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Abstract. Let G be a finite group, k a perfect field, and V a finite dimensional
kG-module. We let G act on the power series k[[V ]] by linear substitutions and
address the question of when the invariant power series k[[V ]]G form a unique
factorization domain. We prove that for a permutation module for a p-group
in characteristic p, the answer is always positive. On the other hand, if G is
a cyclic group of order p, k has characteristic p, and V is an indecomposable
kG-module of dimension r with 1 ≤ r ≤ p, we show that the invariant power
series form a unique factorization domain if and only if r is equal to 1, 2, p− 1
or p. This contradicts a conjecture of Peskin.

1. Introduction

Let G be a finite group, and let k be a perfect field, which unless otherwise
stated in this paper will have positive characteristic p. Let V be a finite dimen-
sional kG-module. Then G also acts on the ring of polynomials k[V ] and the
ring of formal power series k[[V ]]. The question of when the invariants k[V ]G

form a unique factorization domain was settled by Nakajima [10, Theorem 2.11],
who proved that this holds if and only if there are no nontrivial homomorphisms
G → k× taking the value one on every pseudoreflection (a pseudoreflection is an
element of G whose fixed points have codimension one in V ). We are interested
in the corresponding question for k[[V ]]G, which is the completion of k[V ]G with
respect to the ideal generated by the elements of positive degree. In this paper,
we make two related contributions to this subject, one positive and one negative.

The following generalizes a theorem of Fossum and Griffith [6, Theorem 2.1],
which deals with the case of the regular representation of a cyclic group of order
pn. The proof is given at the end of Section 2.

Theorem 1.1. Let G be a finite p-group, let k be a perfect field of characteristic p
and let V be a permutation module for kG. Then k[[V ]]G is a unique factorization
domain.
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The following generalization of Theorem 1.1 to arbitrary finite groups is anal-
ogous to the theorem of Nakajima [10] for k[V ]G, with the exception that it is
restricted to direct summands of permutation modules. One way to state our
result is to combine it with Nakajima’s theorem and say that for such modules
k[[V ]]G and k[V ]G have isomorphic divisor class groups, and so one of them is a
unique factorization domain if and only if the other is. Our theorem is valid over
fields of arbitrary characteristic, and we note that when the characteristic of k is
zero or does not divide |G|, every module is a direct summand of a permutation
module, because by Maschke’s theorem it is a direct summand of a free mod-
ule. When the characteristic of k divides |G|, direct summands of permutation
modules are also known as p-permutation modules, or trivial source modules (at
least, if they are indecomposable), and the condition is equivalent to the require-
ment that the restriction of the module to a Sylow p-subgroup is a permutation
module.

Theorem 1.2. Let G be a finite group and V be a direct summand of a permu-
tation kG-module, where k is a perfect field of arbitrary characteristic. Then the
divisor class group Cl(k[[V ]]G) is isomorphic to the subgroup of Hom(G, k×) con-
sisting of those homomorphisms which take value one on every pseudoreflection.
In particular, k[[V ]]G is a unique factorization domain if and only if there are no
nontrivial homomorphisms G → k× taking the value one on every pseudoreflec-
tion.

The proof of Theorem 1.2 is given at the end of Section 2. The particular case
of the theorem for the natural representation of the alternating groups is dealt
with in Samuel [13, Appendix] for p ≥ 5 and Singh [14, Theorems 1 and 2] for
p = 2 or 3. The case where the characteristic of k is either zero or coprime to the
order of G is due to Griffith [7, Theorem 2.5].

The situation for modules which are not direct summands of permutation mod-
ules is quite different. In [11, Conjecture 3.10], Peskin conjectures that for an
indecomposable representation of a cyclic group of order p in characteristic p, the
invariants are always a unique factorization domain. The following theorem gives
a negative answer to this conjecture. The proof is given in Section 4.

Theorem 1.3. Let G = Z/p and let k be a perfect field of characteristic p. If
Vr is an r dimensional indecomposable kG-module (so that Vr is a single Jordan
block of length r with 1 ≤ r ≤ p) then k[[Vr]]

G is a unique factorization domain
if and only if r is equal to 1, 2, p− 1 or p.

