, 0 4, H;y, 0 1, Hip, 0 B, Kk using
Bouc’s Lemma where G&Ai&»Hi«viBiiK; we set F'(£2;) = 3705

We now need to explain why it is that the construction of F' just
given is independent of choices, and does indeed specify a functor. The
independence of choices will follow from the next lemma which is also
crucial in later sections.

Lemma 2.2. Let A and U be subgroups of G, let B and W be sub-
a B
groups of K, and suppose we are given morphisms G<—>A—»H«V—Bi>K

T P (o T . . .
and G—U—-V «W—K where o, , 7,7 are inclusion morphisms and
8,7, p,o are surjections. Then

¢GaoaHyopgHpopKx = gGuoyVyovViyowKg
as (G, K)-bisets if and only if there is a commutative diagram
A 24 H 2 0B
s
v L v < w

for some elements v € G, y € K and a group isomorphism 6. Here c,
and ¢, denote conjugation homomorphisms and U = *A, W = YB.
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Proof. Tt is convenient to identify each (G, K)-biset ) as a left G x K-
set where the action of G x K on (2 is given by (g, k)w = gwk™'. Under
this identification, if € is a transitive set then Q = G x K/ Stabgy x (w)
where w may be taken to be any element of (). Writing the elements of
the composite oG04 Hyoy Hpop K as equivalence classes [g, hy, ha, k|
of quadruples (g, hi, ho, k) where g € G, hy,hy € H and k € K, we
have

Stabaxr ([1,1,1,1]) = {(g. k) | (9,1, 1,k7") ~ (1,1,1,1)}.

Now (g,1,1,k71) ~ (1,1,1,1) entails ¢ € A and k£ € K, and then

(9,1, L k™") ~ (1, B(9), v(k™1), 1) ~ (1, 8(g)v(k~"), 1, 1), which is equiv-
alent to (1,1,1,1) precisely if 3(g) = v(k). Thus

Stabexr ([1,1,1,1]) = {(g9.k) € A x B | B(g) = v(k)}.

Using the fact that G x K-sets of the form G x K/Stab(w) are
isomorphic if and only if the stabilizer groups are conjugate, we see
that

¢GaoaHgopygHpopKig = cGyoyWwoyViyowKgk

if and only if {(g,k) € Ax B | 8(g) = v(k)} is conjugate to {(g,k) €
UxW | p(g) = o(k)}. This happens precisely if there exist € G and
y € K with *A = U and YB = W so that

B(g) =v(k) < p(“g) =c(Yk) forallge Aand k€ B. (%)

If there exists a commutative diagram as in the statement of the lemma
then this condition is clearly satisfied. Conversely, if (x) is satisfied
and g € A then G(g9) = 1 = ~(1) if and only if p(%g) = o(¥1) =
1, so ¢, : Kerg — Kerp is an isomorphism. Hence ¢, induces an
isomorphism 6 : H — V', which is immediately seen to be the same as
the isomorphism induced by ¢,. This completes the proof. 0

To see now why the definition of the functor F' (given the axiomat-
ically defined M), is independent of choices we observe that in an
expression () = Z§:1 Ai€); the \; € R are determined, and the €;
are determined up to isomorphism. We thus need to see that if we
write €2; in two isomorphic ways, in the manner of the lemma, then
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35 7,0" = mep*o,. 7. But now using the axioms for M we have
Q. 7,.0" = a,[7070,7.0"
— 0. (08)"(69).0"
= a.(pey)*(9er).0"
= oz*ch*a*ch*é*
= Cy1,0 0xCp 10"
— (acy1).p"o(Fep )"
= (cyrm)ep Ou(chrT)’
= Cy 1T 0T Ch 1

= T p 0 T"

as required.

We need also to see that F is a functor, namely F'(Q20¥) = F(Q)F (V)
always holds. To see this, recall that we first defined F’ on special bisets
of the form oKk and xKs where the morphism G — K is either an
inclusion of subgroups or a surjection. We then used Bouc’s Lemma 2.1
to extend the definition to all morphisms by composition. We thus see
that F' will be a functor precisely if it satisfies F(Q2 0 W) = F(Q)F (V)
when (2 and VU are taken to be special bisets. Since there are four kinds
of special biset, depending on whether GG acts from the left or the right,
and whether the homomorphism is an inclusion or a surjection, this
gives 4 - 4 = 16 different types of composite which F' should preserve.

For each of these 16 composites 20¥ when €2 and ¥ are special, either
the composite is already a product of the kind prescribed by Bouc’s
Lemma 2.1 (by adjoining bisets of the form ¢G¢ as necessary one may
extend the product of length 2 to a product of length 4), or else it may
be expressed as a linear combination of products of that kind. In the
former case, the definition of F' guarantees that F'(QoW) = F(Q)F (V).
In the latter case, if QoW = Zﬁzl Ai€2; where the €; are transitive, the
definition of F(QoW)is > ', \;F (), and F will preserve composites
precisely if F() o F(¥) =>""_ \;F(Q;). In each of the 16 cases, one
of the axioms which M satisfies implies this equality. We summarize
which axiom must be used in Table 1, leaving the entry blank when
the composite is already one of the products in the form of Lemma
2.1. This completes the proof that an object M satisfying the axioms
(1) — (5) gives rise to a functor F in Mackyy™ (D) in the way we have
described.

We conclude this section of definitions and basic results by men-
tioning the contravariant functor x : Mackg’y — Mack%’x which is a
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TABLE 1. Axioms for the decomposition of products of
special bisets {2 o .

v
VU =gKg U = Gq
inclusion epi inclusion epi

Q| Q=gGg inclusion | Axiom 1

epi | Axiom 1 | Axiom 1 Axiom 4

) = Kk inclusion | Axiom 5 | Axiom 3 | Axiom 1 | Axiom 1

epi || Axiom 3 Axiom 1

duality between the full subcategories of Macky™ and Mack}™ whose
objects are functors M for which every M(G) is a finitely generated
projective R-module. For each functor M in Mackg’y we put M*(G) =
Hompg(M(G), R). For each (H, G)-biset g there is an opposite (G, H )-
biset ¢(€2°P)y which has the same underlying set as 2 and where the
left and right actions of G and H are obtained from () via the antiau-
tomorphisms g — ¢! and h — h~! of G and H. Now the morphism
M*(4Q¢) : M*(G) — M*(H) is defined to be M (5(Q2°P)n)*.

3. RESTRICTION, INDUCTION AND THE VERTEX

In this section we study the restriction and induction of globally
defined Mackey functors between different domains of definition. We
describe the effect on simple and projective functors, and conclude with
a theory of vertices of globally defined Mackey functors analogous in
spirit to the theory of vertices and sources in group representation the-
ory. There are some differences between the two theories: we will show
that induction always sends indecomposables to indecomposables; and
if an indecomposable functor is projective relative to a set of groups,
its restriction to those groups is again indecomposable. A feature of
these results is that we do not need to put any special hypothesis on
the commutative ring R: we do not invoke the Krull-Schmidt theorem
and the theory works perfectly well over 7Z, for example.

Suppose we have two section-closed sets of finite groups & C D and
consider the categories of globally defined Mackey functors defined on
them. The restriction functor Macky™ (D) — Macky™ (€) is given by
restricting the domain of definition of a functor M from D to £. We will
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write M |% for this restricted functor. Restriction is an exact functor,
because exactness of a sequence of globally defined Mackey functors is
determined by exactness at each evaluation on a group. It has a left
adjoint N — N 12= uxY(D) B2 N called induction and a right

adjoint N — M {F= Homug,y(g)(,ug’y(D), N) called coinduction.

Regarding M as a Mg,y (D)-module we can express restriction to £
in a way which is familiar from other areas of representation theory,
at least when & is finite. In that case we have an idempotent ec =
Y cee ¢Ga and it is immediate from the definitions that Y (€) =
eepiy” (D)ee and that regarding M as a iy (D)-module its restriction
is esM. This is a functor which is described in [23, 6.2] as well as
elsewhere, and the general properties hold here.

We start by recording the effect of restriction on the simple glob-
ally defined Mackey functors. Recall from [7] that the simple globally
defined Mackey functors on a section-closed set of finite groups D are
parametrized by pairs (H,V) where H is a group in D and V is a
simple R Out H-module. For the moment we will write S7, for the
corresponding simple functor defined on D, but later we will omit D
from the notation. It is characterized among simple functors by being

non-zero only on groups which have H as a section, and by the fact
that at H it is S§ (H) = V.

Proposition 3.1. Let &€ C D be sets of finite groups closed under
taking sections. Then

0 if He&

Proof. This is immediate from Bouc’s construction of the simple func-
tors in [7], in that the value of a simple functor at a group H is inde-
pendent of the section-closed set of groups containing H. U

> {S}Z,V if HeE&
HV le= ’

Thus the restriction of a simple functor is either simple or zero,
and a complete set of simple functors on the smaller set £ arises via
restriction, something which we know in generality from [23, 6.2g], but
here we can also say that restriction preserves the parametrization of
simple functors.

We are about to develop the theory of induction and restriction be-
tween different section-closed sets of finite groups and take inspiration
from the corresponding theory for group representations. We will find
that in several places the theory here is simpler, and stronger results
hold, than for group representations. The first example of this is seen
as part (3) of the next result.
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Proposition 3.2. Let £ C D be sets of finite groups closed under
taking sections. Suppose M is a globally defined Mackey functor defined
on E. Then

(1) M 1% is generated by its values on groups in E.

(2) M 122~ M, and

(3) if M is indecomposable then M 1% is indecomposable.
Proof. (1) This comes directly from the definition of M 12 as a tensor
product.

(2) From the definition of the global Mackey algebra, when we regard

pyY (D) as a (uy (£), ur™ (£))-bimodule it is isomorphic to the direct
sum of > (€) and a summand on which the action is zero, and so

X, ~ X, ~
M1glg= (R y(D) ®M§ﬂy(5) M) |g= HR y(g) ®Mj§’y(8) M=M

as left iy (€)-modules.

(3) The induced functor M 1% is generated by its values on €. Thus
if M T?: M; @& My is a direct sum decomposition then M; and M are
also be generated by their values on £. Hence if both M; and M, are
non-zero, they must be non-zero on €. In this case M = M 12|P=
M, |2 @M, |F is a non-trivial decomposition of M, which is not
possible. Thus one of M; and M, must be zero. O

In [32] and [7] it is shown that when R is a field or a discrete valua-
tion ring the simple functor Sy v has a projective cover Py i, and it is a
summand of the representable functor Homcg,y(G, ) with multiplic-

ity equal to dim Sy v (G)/dimEndgouw g (V). We observe that these
indecomposable projective functors behave well under restriction and
induction.

Proposition 3.3. Let £ C D be sets of finite groups closed under
taking sections, suppose that R is a field or a discrete valuation ring,
and let H be a group in E. Let PI‘?I,V and PI?V be the projective covers

of the simple functors Sj‘;}’v and SEVV as functors defined on £ and D,
respectively. Then Pg., |§= Pf‘fw and Pg\ 17= PRy
Proof. Induction from £ to D sends projectives to projectives (since it
is left adjoint to an exact functor) and preserves indecomposability (by
Proposition 3.1(3)), so PI?V 12 is an indecomposable projective func-
tor. Since SE’V le= S}Z’V, by adjointness there is a non-zero morphism
S4v 18— SHy, which must be a surjection. There is also a surjec-
tion Pf, 18— 5§y 1%, and hence S}, is a homomorphic image of
Pg 17 Tt follows that P, 17= Pf.

Finally, Pg,v = P;?LV TELE= Py LE, by 3.2(2). O
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The above ideas may be developed into a theory of relative projectiv-
ity of globally defined Mackey functors. In the context of section-closed
sets of groups £ C D we will say that a functor M defined on D is pro-
jective relative to € (or €-projective) if and only if the canonical counit
homomorphism M |P12— M is a split epimorphism. This condition
is equivalent to a number of other conditions, and many of these are
listed in [3, Prop. VI.3.6] in a context which does not have to do with
group representations. Thus M is E-projective if and only if M is a
direct summand of M |P12 which happens if and only if M is a direct
summand of N 1% for some functor N defined on €. (The argument
which proves this is standard, and given in [2] in a way which does
not depend on the properties of group representations.) In fact the
situation we are now considering is less delicate than this as we see in
the next proposition, which is a strengthening of a result which in a
slightly different context is due to Xu [38]. Part (2) of this result is a
partial converse to Proposition 3.2(3).

Proposition 3.4. Let £ C D be sets of finite groups closed under
taking sections and let M be a globally defined Mackey functor defined
on D.

(1) If M is E-projective then the counit homomorphism M |F12—
M is an isomorphism, so that M = M |P1P.

(2) If M is E-projective and indecomposable then M |% is also in-
decomposable.

Proof. (1) The hypothesis is that the counit homomorphism is split. On
evaluation at groups GG in £ this homomorphism is an isomorphism, so
that a splitting provides a decomposition M |21P> M @& M’ where
M'(G) =0 for all G in £&. Now M |P17 is generated by its values on
G in &, and hence so is M’ since it is an image of M. It follows that

M’ = 0 and the counit is an isomorphism.
(2) If M |P= N, & N, decomposes then

M =M |717=Ni 17 &Ny 17
also decomposes, and if M is indecomposable this cannot happen. [J

Corollary 3.5. Let £ C D be sets of finite groups closed under taking
sections, let M be a globally defined Mackey functor defined on D and
let N be a globally defined Mackey functor defined on €. Suppose that
M and N are indecomposable.
(1) If M is a summand of N 1% then N = M |Z.
(2) If M s projective relative to €& and N is a summand of M |2
then M = N 12.
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Proof. (1) By Proposition 3.2 (3), N 1% is indecomposable, so that
M= N1Pand N = N 122~ M |? by 3.2(2).

(2) By Proposition 3.4(2) we see that M |Z is indecomposable and
hence equal to N. The statement follows from Proposition 3.4(1). O

We will show that there is always a unique minimal section-closed
set of finite groups relative to which an indecomposable functor is pro-
jective. This will follow from the next result, for which we introduce
some notation. We suppose that D and £ are sets of finite groups closed
under taking sections, but do not assume this time that £ C D. Let us
write pue = @gee? AxY (G, H). This is an R-submodule of y%” and

it is a (uy> (D), uy~ (€))-bimodule. Its significance is that if G is a
further set of finite groups closed under taking sections which contains
both D and € then M €192 pue ) M.

Proposition 3.6. Let D and £ be sets of finite groups closed under
taking sections and let DNE denote a set of groups whose isomorphism
types are exactly those in both D and £. Then multiplication induces
an 1somorphism

DIDNE) B2 (prg) (DNE)HE = DIk

Proof. From the definition pue has as a basis the transitive (G, H)-
bisets where G € D and H € £. By Bouc’s Lemma 2.1 these can all
be written in the form (¢G4 0 aJ;) o (;Jp 0 pHpy). Since necessarily
J € DN & this shows that the multiplication map is surjective.

In what follows all tensor products are taken over Mg,y (DNE), and
we leave this out of the notation to simplify matters. Consider an
element

E Aegrmi(cQis @ kVin)
GJKH,i

which lies in the kernel of the multiplication map, so

E Aegrmi(a§igo kVig) = 0.
GJIKH,i

We will show that the first sum with the tensor product is zero. Firstly
we may assume in this sum that J = K since the idempotent ;.J; lies in
uﬁ’y(D NE)and ¢y Ving = ¢QisosJi@rVin = ¢Qiy®@sJ 0k Vin.
This is zero if K 22 J.

Next we may assume that G € D and H € &£ are fixed, since we may
multiply all formulas on the left by G4 and on the right by y Hy to
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get an element of the tensor product

> AeniilcQis @ Vi)
T

for which
Z 6,00, (c8g o Vi) = 0.
Ji
We now claim that we may express each ¢{2;; ® ;¥;y as a linear
combination of terms of the form

(GGA]' OAijJj) ® (JijBj o BjHH>

where each of the four bisets is of the kind which appears in Bouc’s
Lemma 2.1. Simplifying the notation and omitting subscripts ¢ and 7,
we may assume that 2 and ¥ are transitive and write 2 = oG4 04 Bpo
pBcocJyand V¥ = ;JpopEgogpEropHy. Note that B,C, J, D and
E are all groups which occur in DNE since these groups are all sections
of J. This means we can write

Q@Y =(eGa0aBp)®(gBcocJjo JpopEgopEporpHy)

by passing the terms in D N & across the tensor product. By Bouc’s
Lemma 2.1 we can express the term on the right of the tensor product
as a sum of terms of the form gBg o gLy o Ly o pyHy where now B,
K and L are groups which appear in DN E. Thus Q ® ¥ is a sum of
terms

(¢GaoaBp)®(BxoxLporLyoyHy)
= (¢Gao aBpop BxoxLy)® (LLy o mHp)

where we have obtained the expression on the right of the equality by
passing two terms across the tensor product. We now write the product
of four terms on the left of the last tensor product as a sum of terms
of the form @Gy o yPp o pPg o gL, where P is a section of L, and so
Q ® VU is a sum of terms

(¢GnonPpopPyogLy)® (LLyovHp)
=(cGnyonPp)® (pPgogLlrorLyonmHy).

Again, we have obtained the expression on the right of the equality
by passing two terms across the tensor product. Iterating this process
where we pass two terms across the tensor product and rewrite the
new product, at each stage the group adjacent to the tensor product
is a section of the previous one. Thus the process must reach a stage
where each group adjacent to the tensor product is isomorphic to the
previous one, and when this happens the biset which is passed across
the tensor product is a copy of that group acted upon regularly, except
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that the action may be twisted by an isomorphism. By incorporating
such an isomorphism in the action on this group from the other side,
we express each €27 ® ;V;g as claimed.

We have now produced a linear combination of tensor products

(GGA]' OA].Jij) &® (JijBj o BjHH>

in which each biset is special and such that the corresponding linear
combination of products

cGa; © ATy 0 i, © B HE

is zero. But such expressions, taken up to isomorphism, are basis ele-
ments of pug, and so for each isomorphism type the sum of the coeffi-
cients of the corresponding tensor products is zero. Lemma 2.2 implies
that if GoJoJoH = GoJ'oJ' oH then GoJ®JoH = GoJ'®.J oH and
it follows that the linear combination of tensors we were considering
must be zero. O

Corollary 3.7. Let & C D and & C D be sets of finite groups which
are closed under taking sections and let M be a globally defined Mackey
functor defined on D which is projective relative to £ and also projec-
tive relative to €. Then M is projective relative to £ N E,.

Proof. Wehave M = M |212= M |2 1% sothat M = M |212 |21,
Now for any Mackey functor N defined on & we have

X)
NAZIE = 1g” (D) @26, N
= & M& ®M§’y(gl) N

= el Ene) ®u§’y(82051) (E2nE1) e ®u§’y(51) N

~ &
- 82u(g2mgl) ®M§’y(€2ﬂ51) N l€1ﬂ52

& &
= N lgiﬂgz Tg?ﬂgz

using 3.6. Thus M = M lglgmsﬁiimeﬂé@zg M lngQTgm(€2 as re-
quired. [

Corollary 3.8. Let &, &, D and G be sets of finite groups which are
closed under taking sections with & C D, & CD and D C G. Let M
be a globally defined Mackey functor defined on D which is projective
relative to €. Then

(1) M 1% is projective relative to &, and
(2) M |Z, is projective relative to £ N E,.

Proof. The first statement is immediate from the transitivity of in-
duction. For the second statement, suppose that M is a summand of
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N Tg. Then M lg is a summand of N Tg lg, which is isomorphic
to N lngQTgfm& as in the last result and hence M lg is projective
relative to & N &,. ]

Theorem 3.9. Let M be a globally defined Mackey functor. There is
a unique minimal set of groups £, closed under taking sections, relative
to which M is projective. Furthermore M = M |P12 and M |% is
(up to isomorphism) the only Mackey functor N defined on & with the
property that M = N 12,

Proof. From the last result we see that £ is the intersection of the sets of

groups (closed under taking sections) relative to which M is projective.
If M= N 12 then N = N 12|P= M |2 determines N uniquely. [

We may call the set of groups £ in the above theorem the vertezr of
the globally defined Mackey functor M.

Proposition 3.10. Let H be a group and V a simple ROut(H)-
module. The representable functor Homcg,y(p)(H, ) and the inde-

composable projective functor Py y (assuming R is a field or a discrete
valuation ring) both have vertex the set of sections of H.

Proof. Let £ be the set of sections of H. As a u%”(D)-module the
representable functor is

b (D) - st = 1™ (D) @, ey ™ (€) - e

so that this functor is projective relative to £. The vertex cannot be
any smaller, since the functor is generated by its value at H, and not
by its values on smaller groups.

We have seen in Proposition 3.3 that Py is projective relative to
&, and again it is not projective relative to any smaller set of groups,
because it is not generated by its values on such groups. U

4. FILTRATIONS, BRAUER QUOTIENTS AND RESTRICTION KERNELS

In this section we describe an ascending filtration and a descend-
ing filtration of each globally defined Mackey functor associated to an
ordering of isomorphism types of finite groups. When we show in Sec-
tion 7 that globally defined Mackey functors form a highest weight cat-
egory over a field of characteristic zero, we will see that the ascending
filtration of each projective functor refines to a filtration with standard
factors A, and the descending filtration of each injective functor refines
to a filtration with costandard factors V. Prior to that application we
develop the properties of these filtrations, relating them to the Brauer
quotient and restriction kernel constructions.
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Suppose that £ is a set of finite groups. We define
[eM = (M(J) | J €E)

to be the subfunctor of M generated by its values on groups in €. Thus
I M is the smallest subfunctor of M whose value on all the groups
Je&is M(J).

It is useful to speak of a globally defined Mackey functor M be-
ing cogenerated by subsets Xy C M(H) where H ranges over finite
groups. By this we mean that every morphism of globally defined
Mackey functors M — M’ which is injective on all the subsets X is
necessarily a monomorphism. Given a set of finite groups £ we de-
fine ReM to be the largest subfunctor of M satisfying the condition
that M(vy) : ReM(K) — M(J) is the zero map for every morphism
v: K — Jin Cy? with J € £. We sce that M/RgM takes the same
values as M on groups in £, and is cogenerated by these values. We
may call it the quotient of M cogenerated by its values on groups in &.

In the next proposition we write ‘all’ to denote a set of representatives
of all isomorphism classes of finite groups.

Proposition 4.1. Let M be a globally defined Mackey functor and let
E, & and & be sets of groups with & C &,.

(1) I@M == RauM =0 and R@M = allM =M.

(2) IglM g ]g2M and RglM 2 RgzM.

(3) If € is closed under taking sections then

IM(K)= ) ImM(y) and ReM(K)= () KerM(y).

v:G—K v:K—G
Ge& Geé&

(4) If & C & then Ig,M /I, M is generated by its values on the
subgroups in E — &1 and Rg, M/ Re, M is cogenerated by its val-
ues on the subgroups in E — &,. If additionally £ and & are
closed under taking sections then Ig¢, M /I, M and Re, M/ Re, M
are zero on groups which do not contain a group in & — & as

a section.
(5) Ig(Ml@MQ) == ]ngEB]gMQ and Rg(Ml@Mg) - Rng@RgMQ.

Proof. (1) and (2) are self-evident.

(3) The right hand side of the expression for I[¢M(K) equals the
subfunctor of M generated by its values on groups in &, since the right
side is certainly contained in this subfunctor, and it is a subfunctor
itself since on applying any morphism in Cg’y(D) by functoriality of
M to a term on the right, the result factors through another of the
terms on the right, by Bouc’s Lemma 2.1 and using the hypothesis
that £ is section-closed. A similar argument applies to the expression
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for ReM(K). Everything on the right goes to zero under morphisms
M () where the codomain of ~ lies in £, but we need to check that the
expression on the right does define a subfunctor. This again follows
from Bouc’s Lemma.

In (4), we have from the definitions that I¢, M is generated by Ig, M
and the values of M on the groups in & — & . Hence I, M/I¢, M
is generated by its values on the subgroups in & — &; alone. The
statement about cogeneration is dual. Suppose now that £ and &, are
closed under taking sections. If all sections of a group which lie in &, lie
in & then Ig, M and Ig, M take the same values on this group by (3),
and so the quotient functor is zero on such a group. Thus the quotient
functor is only non-zero on groups which contain a section in & — &;.
Again the statement about Rg, M/Rg, M is dual.

(5) is immediate. O

In the next result we assume that R is a field and show that the
subfunctors I¢M and RgM are dual to each other, in the same way
as in [34, Prop. 2.2]. We recall from Section 2 that for each functor
M in Macky? there is a dual functor M* in Macky™ with M*(G) =
Hompz(M(G), R). If N C M is a subfunctor, let us put N*(K) = {f €
M*(K) | fInxy = 0}. Then by a standard piece of linear algebra if
N1 Q N2 Q M we have (NQ/Nl)* = NIJ'/NQJ'

Proposition 4.2. Let M be a globally defined Mackey functor over a
field R and let £, & and & be sets of finite groups closed under taking
sections. Then (IeM)* = Re(M*) and (ReM)* = I¢(M*). Thus if
&1 C & we have

(IgzM/I&M)* = (IS1M>J—/(I$2M)L = R51 (M*>/R52 (M*)
and
<R51M/R52M)* = (R&M)J_/(R&M)L = ISQ(M*>/[51 (M*)

Assuming dim M (G) is finite always and identifying M with its double
dual we have (Ig(M*))* = ReM and (Re(M*))* = I¢M.

Proof. This is the same as [34, Prop. 2.2]. O

Proposition 4.1 says that the mappings £ +— I¢M and £ — ReM
are order preserving and order reversing maps from the lattice of sets
of isomorphism types of finite groups to the lattice of subfunctors of
M. Using this we may construct filtrations of M by ordering the iso-
morphism classes of finite groups as 1 = Hy, Hy, Hs, ... in such a way
that if H; is isomorphic to a section of H; then i < j. Let us write
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Mi = [{Hl,n-,Hi}M and Ml = R{HL...,HZ'}M with M[) =0 and MO =M.
We produce in this way an ascending filtration

O=MyC M C---CM
and a descending filtration
M=M"DM'D...

of M associated to the list Hy, Hy,.... The last results apply to the
terms of these filtrations, and we have for all i:
(1) (M & N); = M; ® N;;
(2) M;/M;_ is generated by its value at H; and is only non-zero
on groups which have H; as a section;
(3) M; = M** when R is a field and the values of M are finite
dimensional, with similar statements holding for the M®.

We are interested in the factors M;/M; ; and M*~'/M?® of these
filtrations. Evidently these are associated in some way to the group
H;, but they depend also on the ordering of the rest of the list of
isomorphism classes of groups and need not be uniquely determined by
H;. We will see from the next result that as the position of a particular
group H varies between different lists, there is a largest such factor
associated to H, which occurs when H appears as early as possible in
a list. We will also be interested in the values of the factors M;/M;
and M1 /M" at H; which are in fact determined independently of the
position of H; in the list of subgroups. To do this we make the following
definitions.

The Brauer quotient of M at H is defined to be

M(H) = M(H)) Y mM(),

~:J—H
H not a section of J

We also define the restriction kernel of M at H, namely
M(H)= (]  KerM(y).

~:H—J
H not a section of J

We have defined these constructions over an arbitrary commutative ring
R and when R is a field our definitions agree in spirit with the usual
ones. When R is a local ring it is usual to factor out in addition the
radical of the ring from these expressions (see [29]). This is something
we do not do here, so that our terminology differs from that suggested
by other contexts. One possibility would have been to devise a different
name for our Brauer quotient, such as the ‘transfer quotient’ or the
‘covariant quotient’ but we have avoided doing this.
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The next result shows that a listing of finite groups with larger num-
ber of groups appearing prior to a given group H gives rise to smaller
quotients at the stage corresponding to H in both the ascending and
descending filtrations of M, while the values of these quotients at H
remain fixed.

Proposition 4.3. Let M be a globally defined Mackey functor, let H
be a group and let £, F be sets of finite groups with € C F.

(1) The inclusion mapping induces an epimorphism
TeoqmyM [/ 1eM — TrogmyM /1M
and a monomorphism
RrM/RroimyM — ReM/Reugmy M.

(2) If & is section-closed and contains every proper section of H,
but not H itself, then

(LeugyM/1sM)(H) = M(H)

and

(ReM/Reuym M) (H) = M(H).

Proof. (1) The proof is the same as that of [34, Prop. 2.3(a)].
(2) We have from Proposition 4.1

IsM(H)= > ImM(y)
’y:ge—éH

= ). ImM(y)

v:G—H
G a proper section of H

since every 7 : G — H with G € £ factors through a proper section
of H. Since IgugyM(H) = M(H), the quotient is M (H). This estab-
lishes the first formula, and the proof of the second is very similar. [J

We conclude that the Brauer quotient and restriction kernel are dual
in a certain sense.

Corollary 4.4. Let M be a globally defined Mackey functor over a field
R whose values are all finite dimensional. For each group H we have

M(H) = (M*(H))".

Proof. This is a consequence of Proposition 4.2 and Proposition 4.3(2).
O
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Taking a list of isomorphism types of groups 1 = Hy, Hs, ... in which
the sections of each group H; always appear earlier than H;, we see that
for each group G = H; in the list there is a unique largest possibility
for the functor M;/M;_; obtained from a list in which H; appears as
early as possible. This happens when H,, Hs, ..., H; are exactly the
sections of H;. Let us write < G for the set of sections of G and < G
for the set of proper sections of G. We define

Mgy = I<cM/I.¢M and M9 := R.cM/R<cM.
We summarize the properties of these constructions.