We remark that by contrast, if k is a field of characteristic p and G is a fi-
nite p-group, k[V ]G is always a unique factorization domain by the theorem of
Nakajima. Examples of unique factorization domains whose completions are not
unique factorization domains were known previously (see Fossum [5, Example
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19.9], and Halanay [8]), but our examples seem particularly natural. In fact,
Heitmann [9, Theorem 8] has shown that every complete local domain of depth
at least two is the completion of a subring which is a unique factorization domain;
this gives a wealth of complicated examples.

In order to prove these theorems, we develop a general method for reducing
questions about unique factorization in power series invariants to questions in
modular representation theory. The following theorem summarizes our method.

Theorem 1.4. Let G be a finite p-group, let k be a perfect field of characteristic
p, and let V be a finite dimensional kG-module. Let V ∗ be the dual representa-
tion, so that the mth symmetric power SmV ∗ is the vector space of homogeneous
polynomial functions on V of degree m. We regard SmV ∗ as a submodule of
SmpV ∗ via the pth power map on polynomials.

Suppose that for all m ≥ 1 the map

(SmpV ∗)G → (SmpV ∗/SmV ∗)G (1.5)

is surjective. Then k[[V ]]G is a unique factorization domain.
Conversely, suppose that for some m not divisible by p, the map (1.5) is

not surjective. Suppose furthermore, that the cokernels of the pth power maps
SnpV ∗ → Snp2

V ∗ are projective kG-modules for all n ≥ 1. Then k[[V ]]G is not a
unique factorization domain.

We will establish the first statement of this theorem in Section 2 by means
of Propositions 2.5 and 2.6, and in Section 3 we establish the second statement
using the Artin–Hasse exponential. We will use the theorem in Section 4 when
we consider the group Z/p and prove Theorem 1.3. In this situation the cokernels

of SnpV ∗ → Snp2
V ∗ are always projective (Lemma 4.2) and the rest of the proof

of Theorem 1.3 is a question of determining when the map (1.5) is not surjective
when p does not divide m.

2. Cohomology and unique factorization

The connection between degree one cohomology and unique factorization was
developed by Krull and Samuel, and is described, for example, in Samuel [13] and
in Chapter 3 of [4]. We summarize the theory here.

If A is a normal domain (i.e., a Noetherian integrally closed domain), we write
D(A) for the divisor group of A. This is a free abelian group with basis elements
d(p) corresponding to the height one primes p of A. A principal ideal in A
determines an element of D(A), and the subgroup generated by these elements
is denoted F (A). The divisor class group Cl(A) is the quotient D(A)/F (A).

Theorem 2.1. A normal domain A is a unique factorization domain if and only
if Cl(A) = 0.
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Proof. This is proved in Section 3.5 of [4]. �

Let A ⊆ B be a finite extension of normal domains, with fields of fractions
L ⊆ L′, a Galois extension with Galois group G. If P is a height one prime ideal
of B then p = P ∩ A is a height one prime ideal of A. The valuation vP on L′

restricts to a positive integer multiple of vp on L,

vP = e(P, p)vp

where e(P, p) is the ramification index of P over p, characterized by the equation
pBP = PeBP. The map j : D(A) → D(B) defined by j(d(p)) =

∑
e(P, p)d(P),

where the sum is indexed by the primes P lying over p, passes down to a well
defined map ̄ : Cl(A) → Cl(B)G.

Theorem 2.2. Suppose that L′/L is a finite Galois extension with Galois group
G. Regarding the group of units U(B) as a ZG-module, there is an exact sequence

0 → Ker ̄ → H1(G, U(B)) →
⊕

p

Z/e(p) → Coker ̄ → 0,

where p runs over the height one primes in A which ramify in B. Here, the
ramification index e(P, p) is independent of P, and is written e(p).

Proof. See Theorem 3.8.1 of [4]. �

In the case where A = k[V ]G and B = k[V ], we have Cl(B) = 0 and U(B) = k×.
So the sequence reduces to a short exact sequence

0 → Cl(k[V ]G) → H1(G, k×) →
⊕

p

Z/e(p) → 0.