Corollary 4.5. Let 1 = Hy, Hy, ... be a list of groups in which the
sections of each group H; always appear earlier than H; and let M be
a globally defined Mackey functor. In the ascending and descending fil-
trations of M, the factors M;/M;_y and M= /M are only non-zero on
groups which have H; as a section. We always have (M;/M;_1)(H;) =
M(H;) and (M= /M")(H;) & M(H;). In particular Mg, is only non-
zero on groups which have H; as a section and My, (H;) = M (H;).
Furthermore M;/M;_q is a homomorphic image of My, and M*~' /M’
is a subfunctor of M)

We conclude this section with a well-known result.

Proposition 4.6. Let f : N — M be a morphism of globally defined
Mackey functors.
(1) If the composite morphism N(H) — M(H) — M(H) is surjec-
tive for every subgroup H then f is an epimorphism.
(2) If the composite morphism N(H) — N(H) — M(H) is injec-

tive for every subgroup H then f is an monomorphism.

Proof. The proof is the same as the proof of [34, Prop. 2.5].

(1) Let 0 = My € M; C --- be an ascending filtration of M in
the sense defined after Proposition 4.2. We show by induction that
M; C Im f, which is certainly true when ¢ = 0. Assuming that
M; 1 C Im f we also know that (M; NIm f)/M; ; = M;/M;_; since
this is generated by (M;/M;_1)(H;) by Proposition 4.1(4), which equals
M (H;) by Proposition 4.3(2) and is covered by f. Hence M; C Im f.
Since M = | M; we have M C Im f.

The proof of (2) is dual. O

5. THE FUNCTORS Agy AND Vyy

We now construct the functors which play the role of standard and
costandard objects in Mackg’y. The idea to consider functors of this
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type can be traced back at least to Lewis [24]. The functors which
we call Vi here were also defined in a more restricted setting in [32]
where they were denoted Jg . We choose to define these functors by a
direct explicit construction and in subsequent sections we will need to
know some of the information which this produces. The functors can
also be defined using the adjoint properties which they satisfy and I
am grateful to the referee for pointing out that this approach can also
be made explicit and may be shorter. We sketch the approach after
Proposition 5.2. The functors we will define will have as their domain
a section-closed set of finite groups D. However, none of the definitions
or arguments depend on D and so we omit D from the notation.

We fix a finite group H, and for each finite group G we consider the
set of sections of G isomorphic to H with kernel in X. To be very
specific about this we define

Secy(G,H)={a: A—-H ‘ A<G, Kera € X}.
Whenever V' is an R Out H-module we put

M@= @  Viexaun

a€Secy (G,H)

and
V%y(G) _ ( @ aV>G><AutH
a€Secy (G,H)
where each “V is a copy of V', the subscript and superscript G x Aut H
mean fixed quotient and fixed points, and there is an action of G x
Aut H on the direct sum (before taking fixed quotient and fixed points)
specified as follows: if v = v € *V, g € G and 7 € Aut H then

(g,7) (") = "%y (v)

where the (left) superscript on a vector indicates the copy of V' to which
it belongs. Here c¢,(z) = gzg~!' is conjugation by g.

We describe more fully the structure as G x Aut H-modules of the
direct sums which appear in the definitions of Ay and V. There is
an action of G x Aut H on each of Secy (G, H) and Secy (G, H) given by
composition, as follows: if ¢ € Aut H and g € G, for any o : A — H,
we have .

(9,0) - a: AT A gl
We see that in the action of G x Aut H on the direct sum given above,
the subspaces *V are permuted in the way just given, and the direct
sum is an induced module.

For any section o : A — H where A < G we define

Ng(a) = Ng(A) N Ng(Ker(a)).
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There is a homomorphism Ng(a) — Aut(H) which sends g € Ng(«)
to the automorphism of H induced by c,. The stabilizer in G x Aut H
of the subspace “V is
Stabaxaut g (“V ‘ yoc,-1 = a}
= { 9,7) ‘ € Ng(«),visinduced by ¢, }
= Ne(a)

via the diagonal embedding N () — G x Aut H which has components
the inclusion Ng(a) — G and the homomorphism Ng(a) — Aut H.
In the given action of G x Aut H on € *V/, this diagonal subgroup acts
on “V via projection to Aut H, so identifying it with Ng(«) the action
on “V is via the map Ng(«a) — Aut H. Now
® v= B v
a€Secy (G,H) a€[Aut H\ Secx (G,H)/G]

Thus we have the following expressions for A and V.

Proposition 5.1.

Apy(G) = D “Via(a)
a€[Aut H\ Secy (G,H)/G]
and
Vuv(G) = @ oy Nale)

a€[Aut H\ Secy(G,H)/G]

Proof. We take fixed quotients and fixed points in the previous expres-
sion and use the isomorphisms (W 1¢)s = Wy and (W 19)¢ =~ Wt
for the fixed quotients and fixed points of an induced module. O

We now make Ap y into a functor, and define first a covariant mor-

phism
O AH,V(G) - AH,V(Gl)

associated to any group homomorphism ¢ : G — G;. (We only need
to define ¢, when Ker¢ € )., but this condition does not make an
appearance in the definition.) Suppose that o : A — H is a section
of G, where A < GG, and consider ¢|4 : A — G;. It may happen that
Ker(¢|4) C Kera, and in this case we can factor a as o« = & o ¢|4
where & : ¢(A) — H is a section of G;. We may express this situation
by saying that there is a commutative diagram

G > A % H
¢\Al S a
G > ¢(A)
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Observe in this case that Kera = Kera/Ker(¢la) € X since X is
section-closed. With this notation we define a morphism

6. PH Vv- p v

a€Secy (G,H) a€Secy (G1,H)
by

¢+("0) =

_ Y if Kerg|s C Kera
0  otherwise.

To define ¢, we observe that gz_S* commutes with the action of G x
Aut(H) on the direct sums, and so induces a map on fixed quotients.
We define ¢, to be the composite ¢, = coreso¢,, where cores is the
canonical projection of fixed quotients between ¢G x Aut H and G x
Aut H, as follows:

( B  Vexau 25 B Vexawn

a€cSecy (G,H) a€Secx (G1,H)

22 B Vexauwn:

a€cSecx (G1,H)

Next we define the contravariant morphism ¢* : Ay (G) — Ay (Gh)
associated to a group homomorphism ¢ : G; — G for which Ker ¢ € X.
If « : A — H is asection of GG, where A < (G, we consider the subgroup
¢rA < G4, and it may happen that the composite & = ag|g-14 :
¢ 1A — H is surjective. In this situation Ker& € X since it appears
in a short exact sequence 1 — Ker¢ — Kera — KeraN¢op1A — 1
and X is extension-closed. We define

v P v- p v

a€Secy (G,H) a€Secy (G1,H)
by

- % if & is surjective
o () = ) )
0  otherwise.

This time the non-zero situation may be expressed by saying there is
a commutative diagram

G, > 'A% H
‘bl S
G > A

Again ¢* commutes with the action of G x Aut H on the direct sums
and induces a map on fixed quotients. We define ¢* to be the composite
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¢* = ¢* o res, where res is the restriction map in group homology (the
relative trace) between G and ¢G1, as follows:

( B Viewauns=( B Vecixaun

a€Secx (G,H) a€Secx (G,H)

¢—>( @ V) Gy x Aut H-

a1€Secx (G1,H)

We may show that Ag y is indeed a globally defined Mackey functor
with respect to X and Y. This may be done by verifying that axioms
(1) — (5) of Section 2 are satisfied, which is a routine but notationally
complex task.

We similarly make Vpy into a functor by using the operations dual
to those of Ay . Suppose that ¢ : G — G is a group homomorphism
with Ker¢ € Y. We define ¢, : Vg (G) — Vg (G1). As before, if
a: A — H is a section of G, where A < G and Kera € X, we put
a = ag if Ker(¢|4) C Ker . We may express this by saying that there
is a commutative diagram

G > A %S H
/
¢‘Al 16
Gi > ¢(A)

Note in this case that Ker & = Ker o/ (Ker ¢|4) € ) since Y is section-
closed. In the direct sum @aeseCy(G m “V we put

P("0) =

- 9 if Ker(¢la) C Kera
0  otherwise.

Now ¢, commutes with the action of G' x Aut H on the direct sum, and
we define ¢, to be the composite ¢, = coresog, as follows:

( @ av)GxAutHi( @ alv)qﬁG’xAutH

a€Secy (G, H) a1 €Secy (G, H)
%( @ a1V)G1><AutH‘
a1€Secy (G1,H)
If p: G; — G and Ker ¢ € X we put
Fn= 3
Gi>K1 2 A%H

where the sum is over all subgroups K; < G such that ap(Ky) = H
and KiNKerag¢ € Y. Now ¢* commutes with the action of G; x Aut H
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and we define ¢* = ¢* o res as follows:

( @ aV)GxAutHg( @ av>¢G1><AutH
a€Secy (G,H) a€Secy (G,H)
ﬂ)( @ alv)Gl x Aut H
a1€SeCy(G1,H)
where res is the restriction map in group cohomology from G x Aut H
to ¢G1 x Aut H. In the same way as before we may verify that Vg
is a globally defined Mackey functor using the axioms in Section 2.
The functors Vg enjoy the same formal properties as the func-

tors Jyy defined in [24] and [32], and the Ay enjoy dual properties.
Perhaps the most important of these is an adjoint property.

Proposition 5.2. For each subgroup H the functor
Mackg’y — ROut H-mod
specified by M +— M(H) has left adjoint V. +— Apy. Similarly the
functor specified by M + M(H) has right adjoint V +— Vgy. The
natural isomorphisms
HomMackgvy (AH,Va M) - HomROutH(V7 M(H))

and
Hom, 4 x5 (M, Vigy) — Hompouw n(M(H), V)

are given by evaluating morphisms at H.

Proof. We show that HomMackg‘y(Ava’ M) = Homgown(V, M(H)),

omitting the proof of the corresponding statement for Vi, since it
is similar. The isomorphism from left to right is n — 71y, namely the
effect of the natural transformation n at the group H. Observe that
the image of the R Out(H )-module homomorphism ng : V. — M(H)
is indeed contained in M(H) since if v : H — J is a morphism where
H is not a section of J then Ay (J) = 0 and since the diagram

Apy(H) 5 M(H)
JAHm) lM(v)
Agv(J) 5 M(J)

commutes we deduce that M (y)ng = 0.

For the isomorphism in the direction right to left, suppose that
6 :V — M(H) is an ROut H-module homomorphism. We define
a natural transformation 6, : Agv(G) — M(G) as follows. First we
define a map 6" : @ ,cqecr (i “V — M(G) by specifying that it has
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component ¢,a*f on the summand V', where H is expressed as a sec-

tion of G by maps G<=K SH. By computation we see that the action
of G x Aut H on the direct sum is trivialized after applying 6': if g € G,
v € Aut G and “v € *V we have

0'((g,7)("v)) = 0'("*y(v)
= ti(yacg-1)"0(y(v))
= L.ce0" Y Y, 0(v)
= 1,a"0(v)

=0'(").

Thus ¢’ induces a map 0 : Ay (G) — M(G) on the fixed quotient.
The proof concludes with a verification that 6 is indeed a natural

transformation, and that the constructions n — ng and 6 — ¢ are

mutually inverse, which may be checked by computation. O

The adjoint properties of Proposition 5.2 may be used to define Ay y
and Vv, and this approach to the definition is much faster than the
one we have taken. It does, however, leave the question of whether such
adjoints exist, and does not immediately give an explicit description of
the values of the functors. I am grateful to the referee for pointing out
that an explicit description may be deduced as follows. We define

Vv (K) = Homgow g (ANY( ,K)(H),V)

noting with hindsight that the term on the right is isomorphic to
HomMack;,y (A%Y( ,K), V) which by Yoneda’s lemma is V. (K).
From this definition the functorial dependence on K may be deduced,
as well as the fact that the definition extends to the natural isomor-
phism of Proposition 5.2. An expression for

AR” (LK) H) = ARY (LK) (H)

is given in step 2 of the proof of Theorem 6.3, and this immediately
yields the description in Proposition 5.1. When V is finite dimensional
we can deduce the corresponding properties for Ay using the duality
statement of Corollary 5.9.

Corollary 5.3. Let H be a group and let H be the full subcategory of
Mackg’y whose objects are the functors M with M(K) = 0 if K is a
proper section of H. The functor M +— M(H) from H to R Out H-mod
has left adjoint V +— Agy and right adjoint V +— Vgy. Thus there
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are natural isomorphisms
Homy (Ap,v, M) = Hompgow u(V, M (H))
HOHIH(M, VHJ/) = HomROutH(M(H)a V)

Proof. For such a globally defined Mackey functor M we have M (H) =
M(H) = M(H) and so the adjunction isomorphisms of Proposition 5.2
become the ones stated. U

Several properties of the A and V functors follow from their identi-
fication as adjoints, and we state these in the next results.

Corollary 5.4. Let £ C D be sets of finite groups which are closed
under taking sections and let H be a group in £. Writing *Agyv and
PAgyv for the functors defined on € and D we have *Agy = PAgy |2
and PAgy = €Ay 2. Furthermore PAgy is generated by its value
at H, and has the set of sections of H as its vertew.

Proof. The definition of ¢A v is the same as the definition of DA HV
on groups in &, and this establishes the restriction formula. For the
induction formula we exploit the fact that V — PAyy is left adjoint
to M +— M(H). The latter functor can be written as a composite
M — M |P— M(H) and so its left adjoint factors as a composite of
left adjoints V +— ¢Agy — €Agy 12. The isomorphism follows from
this.

We see that PAp 1 is projective relative to every set of finite groups
which contains the sections of H, and it is not projective to any smaller
set since it is zero on proper sections of H. Thus the vertex is as
claimed.

Any functor is generated by its values on groups in its vertex, and
since H is the only such group on which PAy 1 is non-zero, this functor
is generated by its value at H. 0

Evidently a similar statement to that of Corollary 5.4 is true for the
Vv provided we develop a theory of relative injectivity dual to that
of relative projectivity, using the right adjoint to the restriction functor
instead of the left. In any case it is clear that Vpy is cogenerated by
its value at H.

Corollary 5.5. Let H be a group and let V be an R Out H-module
which has a unique simple quotient U (up to isomorphism). Then Agy
has a unique simple quotient Spy. Dually, if V has a simple socle
U then Vgy has a simple socle isomorphic to Sgy. If R is a field
or a complete discrete valuation ring then Agy is an image of the
indecomposable projective Py and V gy is isomorphic to a subfunctor
of the indecomposable injective Ip .
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Proof. The natural transformation Agy — Spy, which by Corol-
lary 5.3 extends the homomorphism V' — U, is non-zero, so it is an
epimorphism since Sg is simple. If a simple functor Sk is an im-
age of Ay y then H is a section of K (since Agy(K) = 0 unless H
is a section of K), and in fact we must have K = H since otherwise
Skw(H) =0 and the map from Ay would be zero by Corollary 5.3.
We now see that U = W since Sy w(H) = W is a simple image of V.
The statement about Vi is proved dually, and the remaining state-
ments are immediate consequences of what we have already shown. [J

The following interpretation is well known and will be used in Sec-
tion 11 when we compute the values of simple functors.

Corollary 5.6. Let V' be a simple ROut(H)-module. Then Sy =
Apyv/RunAmy is the quotient of Ay cogenerated by its value at H,
and Sy = IyyVuy is the subfunctor of Vv generated by its value
at H.

Proof. By Corollary 5.5 the simple socle of Vi contains Vg y(H),
and hence is generated by this value. The statement about Apy is
dual. O

Corollary 5.7. Consider the ascending and descending filtrations of a
Mackey functor M associated to a list 1 = Hy, Hs, ... of isomorphism
types of groups, listed so that the sections of each H; always appear
earlier than H;. For each i there is an epimorphism

Ap, 7y — Mi/ M
and a monomorphism
MM — Ny v

Proof. By Corollary 4.5 we know that M;/M;_; and M~ /M vanish on
groups which do not have H; as a section, and we have (M;/M;_1)(H;) =
M (H;) and (M*~1/M")(H;) = M(H;). Thus by the adjoint property
of 5.3 we have morphisms as claimed. Since M;/M; 1 is generated
by its value at H; the first is an epimorphism, and since M*~! /M is
cogenerated by its value at H; the second is a monomorphism. 0

The last result allows us to bound the dimension of the evaluation
of a globally defined Mackey functor in terms of its Brauer quotients
and restriction kernels.
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Corollary 5.8. Let M be a globally defined Mackey functor defined
over a field R. For each group G we have

dmM(G) < Y dim Ay (G)

H asection of G
up to isomorphism

and

dmM(G) < Y dim V().

H asectionof G
up to isomorphism

Proof. We take a list 1 = Hy, H, ... of isomorphism types of groups,
so that the sections of each H; always appear earlier than H;. Now
dim M(G) = > dim(M;/M;_1)(G) and each of these dimensions in
the sum is bounded by dim Ay, 57,)(G), by Corollary 5.7. Note that
M;/M;—1(G) and Ay 57, (G) are only non-zero when H; is a section
of GG, so that the sums we are dealing with are finite. The second
inequality is proved similarly. O

The bounds given in Corollary 5.8 are best possible in general. In-
deed, it will be proved that the first inequality is an equality whenever
M is projective, from which we can deduce by duality that the second
inequality is an equality whenever M is injective.

We next state the behaviour of Ay and Vg under the duality
between Mackg’y and Mack%’x and for this we write the functors in
Macky” as A\, and V.

Corollary 5.9. Assume that R is a field, let H be a group and let V
be a finite dimensional ROut H-module. We have (Agy)* = Vi .

and (VY )" = AY . as functors in Mack}™ .

Proof. We observe that (A ,)*(H) = V*, and also that (A% )" sat-

isfies the right adjoint property which characterizes Vﬁ}v*, thus estab-
lishing the first isomorphism. The second follows similarly. O

We may use the adjoint properties of the A and V functors to give
information about the Ext groups of simple globally defined Mackey
functors. The approach we take is exactly the same as in [31, Section
14] and the arguments presented there go through here also.

Theorem 5.10. Let Sy v, Skw be simple globally defined Mackey func-
tors over a field R.
(1) If Extix,y(SHy, Skw) # 0 then either H is a section of K or
R
K is a section of H.



STRATIFICATIONS AND MACKEY FUNCTORS II 35

(2) If H= K then
dim Ext(Sg v, Sgw) =multiplicity of Suyw
in the second Loewy layer of Ay p, .
=multiplicity of Suv
in the second socle layer of Vi p,
The evaluation at H induces a morphism

EXtix,y (Suyv,Saw) — Extp o 1 (V, W)
R

which s injective. In particular
dim Ext v (Suy. Suw) < dimExty, oy (V. W).
R

(3) If K is a proper section of H then
dim Extug,y(SHy, Skw) =multiplicity of Suv
in the second socle layer of Vi w.
(4) If H is a proper section of K then
dim EXtug,y(SH,v, Skw) =multiplicity of Sk.w

in the second Loewy layer of Apy .

We comment that by virtue of the duality between Mackg’y and
Mack%™ each of statements (3) and (4) is equivalent to another state-
ment in the dual category in which multiplicities in the second Loewy
layer of a A are interchanged with multiplicities in the second socle
layer of a V. We leave it to the reader to formulate this.

Proof. Suppose we have a non-split extension 0 — Sgw — M —
Suyv — 0 and that K is not a section of H. We will show that H
is a section of K. This Mackey functor M vanishes on groups which
are proper sections of H and so by Corollary 5.3 the identity map on
M (H) extends to a morphism Agaey — M. Since the extension is
non-split, M has Sy v as its unique simple quotient, and so is generated
by its value at H. It follows that M is an image of Ay a(sr), and this is
a functor which is only non-zero on groups which have H as a section.
Thus K has H as a section. This proves part (1).
In the proof of the remaining parts we use the fact that

dim EXtug,y (SH,V, SK,W) =N
if and only if n is the largest number r for which there is an extension
(*) 0— (Skw) — M — Sgy —0

in which Spy is the semisimple quotient of M.
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Assume that H = K. To prove (2) we observe by Corollary 5.5 that
Ap p, has a simple top isomorphic to Sg v, and so if Sy occurs with
multiplicity 7 in the second Loewy layer of Ay p, then an extension
(*) exists. On the other hand, given an extension (*) we may lift the
projective cover P, — V to an R Out(H )-module hommorphism Py —
M (H) which corresponds by Corollary 5.3 to a morphism Ay p, — M
which is an epimorphism since it surjects onto Spy, the composite
Py — M(H) — V being surjective. This shows that Sy occurs at
least r times in the second Loewy layer of Ay p, thus proving the first
equality of (2). The second equality is proved by a dual argument.

We prove that the morphism EXtuﬁ’y (Suv,Suw) — Extrouw u(V, W)

is injective in the same way as the corresponding statement of [31, 14.3].
Suppose we have a non-split short exact sequence of functors

0—>SH,W—>M—>SH7V—>O.
Evaluating at H this gives a short exact sequence of R Out(H )-modules
0—-W—>MH)—-V —=0

which we show is non-split. If it were to split, the splitting V' — M (H)
would extend uniquely to a morphism Agy — M by adjointness, and
the image of this morphism must be Sy since otherwise it would be
the whole of M, which is not possible since Ay y(H) = V. This pro-
vides a morphism which splits the original sequence, thus completing
the proof of (2).

Part (3) is proved by a dual argument to (4) and we only give the
proof of (4), which in turn is similar to the proof of the first part of
(2). This time assume H is a proper section of K. If Ay has Skw
appearing r times in its second Loewy layer then certainly there exists
an short exact sequence (*). On the other hand in any sequence (*) we
have M(H) = V and so this isomorphism on V' extends uniquely by
adjointness to a morphism Ay — M which is an epimorphism since
it covers Sy . This forces Sk to occur at least r times in the second
Loewy layer of Ay y. We conclude that the maximal possibility for
R equals the multiplicity of Sk in the second Loewy layer of Ay y,
which proves the result. O

We now add to the information given in Theorem 5.10 in one respect.

Proposition 5.11. If Ext(Suv, Skw) # 0 then either H lies in the
vertex of Skw or K lies in the vertex of Suy .

Proof. We already know from 5.10 that to have a non-split extension
either H must be a section of K or K must be a section of H. Suppose
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that H is a section of K and that
O—>SK,W—>M—>SH,V—>O

is a non-split extension. Let D be the vertex of Syy. If K is not a
group in D then the restriction of the sequence to D has the form

0—=-0—=M |p— Suyv |lp—0

which is split. Therefore by one of the equivalent conditions listed in [3,
Prop. VI.3.6] the original sequence must split, which is a contradiction.
Therefore K is a group in D. The argument when K is a section of H
is similar. U

6. PROJECTIVE FUNCTORS HAVE A A-FILTRATION

Our main goal in this section is a proof of Theorem 6.3 which shows
that projective functors always have a filtration with factors of the form
Apyv where V' is a summand of a permutation module. To achieve this
we first examine carefully the rank as a free R-module of Aﬁ’y (G, K).
The first lemma is really an elaboration of Lemma 2.2, and for it we

consider pairs of epimorphisms of groups A— H LB where A is a
subgroup of G and B is a subgroup of K. Thus H is a common ho-
momorphic image of A and B. We will say that two such pairs of
epimorphisms («, ) and (p, o) are equivalent if there is a commutative
diagram

A B L

B
S B
v % v o w
where ¢, and ¢, denote conjugation by z € G and y € K, U = “A,
W = ¥B and 6 is an isomorphism.

Lemma 6.1. Let G and K be finite groups.

(1) AxY(G,K) is a free R-module with basis in bijection with the
equivalence classes of pairs («, ) of epimorphisms a: A — H,
06:B— H where A< G, B< K, H is a common homomor-
phic image of A and B which is allowed to vary, and such that
Kera € X and Ker 5 € ).

(2) For each fized group H, Ax~( K) () (G) is a free R-module
with basis in bijection with the equivalence classes of pairs («, [3)
of epimorphismsa: A — H, 3 : B — H where A< G, B<K,
and such that Kera € X and Ker g € ).
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Proof. (1) From its definition, A% (G, K) has as a basis the isomor-
phism classes of transitive (G, K)-bisets with left stabilizers in X and
right stabilizers in ). By Lemma 2.1 these are precisely the bisets
which may be written ;G40 sHyoygHpo gKg where A <G, B< K
and A->H< B are epimorphisms with Kera € X and Ker g € ).
By Lemma 2.2, two such bisets are isomorphic if and only if the pairs
of epimorphisms are equivalent.

(2) If € is a set of finite groups closed under taking sections then
by Proposition 4.1(3) we have that (I A%x>( ,K))(G) is the span of
the transitive bisets which factor through groups in £, namely those

corresponding to pairs A 72 B where J € £ We see this by
observing that if v : J — G is a morphism in C})%c,y with J € &, the
corresponding map Ag’y(J, K) — Ag’y(G , K) is given by composition
with ~, and such a map has image contained in the span of bisets which
factor through groups in £. Equally, every such transitive biset is in
the image of such a morphism, by Bouc’s Lemma 2.1.

Now A%Y( | K)<u(G) has as a basis the transitive bisets corre-

sponding to pairs A——.J B where J is a section of H , and also
A%Y( K)-y(G) has as a basis the transitive bisets corresponding to

pairs A——J LB where J is a proper section of H. From this the
result follows. 0

Suppose we have two epimorphisms o : A — H and §: B — H with
A < G and B < K. As before we put Ng(a) = Ng(A) N Ne(Ker(a))
and similarly for Ng (), and we regard Out(H) as a (Ng(3), No(«))-
biset where the actions are given by first applying the composite ho-
momorphisms Ng () — Aut(H) — Out(H) and Ng(a) — Aut(H) —
Out(H), followed by left and right multiplication, respectively.

Lemma 6.2. Gwen finite groups G, H and K, the number of equiva-
lence classes of pairs («, 3) of epimorphisms with a fized codomain H,
Kera € X and Ker 3 € Y equals

> > [Nk (8)\ Out(H)/Na ()|
a€[Aut H\ Secx (G,H)/G] fe[Aut H\ Secy (K,H)/K]

This number equals
rankp A%V, K) ) (G).
Proof. The pairs of epimorphisms A—— H B biject with the set 2 =

Secy (G, H) x Secy(K, H), and the equivalence classes of such pairs
are the orbits of the action of Aut H x G x K on this set given by
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(¢, 9,k) (v, B) = (pac, ', ¢Bc;, ). There is in fact an action of Aut H x
G x Aut H x K given by (¢,g,9,k)(a, 8) = (¢ac,', ¢3¢, ") and the
orbits on 2 under this action are unions of the orbits under the action
of Aut H x G x K, since this latter group acts as a subgroup of the
bigger group with Aut H embedded diagonally in Aut H x Aut H.

Consider now two elements (o, 3) and (¢ac,, YBc. ') in the same
Aut H x G x Aut H x K-orbit. The second element lies in the same
Aut HxG x K-orbit as (1" ¢a, 3) so that the elements (ya, 3) with v €
Aut H contain a complete set of representatives of the Aut H x G x K-
orbits on the Aut H x G x Aut H x K-orbit containing («, 3). Two
elements (7 «, 3) and (y2a, B) lie in the same Aut H x G x K-orbit if
and only if (yoa, §) = (¢mac; !, ¢fc, ") for certain x € G and y € K,
which entails € Ng(a), y € Na(3), ¢ = cary) and 75 ' ¢11 = Caga), SO
that v = Cﬁ(y)%C;(lx)' Thus the condition that (i, §) and (20, ) lie
in the same Aut H x G x K-orbit is that 7; and 5 represent the same
double coset in Nk (3)\ Aut H/Ng(«). These double cosets biject with
the double cosets N (5)\ Out H/Ng () since Inn H is contained in the
image of both Ng(«) and Nk () in Aut H.

Since the Aut H x G x Aut H x K-orbits on Secy (G, H) x Secy (K, H)
are

(Aut H\ Secx (G, H)/G) x (Aut H\ Secy(K, H)/K),

and each consists of | Ng(5)\ Out H/Ng(a)| orbits of Aut H x G x K,
the first statement follows.
The second statement is part (2) of Lemma 6.1. O

Theorem 6.3. Let R be a commutative ring with 1, let 1 = Hy, Ho, . ..
be a list of groups in which the sections of each group H; always appear
earlier than H; and let P be a projective globally defined Mackey func-
tor. Let P. = Iy, .. g P be the terms of the corresponding ascending

filtration of P. Then
P/Pq = P,y = AHT,ﬁ(HT)'

In this formula P(H,) is a direct summand of a permutation R Out(H,.)-
module.

Proof. Step 1. We claim that it suffices to consider the case when P =
Ag’y ( ,K) is a representable functor. This is because an arbitrary
projective P is a direct summand of a direct sum of such functors (see
[32] or [7]) and the assertion of the theorem for a class of functors
implies the same assertion for direct sums and direct summands of
functors in the class.
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Step 2. For each pair of groups H and GG we examine the module
Ag’y( , K)()(G) as an ROut(G)-module, being particularly inter-
ested in the case G = H. It is the permutation module on equivalence
classes of pairs («, 3) as in Lemma 6.1 part 2. The action of v € Aut G
is given by v(a, ) = (av™1, 3). At this point we have proven that for
the artbirary projective P the module P(H,) is a direct summand of a
permutation module in view of Corollary 4.5.

Examining the action of v € Aut G further, v(«, 3) ~ («a, ) if and
only if (av™, ) = (pac, ™, ¢fBc,t) for some ¢ € Aut H, k € K, g € G,
and this happens if and only if ¢ lies in the image of Nk () in Aut(H)
and av—! = ¢ac;1. In determining the action of Out G we may replace
v by c;ly since these represent the same element of Out GG, and the
effect of this is that we may assume that ¢ = 1. Now the condition for
v(a, ) ~ (a, ) is that v € Stabay g @, and v induces ¢~ € Ng(f)
on H. When GG = H this simplifies, and we have

AR K)an(H) = EB RARYGE) -
Be€[Aut H\ Secy (K ,H)/K]

In this formula and what follows we write simply N (3) instead of the
image of N () in Out(H). The formula will be used in Step 5.

Step 3. We claim that to show that P./P,_ = P,y = AH,«P(HT)
it suffices to prove the result when R = Z. By step 1 we assume
that P = A%”( ,K) and from the definition we have A%~ ( | K) =
R®z AZY( |, K). Assuming that A7 ~Y( , K) has an ascending filtra-
tion with A factors as claimed, all terms in the ascending filtration of
Az( , K) have values which are free abelian groups, so that on tensor-
ing with R we obtain a filtration of A%>( , K) with A-factors of the
required form, since these factors behave well on extending the ground
ring from Z to R.

Step 4. We claim that the result will follow when R = Z if we
can prove it when R is a field. Over Z we wish to show that each of
the epimorphisms Ay 5 ) — b /P,_1 is an isomorphism, or in other
words that it has zero kernel. All evaluations of these functors are free
abelian groups, so the epimorphisms are split at each evaluation, and
so they will be isomorphisms precisely if after tensoring with any field
they are isomorphisms.
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Step 5. Let us write U = AR~( K)(my(H) and compute rankp Ay ¢ (G).
Using the formula

Apu(G) = ar) N (@)

a€[Aut H\ Secy (G,H)/G]
— @ @ (R TOutH )NK(a)
a€[Aut H\ Secy (G,H)/G] Be[Aut H\ Secy (K,H)/K]
which comes from substituting the result of Step 2, and the fact that
rankg(R 15505)" ) = [Ni(a)\ Out H/Ni (5)|

we see that
rankRAHﬂ(G)

= > 3 [Ny (a)\ Out H/Ng(3)]

a€[Aut H\ Secy (G,H)/G] Be[Aut H\ Secy (K,H) /K]
— rankz ANY( K)m(G)

by Lemma 6.2. It follows that for each r the epimorphism Ay 54 ) —
P./P,_; given by Corollary 5.7 is an isomorphism, since on evaluation
at each group G the two modules have the same dimension. 0

We can describe the values of the functors P gy which are the factors
in the ascending filtration of a projective functor P more explicitly in
one particular case.

Proposition 6.4. Let V be a simple ROut H-module where R is a
field or a local ring. Then Pyy(H) = (Pgyv ) (H) is the projective
cover Py of V as an ROut H-module.

Proof. Putting ngw(H) = dim Sk w (H)/ dim End(W) we have by the
argument of [32, 5.6] that Ax>( , H) = B Pii W(H) and so using
Lemma 6.1(2) for the first of the following 1som0rphlsms,

ROWH= A4 HjmH= @ (Pay)e(H) ™.

simple R Out H—modules V'

For the second isomorphism we note that ng w(H) = 0 unless K is a
section of H, and for such K, (Pxw)m) = 0 unless K = H since Pk w
is generated by its value at K. None of the summands in the direct sum
is zero (since Ppy is not generated by its values on proper sections of
H), and their multiplicities ny v (H) = dim V/dim End(V') equal the
multiplicities of the indecomposable summands of R Out H. Thus the
summands in the direct sum are exactly the indecomposable summands
of ROut H, namely the projective covers of the simple modules. The
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fact that (Pg,v)m)(H) has V' as an image identifies (Pg,v)m)(H) with
Py. U

We now identify the standard and proper standard quotients of pro-
jectives associated to the preorder on the set which parametrizes the
simple functors. This preorder is (K,W) < (H,V) if and only if H
is a section of K. There are dual statements concerning the functors
Vu.p,, Vv in their role as costandard and proper costandard sub-
objects of the indecomposable injectives I ;. We leave these for the
reader to formulate.

Corollary 6.5. Let R be a field or a local ring.

(1) Ap.p, is the largest quotient of Py y all of whose composition
factors have the form Sk w where (K,W) < (H,V) (that is,
where H is a section of K ).

(2) Apy is the largest quotient of Py y whose radical only has com-
position factors of the form S w where (K,W) < (H,V) (or
in other words, where H is a proper section of K ).

Proof. (1) By Theorem 6.3 and Proposition 6.4 there is a short exact
sequence 0 — M — Pyy — App, — 0 where M has a filtration with
factors Ay where J is a proper section of H, and it follows that M
is generated by its values on proper sections of H. From this it follows
that any larger quotient of Py y than Ay p, must have a composition
factor which is non-zero on a proper section of H, and from this the
result follows.

(2) We will show that Ay is the largest quotient of Ay p, all of
whose composition factors are Siw where (K, W) < (H,V), except
for the top composition factor Sy . This will suffice to prove the result
since the largest quotient of Py y with the same property is certainly
a quotient of Ay p,, by part (1).

We consider the short exact sequence of R Out H-modules 0 — L —
Py — V — 0 where L is the radical of P, and apply one of the functors
of Proposition 5.2 to get a sequence

Apr — App, — Ay — 0.

This sequence is exact since the functor we have applied is a left adjoint.
Now Ay 1, is generated by its value at H, and from this it follows that
any quotient of Ay p, larger than Ay must have a composition factor
which is non-zero at H. This implies the result. U

The identification of standard and costandard objects has some im-
mediate consequences to do with the values of Hom and Ext between
A and V functors which are listed in [36, Prop. 3.1], for example. In
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our particular situation the general formulas which appear there can
be improved, and we present the stronger versions here.

Proposition 6.6. Let H and K be finite groups, let V be a ROut H -
module let W be an R Out K-module and let M be a globally defined
Mackey functor. We have
(1) Hom(Apgy, M) =0 and Hom(M,Vgy) = 0 unless M is non-
zero on a section of H. In particular, Hom(Apy v, Agw) = 0
and Hom(Vgw,Vgyv) =0 unless K is a section of H.

(2)

. HomROutH(‘/u W) ZfH:K,
HOIH(AH,V,vIgw) - { 0 ZfH % K,
the isomorphism in case H = K being induced by evaluation at
H

(3) For any M, if either Ext'(Agy, M) # 0 or Ext'(M,Vyy) #
0 then M s non-zero on some section of H; if V' is further
assumed to be projective then M must be non-zero on some
proper section of H.

(4)
E A Ext! ) B
th< H)V, CK,W) = { 0 tROutH(V, W) Z H = Ki

Proof. (1) and (2) are immediate from the adjoint properties of A and
V expressed in Proposition 5.2, together with the fact that Ay and
Vv are only non-zero on groups which have H as a section.

For (3) and (4) we calculate Ext'(Ayy, Vg w) using the start of
a projective resolution which appears as the top row of the following
diagram:

0 — K — P —>AH7‘/—>0

l | H

0O — X — AH,F(H) — Ay — 0.

Here P is a projective globally defined Mackey functor which we take to
be generated at H since Ay y is generated at H. Now by Theorem 6.3
P has a A-filtration whose top term is Io.gP. The map P — Apy
vanishes on Iy P which is generated on proper sections of H, so it
factors as P — Py — Ap,y, and by Theorem 6.3 and Proposition 6.4
Py = Ay where P(H) is a projective ROut H-module. This
explains the middle vertical morphism. We define X and K in this
diagram to be the kernels of the horizontal maps on the right. We
see from this diagram that the map K — X is an epimorphism, and
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in fact its kernel has a A-filtration with factors generated at proper
sections of H. Consider the short exact sequence of R Out H-modules
0 — I — P(H) -V — 0 where I is defined as the kernel. Since
the functor of Proposition 5.2 is a left adjoint we deduce that Ay ; —
Ay pmy — Auy — 0 1s exact, and from this we deduce that X is an
image of Ay ; and so is generated at H.

We compute Ext by an exact sequence

Hom(P, M) — Hom(K, M) — Ext(Agy, M) — 0.

Since K has a filtration with factors which are generated on sections
of H, we deduce that Hom(K, M) is zero unless M is non-zero on a
section of H, and this proves the very first part of (3). If V- = @ Py, is
projective then we could have chosen P = @ Pp v, so that X = 0 and
K is generated by its values on proper sections of H. We deduce that
Hom(K, M) is zero unless M is non-zero on a proper section of H, and
this proves the second statement of (3) in the case of Ay . The parts
of (3) about Vp y follow by duality.

In the situation of (4), we deduce from (3) that the Ext group is
zero unless both H is a section of K and K is a section of H, which
forces H = K. In case H = K with M = Vp, since the kernel
of K — X is generated on proper sections of H any homomorphism
K — Vg w must vanish on that kernel. We deduce that the sequence
which computes Ext identifies as

HOHI(AH,?(H), VH,W) — HOIII(X, VHJ/V) — EXJE(AHJ/, VH,W) — 0.

The morphism Ay ; — X previously described is an isomorphism on
evaluation at H, and so its kernel is generated at groups which have
H as a proper section. It follows from the adjoint property of V that
there is no non-zero homomorphism from this kernel to Vg and so
Hom(X,Vyw) — Hom(Ag 1, Vg w) is an isomorphism. Furthermore

[

by the adjoint properties of A and V we have Hom(Ay ;, Vyw) =
HOIHROutH(I, W) and HOHI(Aij(H), VH,W) = HOmRoutH(P(H), W)
We deduce that the sequence which computes Ext identifies as

HOmRoutH(?(H), W) — HOmRoutH(I, W) — EXt(AH’V, VH,W) — 0
Since this sequence also computes Extrou 7 (V, W) this completes the
proof. O

We comment that in the situation with H = K in part (4) of the
above result, the isomorphism of Ext groups is induced by evaluation at
H, in the sense that an extension of globally defined Mackey functors
on evaluation at H gives an extension of R Out H-modules.



STRATIFICATIONS AND MACKEY FUNCTORS II 45

7. HIGHEST WEIGHT CATEGORIES OF GLOBALLY DEFINED MACKEY
FUNCTORS

We start this section with the proof of Theorem 7.2 which states that
when R is a field of characteristic zero, Mackg’y (D) is a highest weight
category (except that we fail to verify one of the finiteness conditions
when D is infinite). After that we show that restriction of functors
from D to a smaller class £ preserves the highest weight structure.

Recall from the introduction that we put a partial order on the set

A={(H,V) |H is a group,
V' is a simple R Out H-module,
both taken up to isomorphism}

which is slightly, but importantly, different to the preorder considered
at the end of the last section. The partial order is determined by
putting (H,V) > (K,W) if and only if H is a proper section of K.
The point is that with this partial order, pairs (H,V') and (H,W) are
only comparable if V' = W, which was not the case with the preorder.
It is also possible to work with a partial order which refines this one,
such as that determined by (H,V) > (K, W) if and only if |H| < |K].
The statements of results and the proofs remain the same.

We start by stating the essential features which make a highest
weight category, ignoring for the moment the finiteness conditions.

Proposition 7.1. Let R be a field, H a group and V a simple
R Out H-module.

(1) The functor Ay has a unique simple quotient and Vv has a
unique simple submodule, each isomorphic to Sg . Moreover,
all the other composition factors of Apyy and Vgy have the
form Sgw with (K,W) < (H,V). Each composition factor
occurs with finite multiplicity, and we have

Apv:Skwl|=[Vav: Skw

(2) Assuming R has characteristic zero, the indecomposable projec-
twe Py has a finite length filtration in which the top factor is
isomorphic to Ag v, the remaining factors being isomorphic to
Agw with W simple and (H,V) < (K, W).

(3) Assuming R has characteristic zero, the indecomposable injec-
twe Iy has a finite length filtration in which the bottom factor
s 1somorphic to Vv, the remaining factors being isomorphic

to Viw with W simple and (H,V') < (K,W).
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Proof. The statements for the Vg follow by duality from the corre-
sponding statements for the Ay 1 using Corollary 5.9 and Corollary 4.4,
and so we only give proofs for the Ag y .

(1) We have seen in Corollary 5.5 that Ay y has a unique simple
quotient Sy y. Since Ay y(H) = Spyv(H) =V the composition factor
Sp,v occurs in Ay y with multiplicity one, and because Ag y (K) =0
unless H is a section of K, all other composition factors Sk, of Ay y
have (K, W) < (H,V). Each composition factor multiplicity [Agy :
Sk w] is finite since it is at most the multiplicity [Ag v (K) : W] and
dim Ay v (K) is finite.

(2) Since Ppy is generated by its value at H we have Py, =
(Puv)<m, and on arranging the sections of H in some order of non-
decreasing size 1 = Hy,..., H, = H we obtain a filtration of Py y in
which the factors are (Py,v)(m,) = Ay, 5 (u,) by Theorem 6.3. Since

R is a field of characteristic zero we may write Py (H,) = U1 &- - - @ U,
a direct sum of simple R Out H,.-modules, and now

~Y
AHT‘,PH,V(HT) = AHT‘7U1 @ e @ A1{7'7(]757

a finite direct sum. Thus Ppyy is filtered by Agw with (K, W) >
(H,V), except for the factor (Py,y)m), and each isomorphism type of
Ak w appears only finitely many times. We saw in Proposition 6.4
that (Py,v)m)(H) = V — the projective cover of V' here — so that
(Prv)m) = Agyy. Thus Agy occurs precisely once, at the top of the
filtration. 0

We come now to one of the main results of this paper.

Theorem 7.2. Let R be a field of characteristic zero. With respect to
the partial order on the simple objects defined above, and when D is
finite, Mack;f’y (D) is a highest weight category. When D is not finite,
Mackg’y(D) 1s still a highest weight category, except that indecompos-
able injectives might conceivably not be unions of their subobjects of
finite length.

Proof. We verify the conditions for Mack;f’y(l)) to be a highest weight
category given in Definition 3.1 of [16]. In view of Proposition 7.1
we only need to consider the various finiteness conditions which are
required.

When D is finite the global Mackey algebra ppy™ (D) is finite di-
mensional and the finiteness conditions mentioned in 3.1 of [16] are
automatically satisfied. In this case the proof is complete.

When D contains infinitely many isomorphism classes of groups,
most of the remaining conditions in the definition of a highest weight
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category are straightforward to check. The poset A is clearly interval-
finite; and the Grothendieck condition B N|JA, = UJ(B N A,) for
subobjects B and A, of an object X holds because globally defined
Mackey functors are modules for an algebra. The various Iy provide
enough injectives. The most complicated thing to verify is that the
Iy v and the Vi are the union of their subobjects of finite length.
We leave this condition unverified. 0

We now show that the highest weight structure behaves well under
restriction and induction between section closed sets of finite groups
E C D. We have already seen in Proposition 3.1 that a simple func-
tor on D restricts to a simple functor with the same parametrization
or zero, and in Proposition 3.3 and Corollary 5.4 we have seen that
indecomposable projective and A functors restrict and induce to each
other, preserving the parametrization. By duality (over a field), the
same thing is true of the indecomposable injective and V functors. It
follows from this that when H is a group in £ the composition factor
multiplicites of the S and the filtration multiplicites of the Ay in
the Py y may be computed by first restricting to £. We can in fact say
more than this.

Proposition 7.3. Let R be a field of characteristic zero, let £ C D be
section-closed sets of finite groups and let PPy be an indecomposable

projective object of Mackg’y(D), where H is a group in €. Suppose
that

OIPrgPrflg"'gplgPOIP}—[)’V

is a filtration of PPy y with A factors. Then on restriction to Mackﬁ’y(ﬁ)
the terms P; |2 are a filtration of ¢Pgy with factors PAgw |B=
€Ak w, where the left superscripts D and € indicate the domain of def-
inition of these functors. The subfunctors P; are all projective relative
to € so that we have P; = P; |212. We have an equality of filtration
multiplicities:

[PPuv : PAgw] = [*Puy : “Arw].

Similar statements hold for filtrations of injective functors with V fac-
tors and the corresponding filtration multiplicities.

Proof. The initial statements about restricting the filtration are clear
since restriction is an exact functor and by Corollary 5.4 the A factors
restrict correctly. The statement about filtration multiplicities is a
consequence.
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To prove projectivity relative to £ of the P;, consider the short exact
sequences 0 — Py |P— Py |P— (P/Piy1) [B— 0 and apply induc-
tion 12, which is right exact. We deduce that on evaluation at each
group G in D,

dim P, [217 (G) — dim Py [217 (G) < dim(P/Pr) [F1F (G)

with equality for all G if and only if dim Py |17 — dim P, |12 is a
monomorphism. Summing these equalities we obtain

—_

dim Py (G) = dim Py |17 (G) < ) dim(P,/P1) 1217 (G)

7

Il
=)

with equality for all G if and only if the dim P; |[21% form a filtration
of Pgy. The factors P;/P;1; all have the form Ak and we know
that the natural counit map Agw |212— Ak w is an isomorphism by
Corollary 5.4. Thus the inequality of dimensions is indeed an equality,
since the terms in the sum are the dimensions of the factors in the
original filtration of Py y. We deduce that the P; |21 form a filtration
of Py y isomorphic by the natural counit map to the original filtration,
and in particular P, = P, |P12. O

8. THE CARTAN MATRIX OF GLOBALLY DEFINED MACKEY
FUNCTORS

In this section we prove when R is a field that the Cartan matrix
of Mackg’y (D) is non-singular in many circumstances, and that when
X =) and R is sufficiently large it is symmetric. Here, when we say
that R is sufficiently large we will mean that R is a splitting field for
Out H, for all H in D.

We start by showing symmetry of the Cartan matrix in case R is a
sufficiently large field of characteristic zero. It follows from Proposi-
tion 7.3 that to compute the numbers

ey, (kw) = [ Prw, Suy)

which are the entries in the Cartan matrix it suffices to assume D is
a section-closed set of groups which contains K and H, and so for
such a computation we may assume D is finite. Thus Macky™> (D) is
a highest weight category by Theorem 7.2, or equivalently Mg,y (D) is
a quasi-hereditary algebra. We exploit BGG reciprocity [19, Lemma
2.5], which states in this context that [Pxw : Ayu] = [Viu @ Skwl.
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Thus
CHV),(K,W) = Z [Prw : AsullAsu, Suv]
(JLU)
(8.1)
= Z[VJ,U : Sewl[Asu, Suv]
(LU)

over a large enough field. We now compute the numbers [V ;1 : Sk w].

Lemma 8.1. (1) [V%V ; ng?fv] = [A%’LV* : S%I),(V] where the super-
scripts indicate that the functors on the left belong to Mack;f’y(D)

and the functors on the right belong to Mack%’X(D).
(2) If X =) and R is a field of characteristic zero we have

Ay Skw+] =[Any : Skw]

and
Vuy:Skw]|=[Any : Skw].

Proof. (1) This is an application of the duality * : Macky™> — Mack)™
under which S;g%j/ — S};%{/, AY, — VEy. and VY, — A%y*,
preserving multiplicities in filtrations.

(2) When X = Y and R is a field of characteristic zero we have
for each group G, from Proposition 5.1, that Ay y+«(G) = Agy(G)*
and Apyv(G) = Vyy(G) as ROut G-modules, since a module and
its dual have isomorphic fixed points. Also in this case Sk w+(G) =
(Skw)*(G) = (Skw(G))*. Since the multiplicity of a simple functor
as a composition factor in another functor M is determined by the
modules M (G) as G varies (using the method of [32] and [31]), we see
that the composition factors of Ay - are the duals of the composition
factors of Apy, and these are the same as the composition factors of
Viay. O

Corollary 8.2. Suppose that X = Y and let R be an algebraically
closed field of characteristic zero. The Cartan matrix of globally defined
Mackey functors Mack;f’y 18 symmetric.

In fact, we see that to guarantee the symmetry of Cartan invariants
such as

C(H,V),(K,W) = C(K,W),(H,V)

we need only suppose that R is a splitting field for all groups Out L
where L ranges through the sections of H and K.
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Proof. By the last lemma and the preceding remarks we have

CHV),(KW) = Z Vv SkwllAsu, Suyv]
(JU)

= Z [AJ,U . SK7W] [AJ,UJ SH7V]
(JU)

which is symmetric in (K, W) and (H,V). O

Our next step in proving that the Cartan matrix of globally defined
Mackey functor is symmetric over an arbitrary sufficiently field R when
X =) is to invoke a generalization of Brauer’s theory of the decompo-
sition map from characteristic zero to characteristic p due to Geck and
Rouquier [22, Sect. 2.3]. For the convenience of the reader we give a
discussion of this generalization adapted to our purposes here. Let O
be a complete discrete valuation ring with quotient field K of charac-
teristic 0 and residue field k of characteristic p. Let Ag be an (-order
in a finite dimensional K-algebra A. We will write C for the Cartan
matrix of A-modules and C, for the Cartan matrix of £ ®g Ag-modules.
We refer to [5] for standard facts about decomposition modulo p.

Every finite dimensional A-module M contains a full Ag-lattice M,
(see [5, 1.9.1]) and now the theorem of Brauer and Nesbitt states that
the composition factors of k®g My as a k®g Ag-module are determined
independently of the choice of My in M. The assignment [M] — [k ®q
Mjy] is the decomposition map d in the following commutative square:

Ko(A) “E Go(A)

| ld
Kok @0 A)) 5 Go(k @ Ao)

Here we write Ky for the Grothendieck group of finitely generated pro-

jective modules, and Gy for the Grothendieck group of all finitely gener-

ated modules, the maps cx and ¢; being the Cartan homomorphisms.

The map e is specified by [P] — [K ®q P] where P is a projective

k®g Ap-module and Pisa projective Ag-module for which k@oP = P.
We have bilinear forms

KO(A) X Go(A) — R and Ko(k’ Ko A()) X Gg(k' (%) Ao) — R

given by ([P], [M]) = dimx Hom(P, M) in the first case and ([ P], [M]) =
dimg Hom(P, M) in the second, and with respect to these bilinear
forms, in both cases, the classes of indecomposable projective mod-
ules [Ps] and the classes of simple modules [S] are dual bases so that
the forms are non-degenerate.
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Theorem 8.3. (Geck and Rouquier [22, Sect. 2.3]) Let K be a splitting
field for A and k a splitting field for k ®@g Ag. With respect to these
bilinear forms, e is the transpose of d. Thus if D is the matriz of e
with respect to the bases of projective modules, then DT is the matriz
of d with respect to the bases of simple modules, and the Cartan matriz
of k ®qg Ag is given by

C, = DTCkD.

Proof. The proof is the same as that given in [5, 1.9.6] with the final
statement modified to account for the fact that A need not be semisim-
ple. Let us write the decomposition matrix as D = (dgr) where S
ranges over simple A-modules, T" ranges over simple k ®g Ag-modules,
so that D is the transpose of the matrix of d. Then

dsr = dim Homyg 4, (Pr, k @0 So)
= rankg Hom s, (Pr, So) since Pp is projective
= dimg Homy (K ®g PT, S)
= multiplicity of Ps as a summand of K ®q PT.

The last number is the (S,7") entry of the matrix of e. O

Corollary 8.4. In the above situation, if the Cartan matriz Cyx of A
is symmetric, then so is the Cartan matriz Cy of k ®g Ap.

Putting these facts together we obtain one of our main results.

Theorem 8.5. Let R be an algebraically closed field, suppose that X =
Y and let D be a section-closed set of finite groups. Then the Cartan
matrix of globally defined Mackey functors defined on D is symmetric.

We now turn to proving that the Cartan matrix of globally defined
Mackey functors is non-singular. We first say what we mean by this,
bearing in mind that the matrix has infinitely many rows and columns,
and in each row or column infinitely many of the entries may be non-
zero. We can regard a column as determining an element of the product
of copies of R indexed by the simple globally defined Mackey functors.
By saying that the Cartan matrix is non-singular we will mean that
the columns are linearly independent elements of this space.

Theorem 8.6. Let R be a field, let D be a section-closed set of finite
groups, and in case R has positive characteristic suppose that X = ).
Then the Cartan matriz of the category Mackg’y(D) of globally defined
Mackey functors defined on D is non-singular.
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Proof. Step 1. We claim that it is sufficient to show that the result is
true for all finite such sets of groups D. For, if [P] denotes the column
of the Cartan matrix corresponding to an indecomposable projective
P and we have a linear combination )., A;[P] = 0, then there is a
finite set of groups D closed under sections such that all the P; are
generated by their values in D. Now by Proposition 3.3 the P; |p
are indecomposable projectives defined on D corresponding to distinct
columns of the Cartan matrix of D, and )" | A\;[P; |p] = 0. Assuming
that the Cartan matrix for globally defined Mackey functors defined
on D is non-singular, we deduce that A\; = 0 for all .

Step 2. We show that we may assume R is a splitting field. To
establish this, let R C R; be any separable field extension and consider
the corresponding homomorphism of Grothendieck groups

Go(Macky¥ (D)) — Go(Mackyy™ (D).

Note that if S is any simple globally defined Mackey functor defined
over R then the class [R; ®gS] is a sum of simple classes which are dis-
joint from the simple classes which arise from the other non-isomorphic
simples T', by considering the effect of an idempotent eg € ug’y (D) for
which egS = S and egT" = 0. The effect on indecomposable projectives
Ps is therefore similar, and [R; ® g Ps] is a sum of classes of projective
covers of composition factors of Ry ® S and therefore disjoint from the
indecomposable projectives which arise starting from a non-isomorphic
Pr. Assuming that the classes of indecomposable projectives are inde-
pendent in GO(Mack;%y (D)) it follows that the [R; ®p Ps| are inde-

pendent there, and hence the [Ps] are independent in Go(Macky™ (D))
since their images are independent.

Step 3. We suppose that D is finite and that K is a large enough
field of characteristic zero. It was explained before Lemma 8.1 that by
BGG reciprocity the Cartan matrix has the form Cx = 'O where O is
the matrix with entries [A;p @ Spyv] and I' is the matrix with entries
[Py : Ayyl. Since both I' and © are unitrianglar it follows that Ck is
non-singular in this case, regardless of X and ). If we assume further
that X = Y then by Lemma 8.1 and BGG reciprocity we have I' = 67
and this decomposition will be used in the rest of the proof for positive
characteristic.

Step 4. We assume that R is the field k£ in a splitting p-modular
system (K,Q,k). By Theorem 8.3 the Cartan matrix has the form
Cr = DTCgD where D is the decomposition matrix. Thus on the
assumption that X = ) we have C, = (0D)T©D. We show that
©D has maximal rank, by which we mean rank equal to the number of
simple globally defined Mackey functors on D defined over k. From this
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it will follow that C is invertible, as in [31, Lemma 7.4]. (Note that an
important hypothesis was omitted from the statement of [31, Lemma
7.4], namely the hypothesis that the matrices under consideration be
real. The proof given there is valid with this assumption.) Since © is
unitriangular, it suffices to show that D has maximal rank. However
this follows by exactly the same argument as that used to prove [31,
Cor. 7.5]: the simple globally defined Mackey functors are determined
by their list of values at groups H as k Out(H )-modules, and for every
group H the decomposition map Go(K Out(H)) — Go(kOut(H)) is
known to be surjective by standard theory.

This completes the proof. 0

9. SEMISIMPLICITY

The main result in this section is Theorem 9.5, which says that when
R is a field of characteristic zero, Mack;f’y is semisimple if and only if
X =Y = 1. After that we will discuss the semisimplicity of the rings
A;,y (G,@G). Since we will allow X and Y to vary in this section we
will write the functors Sy v, Agy and Vg as Sl/\;‘)j , AY and VY,
to remind us of the category Maekg’y to which they belong. We start
with a more general result.

Proposition 9.1. Let X and Y be sets of finite groups closed under
taking sections and extensions, and let R be a field of characteristic
zero. InMacky' we have that Viav = S}gxl/ is simple and Ay, = Pgé
15 indecomposable projective. In Mack}{’y we have that A}LV = 11{3‘}/ IS
simple and V%y = I}{){/ is indecomposable injective. Thus the values

of the Sf,‘l, and the Slli,v are independent of X and Y in this situation.

Proof. We start with the explicit description of the simple functors
when X =) =1, given in [32]:

SiviG) = P e Pev)
a:H>L<G

up to G—conjugacy

for each group G. Since R is a field of characteristic zero we have
trp (V) = ey Ve = ey )

and since the double cosets Aut H\ Sec, (G, H)/G biject with the con-
jugacy classes of subgroups of GG isomorphic to H we have

dim S (G) = dim A} (G) = dim V}; 1 (G).
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1 11 - 1 11

Now A}y has Sy, as an image and Vi has Sy, as a subfunctor,
11 A ~ : . 1,1

s0 Spy = Ay =V are simple as functors in Macky . It follows a

fortiori that AL . is simple as a functor in Macky” and V1, is simple

as a functor in Mackyy'. From BGG reciprocity (explained before 8.1)
we have

Xl L aXil
[PH,V : Af,U] = [Vb,U : SH,V] = 5(H,V)7(J7U)

so that Aﬁv = g é is indecomposable projective, and by the dual
argument V%V = I}IJ‘J/ is indecomposable injective. O

As a consequence we obtain one of the implications which will appear
in Theorem 9.5.

Corollary 9.2. When R is a field of characteristic zero, Mack}_él 18
semisimple.

Proof. We take X = ) = 1 in Proposition 9.1 and deduce in this
situation that S}il’lv = P}{lv = I}j}v is simple, injective and projective.
From this semisimplicity follows. U

Here is a more elaborate version of the same ideas:

Corollary 9.3. Let X' C X be closed under taking sections and exten-
sions and let R be a field of characteristic zero. The simple functors in
Mauckg’1 restrict to simple functors in Mackg’l. The Cartan matriz of
Mauckg’1 is unitriangular. Every functor in Mack™! of finite composi-
tion length has finite injective dimension. Similar statements hold for
Mack}%x, except that every finite length functor in Mack™™ has finite
projective dimension.

Proof. Aside from the fact that they are defined on different sets of mor-
phisms, both Sg‘l/ and Sﬁvl are the same as V}LV by Proposition 9.1.
From this it follows that Sﬁ‘l, restricts to Sﬁlvl Since Ay, = P;; v,
again by Proposition 9.1, all composition factors S;gév of Pg& have
H a proper section of K, except for a single composition factor Sg‘l/
Thus if we order the simple functors so that |H| is non-decreasing the

Cartan matrix of Mackﬁ’l is unitriangular.

We deduce from this also that Ext(S;g’%,,Sg"l/) = 0 unless K is
a proper section of H, and from this it follows that the composition
factors of the injective envelope Ig‘l, of S}};‘l/ are all of the form S}Eév
with K a proper section of H, apart from a single composition factor
S;f,‘l/ This shows that the matrix of composition factor multiplicities of
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the indecomposable injectives is unitriangular, and from this it follows
by duality that the Cartan matrix of Mack}éx is unitriangular.

It follows from this also that each finite length functor in Mack}%’x
has a finite injective resolution. Given such a functor M we may find
a monomorphism to an injective functor so that the cokernel has com-
position factors associated to groups which are all proper sections of
at least one of the groups associated to composition factors of M. Re-
peating this process, the groups get strictly smaller at each stage and
it must eventually terminate. The fact that finite length functors in
Mack"?¥ have finite projective dimension follows by duality. U

We relate the different functors A and S which arise as X and Y
vary, by way of preparation for Theorem 9.5.

Proposition 9.4. Let X, Y, X', V' be sets of finite groups closed under
taking sections and extensions. If K is a group lying in both X and
X' then SE(K) = St (K) and A (K) = A% (K) for all H and
V. Similarly, if K is a group lying in both Y and )’ then S;;?j(K) =
St (K) and V3 (K) = VY (K) for all H and V.

Proof. Suppose K lies in both X and X’ and let D be the full subcat-
egory of Cf;’y whose objects are the sections of K. Now by Proposi-
tion 3.1 SIA_;‘)/} lp and Sﬁ:{,y lp are the simple functors in Mackg’y (D)
and Mackf’y (D) parametrized by (H,V). However Macky> (D) =
Mackgl’y (D) since the groups whose isomorphism types lie in both X
and D are the same as those lying in both X’ and D. Thus Sﬁ%,}(K) =
Sg:{/y(K ). A similar argument proves the corresponding assertion for
A using Corollary 5.4.

We deduce the second half of the statement of the proposition from
the first using duality. O

Theorem 9.5. Let X and Y be sets of finite groups closed under taking
sections and extensions, let all be the class of all finite groups, and let

R be a field of characteristic zero. Then Mack;f’y(all) s semisimple if
and only if X =Y = 1.

Proof. We show that if either X # 1 or ) # 1 then the category of
functors Mackﬁ’y is not semisimple, the other half of the proof having
been dealt with in Proposition 9.2. Since Mackg’y is in duality with
Mack%’X, each of these categories is semisimple if the other one is, and
so we will only treat the case X # 1. Our approach will be to show that
Afyp # Sf Y. and since by Corollary 5.5 Afy has Sf Y as its unique
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simple quotient it will follow that Af r Is not a direct sum of simple
functors.

Supposing now that X # 1, there is some non-identity group in
X, and hence for some prime p, X contains all p-groups since X is
supposed to be closed under taking extensions and sections. From its
definition we have that Af'; = b, the Burnside ring functor, regardless
of what Y is. It is shown in [7] that there is a p-group K for which
Sf}}’zan(K ) # b(K) (in the terminology of Bouc, a b-group will have this
property). Since K lies in X we have by Proposition 9.4 that

Stk (K) = Sip" (K) # b(K) = Aflp(K) = Afp(K).

In fact the left hand side has smaller dimension than the right since
S?}}jzan is an image of b. We claim that dim Sfl’%y(K) < dim ngll(K).
This is because we may restrict the category of definition of Sf’( S ! from
Cﬁ’au to Cg’y , and now it is a functor which must have Sf J’Qy as a
composition factor since the latter is the only simple functor which

does not vanish at 1. Putting all this together we have dim Sf J(K) <
dim Sfﬁu([() < dim AYR(K), and we conclude that Sf,’%y # Afp. As

commented earlier this implies that Mackg’y is not semisimple. O

It is a very interesting question to study the structure of the rings
Ag,y (G, G) which arise as the endomorphism rings of the objects in
C;{,y’ and also as the endomorphism rings of the representable globally
defined Mackey functors A%~ ( ,G). It is a theorem of Bouc ([7]
and private communication) and Barker [4] that when R is a field of
characteristic zero the ring A?%H’a“(G , G) is semisimple if and only if G is
cyclic. We conclude this section with a result about the semisimplicity

of such rings for different X and ).

Theorem 9.6. (1) Let R be a field of characteristic zero and G a
finite group. The ring A}%’l(G’, G) is semisimple.
(2) The ring A§1’1<Cg, Cy) is not semisimple for any choice of ring
R.
(3) The representable functor A% ( ,Cy) is not a direct sum of
simple functors for any choice of ring R.

Proof. (1) This follows from Corollary 9.2 (half of Theorem 9.5) since
the representable functor A}Q’l( ,G) is semisimple and by Yoneda’s
lemma has AR'(G,G) as its endomorphism ring.

(2) We compute the structure of A%"'(Cy,Cy) in the most direct
way. There are, up to isomorphism, three transitive C x Cy-bisets
with identity stabilizers in the second factor. These are: the identity
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element in the ring A%l’l(Cg,CQ), which is the set Cy with both C,
factors acting regularly, and which we denote 1; another set Cy with
the second C5 factor acting regularly and the first factor acting trivially,
which we denote A; and lastly the regular representation R of Cy x Cs.
These bisets form a basis of A%l’l(Cg, Cy). We readily compute that
AoR = 2A and Ro A = R, so AY,(Cy, () is non-commutative.
Since this ring has dimension 3 it cannot be semisimple, for otherwise
it would have at least a 2 x 2 matrix summand (over an algebraically
closed extension field).

(3) By Yoneda’s lemma, the representable functor A}f%l’l( , () has
A;H’l(C’g, () as its endomorphism ring, and if it were a direct sum of
simple functors its endomorphism ring would be semisimple. 0

10. CLASSIFYING SPACES OF FINITE GROUPS

We describe an application to stable homotopy classes of maps
(BGL),, (BK.),]

where BG; denotes the suspension spectrum constructed from the clas-
sifying space BG to which a base point has been adjoined, and (—)Q
denotes p-completion. We will see that global Mackey algebras arise
naturally in this context.

Proposition 10.1. Let D be a finite, section-closed set of finite groups
and consider the p-completed suspension spectrum B = \/ ;cp(BG);).
Then the endomorphism ring of stable maps [B, B] is Morita equivalent
to the global Mackey algebra u%f“(?)p), where D, consists of the p-

groups in D

Proof. As described in [32], there is an equivalence of categories be-
tween the full subcategory of the category of spectra whose objects
are the wedges of summands of the (BG,)), and the full subcate-

gory of Mack%li’l whose objects are the direct sums of indecomposable
projectives Ppy with H a p-group. The indecomposable summands
of (BG), all correspond under this equivalence to projectives of the
form Py y with H a p-subgroup of G, and every Py for which H is
a Sylow p-subgroup of G does arise in this way. It follows that the

endomorphism ring [B, B] is isomorphic to Endy;, a1 (B yep, Py
Zp ’

where the ap y are certain multiplicities, each projective Pp - occuring
with non-zero multiplicity. Since these are exactly the indecomposable

projectives in Mack%li’l(l)p) (see [32]), which is the same as the cate-

gory of u%li’l(Dp)—modules, [B, B] is Morita equivalent to the opposite
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ring (p%l:’l(Dp))Op. This in turn is isomorphic to /LZ‘H(DP) via the anti-
isomorphism which sends a biset to its opposite. O

The following is our main application to the stable maps between
spectra, giving a statement which is outside the context of Mackey
functors.

Corollary 10.2. Let B be the spectrum B = \/ ;.p(BG ), as above.
Then, on extending scalars to Q,, the endomorphism ring of stable
maps [B, Bl ®z, Q, is quasi-hereditary.

Proof. This is immediate from Proposition 10.1 and Theorem 7.2. [

In Section 11.4 we will calculate the Cartan matrix of [B, B] ®z, Q,
and also of [B, B] ®, F, in the case where p = 2 and D, consists of
the sections of the cyclic, dihedral and quaternion groups of order 8.

11. CALCULATION OF CARTAN AND DECOMPOSITION MATRICES

11.1. Overview of the calculations. The novel feature we have in-
troduced in this paper is that highest weight theory provides a method
for computing the Cartan matrix of Mackg’y when R is a field of char-
acteristic zero, using formula 8.1 and Corollary 8.2 which states that
the Cartan matrix is symmetric. We then compute Cartan matrices
in positive characteristic by applying Theorem 8.3 which gives a for-
mula in terms of the decomposition matrix and the Cartan matrix in
characteristic zero.

In these calculations we take D to be the set of sections of Cg, Dg and
(s, the cyclic, dihedral and quaternion groups of order 8. For these
groups R = Q and R = Fy are splitting fields for all groups Out H
which arise. The Cartan matrices we compute are thus the Cartan
matrices of the algebras Mg,y (D) for this choice of D, and by Propo-
sition 3.3 they are also the parts of the Cartan matrices for u%> (all)
whose rows and columns are labelled by pairs (H, V) where H € D.

To compute decomposition matrices we use the method introduced
in [31] and continued in [32]. To each globally defined Mackey functor
M defined on D we associate the list of evaluations ([M (G)])gep where
[M(G)] denotes the element of the Grothendieck group Go(R Out G)
determined by M(G). This list of elements of Grothendieck groups we
call the formal character of M, a term introducted in this context in
[35]. As explained in [35], we may regard the evaluations M (G) as the
weight spaces of M, by analogy with Lie theory. The formal character
of M determines its composition factors, as observed in [32].
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We present the formal character of a functor as a column in a table
where the rows are indexed by pairs (K, W) where K ranges over all
finite groups and W ranges over simple R Out K-modules. The corre-
sponding entry in the table is the multiplicity with which [W] appears
in [M(K)]. In the case where the functors M are the simple functors
S v this table of values [Sy v (G)] was denoted W in [31] and [32].

The matrices ¥ of formal characters of simple functors are used in sit-
uations where composition factor multiplicities need to be computed.
This arises in the computation of decomposition matrices, since for
these we reduce simple functors from characteristic 0 to characteristic
p and ask for the composition factor multiplicities of the result. In this
situation the formal character of the reduction mod p of a functor is
obtained by reducing mod p each of the terms in the characteristic zero
formal character. We obtain the composition factors of the reduction
by expressing the reduced formal character as a linear combination of
the formal characters of the simple functors in characteristic p. The ma-
trices ¥ are also used in computing Cartan matrices using formula 8.1.
Here we need to know the composition factors of A functors, and these
are obtained by expressing the formal character of the A as a linear
combination of the formal characters of the simple functors.

11.2. Detail of the calculations. These paragraphs are technical
and can be skipped unless the reader has a particular interest in the
calculations.

In calculating the matrices of formal characters of the A and V func-
tors we compute directly the expressions given in Proposition 5.1. The
computation of matrices ¥ of formal characters of the simple func-
tors then proceeds from this using Corollary 5.6 and the remarks at
the start of Section 4 and Proposition 4.1, since Sy is the quotient
of Apy cogenerated by its value at H. Thus, according to Proposi-
tion 4.1(3), to obtain Sy v (G) we factor out from Apy(G) the value
of the subfunctor

R{H}AHA/(G) = m Ker AH,V(Q)
Q:G—H

where 2 ranges over (H, G)-bisets with G-stabilizers in ), and because
Ap v is zero on groups which do not have H as a section, we only need
consider those 2 for which the H-stabilizer is 1 (i.e. which do not factor
through a proper section of H). Such ) are determined by a section
of G isomorphic to H, or in other words a surjection o : A — H
where A < G. Writing B = Kera € Y (so that H = A/B) there
is a corresponding biset €, = 4,p(B\G)e = nHa o 4Gg. For each
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such section, taken up to conjugacy in G' and up to automorphisms of
H, we form the corresponding linear map Q, : Ay v (G) — Apy(H).
Factoring out from A gy (G) the common kernel of all these linear maps
gives Sy v (G).

In fact, Ay v (G) itself may be constructed by means of the opposites
of the bisets just considered, but with Keraw € X. Since Apy is
generated by its value at H and is zero on groups which do not have H
as a section, Ay (@) is the sum of all images of maps QP : Ay v (H) —
Apyv(G). According to the formula of Proposition 5.1 these images lie
in different summands of Ay (G) and so we can recast that formula

as
Apyv(G) = b QP (V).
a€[Aut H\ Secx (G,H)/G]
Computing R Ag,v(G) is now a question of computing the kernel of
the matrix (Q3Q0P), s where

a € [Aut H\ Secy (G, H)/G|, B € [Aut H\ Secy(G, H)/G]|

and each entry is taken to be the endomorphism of the vector space
V' determined by the biset indicated. Thus Sy y(G) identifies as the
cokernel of this matrix, regarded as a quotient of Ay y(G). When
dim V' =1 the endomorphism of V' determined by each biset Q25Q0P is
multiplication by a scalar, and dim Sy (G) is the rank of the bilinear
form whose matrix has these scalar entries.

We illustrate with a small example by computing 52121’%1(@8) for all
fields R. The quaternion group (s has three subgroups A, B and C
which are cyclic of order 4 and a central subgroup Z of order 2. In
the following matrix the rows are indexed by the (Cs, Qs)-bisets for
which C5 with trivial stabilizers, and the columns are indexed by their
opposites. With the biset Z\(@s and its opposite Qg/Z there are three
possible actions of Cy, as A/Z, B/Z and C/Z, and each of these three
actions is supposed to occur among the bisets shown.

Qs/A Qs/B Qs/C Qs/Z7 Qs/Z Qs/Z Qs
A\Qs /1 0 0 0 1 1 0
B\Qs| © 1 0 1 0 1 0
C\Qs| 0 0 1 1 1 0 0
Z\Qs| 0 1 1 2 0 0 0
Z\Qs| 1 0 1 0 2 0 0
Z\Qs| 1 1 0 0 0 2 0
Qs 0 0 0 0 0 0 4

As an example, the entry in row 1 column 4 is computed by taking the
biset product (A\Qg) o (Qs/Z) where the second biset has an action
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of Cy via A/Z. This product has two elements permuted freely by the
group C5 on the left, but fixed by the C5 on the right. Since the action
on one side is not free, the biset factors through 1 and acts as zero on
Ag, R, giving a matrix entry 0. On the other hand when the action on
the right is via B/Z or C'/Z the product biset is two elements with a
free action on each side, giving an entry 1. The rank of this matrix is
7 unless R has characteristic 2, when the rank is 6, so we deduce

7 if char R # 2,

. all,all
dim 5¢,'r (@s) = {6 if char R — 2.

Furthermore we see that Out(Qs) = S5 permutes the images of the var-

ious bisets in Ag, r(Qs) as two copies of the permutation representa-

tion on three points, together with a copy of the trivial representation,

and this is the R Out Qg-module structure of 52}21”%1(@8) except that

in characteristic 2 we lose a copy of the trivial representation. This

information provides an entry in Table 11 and an entry in Table 14.
We give another example with cyclic groups.

Proposition 11.1. Let R be a field and p a prime. Then
s+ 1 if char(R) #p ors=0,

dim Sglifl]l%(prs) =42 ifr=0, s >0 and char(R) = p,
1 if r > 0 and char(R) = p,
Proof. When r = 0 the matrix with entries €23(2°P has the form
11 1 1
L'p p p
Lp p*p’
Lpp*p’

and provided s > 0 this has rank 2 or s+1 or according as char(R) is or
is not p. When r > 0 the matrix is diagonal with entries 1, p,p?, ..., p°
and this has rank 1 or s+ 1 according as char(R) is or is not p. In any
case, the matrix has rank 1 when s = 0. 0

11.3. Cartan, decomposition and formal character matrices
when X = ) = 1. Theorem 9.5 implies that in characteristic 0 the
Cartan matrix is the identity matrix when X =Y = 1.

We present the matrices ¥ of formal characters of simple functors.
When R is a field of characteristic 0 we have S]’;é. = Vv indepen-
dently of X by Proposition 9.1, and we compute Table 2 directly from

the expression for Vi, |, given in Proposition 5.1. Table 2 will be used



62 PETER WEBB

a second time when we consider X = all and ) = 1. Table 3 appears
already in [32] and we copy it from that source. From these tables we
compute in Tables 4 and 5 the decomposition and Cartan matrices at
the prime 2 using Theorem 8.3.
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TABLE 2. Formal characters of simple functors over Q
Sty = Vi over Q
v 11Cy | Cy (Co)* | Cs Qs Dy
1011 —-1/1-12{1 —13—-15—-17,] 1 =121 —1
1 1)1
Cy 1|11
C, 1111
-1 1
(C)? 111 1
-1 1
2 1 1
Cy 11|11 1
1, 1
—15 1 1
1, 1
Os 1111 1
-1 1
2 1 1
Ds 1|1]2 1 T 1 1
-1 1 1 1 1

TABLE 3. Formal characters of simple functors over F.

1,1
Sy over Fy

Cy

Cy
1|1

(Cy)* | Cs
1 2111112

—_ | = =
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TABLE 4. Decomposition matrix from Mackal to
l\/[ack]lF’z1

SH}V over [Fy
Decomposition 1| Cy | Cy | (C)* |Cs|Qs | Dg
matrix 1{1 (1 1 21121
Siw 1 1)1 1]1] 1 11 |1
over Q Cy 1 111 1 1)1 1 1
Ccy, 1 1 1171 1)1
-1 1 1
Cg X CQ 1 1 2
-1 1
2 1
Cs 1 1
1 1
1 1
1, 1
Qs 1 1
-1 1
2 1
Ds 1 1
-1 1
TABLE 5. Cartan matrix of 1\/[3«:1{];’21
Pi,lv over [y
Cartan matrix | 1|Cy |Cy|(Cy)? |Cs|Qs | Dg
111 1 21121
Siw L1jt{1|1] 1 of1|10]1
over Fy| Cy1|1[ 22| 2 1{2]|20]2
Cy1|1] 2| 4 2 1141313
C)?1[1] 22 4 1]2|20]|4
21011 |1 1 21,101
Csl|1]2 4] 2 1]8|31]3
Os1|1| 23] 2 1/3[5 1|3
210001 0O Oj1]121
Dg1|1/ 23| 4 1{3|31]9
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11.4. Cartan, decomposition and formal character matrices
when X = all and Y = 1. Observe that for any choice of X and
Y and field R the duality between Mackg’y and Mack%’x means that
the Cartan matrix of Mack%’x is equal to the matrix of composition fac-
tor multiplicities in the indecomposable injective objects of Mackg’y .
Provided that R is large enough, this is the transpose of the Cartan
matrix of Mack;f’y . Thus the Cartan matrices of 1\/[8u(31<j]§11’1 which we
will compute in this section are the transposes of the Cartan matri-
ces of Mack}%’au. By the discussion of Section 10 these are the Cartan
matrices of the algebras [B, B] ®z, Q, and [B, B] ®z, F),.

We start by computing the Cartan matrix in characteristic zero. Here
we know that A*}}I’V = qu",l by Proposition 9.1, and we present the table
of formal characters of these functors which is computed directly from
Proposition 5.1.

TABLE 6. Formal characters of projectives Pﬁ,u"} over Q

Pﬁ}}"} = A%y, over Q
v 1{Cy | Cy (C9)* | Cy Qs Dy
1111 —1]1-12]1 1515 -1.| 1 -12| 1 —1
1 1|1
Cy 11211
cCy 1131211
—1 1
)7 13 2 i
—1 1
211 2 1
Cs 1|4] 3| 2 1
—13 1
1 2 1
~1, 1
Os 11431 1 1
—1 1 1
2011 2|1 1 1
Ds 1]6] 71 2 2 1
-1 2| 4 112 1

Each formal character of Pfll,l{/l is now expressed as a linear combina-
tion of the formal characters of the simple functors given in Table 2,
and this gives the Cartan matrix.
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TABLE 7. Cartan matrix of Mack%“’1

Pguvl = A%y, over Q
Cartan matrix |[1][Cy|Cy [ (Cy)? | Cy Qs Dy
11 |1-1/1-12{1 —13—-15 —17(1 —-12|1 -1
Sewl 1 1)1
Cy 1)1]1
C, 1111
—1 1
)7 1[1] 1 1
-1 1
2 1 1
Ce 111011 1
1, 1
1, 1
1, 1
Os 1|1]1 1 1
-1 1 1
2 1 1 1
Dy 1/1] 2 T 1 1
-1 1 1 1

We turn to the situation where R = [Fy and compute the matrix ¥
of formal characters of simple functors, then the decomposition ma-
trix from characteristic zero to characteristic 2, and finally the Cartan
matrix in characteristic 2 using Theorem 8.3. The matrix ¥ has in ef-
fect been computed previously by people who obtained explicit stable
decompositions of classifying spaces of p-groups (see [26] for a sur-
vey). It was shown in [32, Theorem 6.2] when H is a p-group that
the multiplicity of a summand parametrized by a pair (H,V) as a

stable summand of the p-completed classifying space (BG ), equals

dim SZ}I‘}(G) / dim Endg, ous #(V), and since R = F), is a splitting field
here, this equals dim S?}IJ(G) The multiplicities of all of these stable
summands for the groups we consider here are stated in [6], for exam-
ple. There is one case where these multiplicities fail to pin down the
F, Out G-module structure of S?}IJ(G) which is the case when H = (s
and G = (C4)?, and this is quickly resolved from the description of the
simple functor given in [32].
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TABLE 8. Formal characters of simple functors over Fs.

S}a_}l‘} over [Fy
U [1]Cy|Cy|(Cy)* |Cs|Qs | Ds
11111 1 2]1]12|1
111
Cyl|1]1
;11 1
(G 11 1
2 1 1
Cs1|1 1
Os 111 1
2 1
D 111] 2 2 1

TABLE 9. Decomposition matrix from 1\/Iack(‘gl’1 to Mack%ls’l

S;}l‘} over [Fy
Decomposition 1| Cy|Cy [ (Co)* |Cs|Qs | Dg
matrix 11111 1 2|1]121
St 111
over Q Cy 1 1)1 1 1|1 1
Cy 1 1 1111]1
-1 1 1
(Ce)* 1 1 2
—1 1
2 1
Cy 1 1
1, 1
1, 1
1. 1
Qs 1 1
-1 1
2 1
Ds 1 1
-1 1
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TABLE 10. Cartan matrix of Mack%l;’l

Pﬁ}}"/loverIFQ
Cartan matrix | 1|Cy |Cy|(Cy)? |Cs|Qs | Dg
11 1 2/1]12]1
Sty 11|1{0o/0| 0 0[0]|00]0
over Fo| CoI|1[1[1] 1 0[1]10]1
Ci1|2[ 214 2 0/4]31]3
(C)P12/2]2] 4 0[2[20]4
210011 1 1/1]10]|1
Cs1|3[3]6] 3 0/10]5 2[5
Qs1|3|3 1[4 5 0[4[6 1|6
2111213] 2 1/3]32|3
Dg1|5[ 78] 10 2] 8[8 1]16

11.5. Cartan, decomposition and formal character matrices
when X = )Y = all. Fewer of the calculations we need in this sit-
uation can be taken from the literature. In [7] the projective functor
P, g is identified as the Burnside ring functor and its unique simple quo-
tient S} @ as the rational character ring functor. The other composition
factors of P, g are also determined in terms of a combinatorial condi-
tion, and apart from S; g the only other composition factors indexed
by p-groups have the form Sc,y2 . In [8, 14, 15] further calculations
are made of some simple functors over fields of positive characteristic,
and these serve as useful checks of our method here, which is the one
described in Section 11.2.
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TABLE 11. Formal characters of simple functors S35
over Q 7
S?Il}"?u over Q
v 11Cy|Cy (02)2 Cg Qg Dg
1011 —1]{1-12]1 =15 15 =1, 1 —12] 1 -1
1 1)1
Cy 1|21
Cy 1|3} 2|1
-1 1
)7 1)2] 2 1
-1 1
211 2 1
Cy 1|4] 3| 2 1
1
—1. 2
1.
Os 1331 1 1
-1 1 1
21112 |1 1 1
Ds 14| 7 [ 1 2 2 1
—1|1] 4 11 2 1
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TABLE 12. Composition factor multiplicities in
1\/[ack(31’all of Ai}{v

A%l over Q
Ay, Sk ] |1 Ca|Ca |[(Ca)? | Cs Qs Dy
11 [1-11-12]1 =15 15 —1,|1 -12|1 -1
Sl 1 1)1
Cy 1 1
c, 1 1
—1 1
(Co)* 1|1 1
—1 1
2 1
Cg 1 1
1 1
—1, 1
1, 1
Qs 1 1
—1 1
2 1
Dg 1 1
—1 1

At this point we record a consequence of the calculation of the com-
position factors of the A functors.

Proposition 11.2. Let R be a field of characteristic zero, and let
HvK € {17027047087 (02)27Q87D8}'

(1) The projective functors Pgl’l"fu n 1\/Iackj%1’BLH are equal to the cor-
responding functors Ay, except in the case (H, V') = ((C5)*,1).

In that case P(gg;;gl has a subfunctor isomorphic to A?“l with

quotient A?gg)%l' In the cases when Pﬁ}"f“ = Ay it follows
that Pf[l,l"fu(G) = 0 unless G has H as a section.
(2) We have dim Extliau,au(S?}l"?H,S}’}llﬁ,ﬂ) = 0 unless one of (H,V)
R b )
and (K, W) is (1,1) and the other is ((C2)%, 1), in which case

the dimension is 1.

Proof. (1) This follows from Lemma 8.1 and BGG reciprocity, which

show that the composition factor multiplicity [A%}, : S?(u;/u] equals the
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filtration multiplicity [Py : A% ]. For a given K this can only be
non-zero when H is a section of K, and so Table 12 gives complete
information about the non-zero multiplicities under consideration.

(2) We apply Theorem 5.10 and duality. O
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TABLE 13. Cartan matrix of Mackgl’an
P?I{l{f‘u over QQ
Cartan matrix | 1|Cy|Cy | (Cy)? | Cy Qs Dy
11 j1—-1/1-12|1 —13—-15 =171 -12|1 -1
Sl 1 1)1 1
Cy 1 1
Cy 1 1
-1 1
(Co)F 1|1 2
-1 1
2 1
Csg 1 1
1, 1
1, 1
1. 1
Qs 1 I
-1 1
2 1
Ds 1 1
-1 1
TABLE 14. Formal characters of simple functors over 5.
S}a}}f}‘n over [y
U1 Cy|Cy|(Cy)* |Cs|Qs | Ds
1111 1 2111 1
111
Cy1)2] 1
Cy12] 11
(Cy)?1]2] 2 1
21 2 1
Cel|2] 11 1
Os1]2] 2 1 1
211] 2
Ds1]5] 9 T 2 1
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TABLE 15. Decomposition matrix from 1\/Iack(31’all to Mack%l;’au

S?}};?H over Fy
Decomposition 1| Cy|Cy [ (Cr)* |Cs| Qs | Dg
matrix 1111 1 271]12]1
S 1 11 1 11
over Q Cy 1 111 1)1 2
C, 1 1 1111
—1 1 1
o) 1 i )
—1 1
2 1 2
Cs 1 1
1, 1
1, 1
1, 1
Qs 1 1
—1 1
2 1
Ds 1 1
—1 1

TABLE 16. Cartan matrix of 1\/121(:1{;121’all

Pgl}"f ! over Ty
Cartan matrix |1|Cy|Cy|(Cy)? |Cs|Qs |Dg
111 ]1 1 211121
St 1ij1jo|1| 1 0/1|10]2
over FFy Cy1|0] 11 0 0/1]10]|2
Cy1|11 1|4 1 0[{4]3 1|5
(Cy)?1|1[0][1] 3 ol1]10]|4
210,010 0 1000 2
Csl|1] 1|4 1 081315
Qs1|1/ 1|3 1 0/3|5 1|5
210001 0O 01121
Dg1(2/ 215 4 2151|5119
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