Furthermore, the action of G on k× is trivial, so H1(G, k×) is just Hom(G, k×).
The height one primes which ramify correspond to reflecting hyperplanes for

the pseudoreflections in G. If the prime p in k[V ]G corresponds to a reflecting
hyperplane W ⊂ V , then the ramification index e(p) is equal to the order of the
stabilizer of the corresponding hyperplane |GW | if k has characteristic zero, and
equal to the p′-part |GW |p′ if k has characteristic p; see Lemma 3.9.1 of [4]. For
the sake of notation, we shall write |GW |p′ in both cases, with the understanding
that this means |GW | in the case of characteristic zero.

The homomorphism

Hom(G, k×) →
⊕
W

Z/|GW |p′

may be described as follows. Given a group homomorphism φ : G → k× and
a reflecting hyperplane W , then Op(GW ) is in the kernel of φ (where Op(GW )
denotes the largest normal p-subgroup of GW if k has characteristic p, and the
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trivial subgroup if k has characteristic zero), and so there is an induced homo-
morphism from GW /Op(GW ) to k×. The group Z/|GW |p′ in the sum above may
be regarded as Hom(GW /Op(GW ), k×). The map φ is then sent to the sum of
the restrictions of φ to the hyperplane stabilizers. So we may rewrite the exact
sequence as

0 → Cl(k[V ]G) → Hom(G, k×) →
⊕
W

Hom(GW /Op(GW ), k×) → 0.

All this is described in Section 3.9 of [4], where it is adapted from Nakajima
[10]. One can easily deduce from this exact sequence the theorem of Nakajima
described in the introduction.

Similarly, in the case where A = k[[V ]]G and B = k[[V ]], we still have Cl(B) =
0, but this time the units U = U(k[[V ]]) are large. They decompose as U =
k× ×U1, where U1 is the multiplicative group consisting of the power series with
constant term equal to one. Again, the ramified primes correspond to reflecting
hyperplanes, the ramification indices are the same as before, and the components
of the map Hom(G, k×) →

⊕
p Z/e(p) have the same description as before. So

we obtain a short exact sequence

0 → Cl(k[[V ]]G) → Hom(G, k×)⊕H1(G, U1)

→
⊕
W

Hom(GW /Op(GW ), k×) → 0. (2.3)

The term H1(G, U1) is less easy to describe, and that will be the main task of this
paper in some special cases. We begin by remarking that if k has characteristic
zero then U1 is a divisible group, and so H1(G, U1) = 0. So we can assume that
k has prime characteristic p.

Define Un to be the subgroup of U1 consisting of power series involving no
monomials with degree positive and less than n. Then

U1 = lim←−
n

U1/Un,

and so U1 is an abelian pro-p-group, and hence a Zp-module, where Zp denotes
the p-adic integers. Since the pth power of a power series f is the power series
whose terms are the pth powers of the terms of f , we readily see that U1 has no
p-torsion, and no p-divisible elements, but it seems likely that it is not usually
Zp-free; we make use of the lack of p-torsion via the following lemma.

Lemma 2.4. Let G be a finite group, and let M be a p-torsion-free ZpG-module.
Then H1(G, M) = 0 if and only if MG → (M/pM)G is surjective.

Proof. Since M is p-torsion-free, we have an exact sequence

0 → M
p−→ M → M/pM → 0.
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Applying cohomology, we obtain an exact sequence

0 → MG p−→ MG → (M/pM)G → H1(G, M)
p−→ H1(G, M).

Since |G|p annihilates H1(G, M), we have that H1(G, M) 6= 0 if and only if
multiplication by p has a nonzero kernel on it, which happens if and only if
MG → (M/pM)G is not surjective. �

Proposition 2.5. Suppose that G is a finite p-group. Then the following are
equivalent.

(i) k[[V ]]G is a unique factorization domain.

(ii) H1(G, U1) = 0.

(iii) The map
UG

1 → (U1/U
p
1 )G

is surjective; in other words, power series with constant term one which are in-
variant mod pth powers lift to invariant power series.

Proof. If G is a p-group then Op(GW ) = GW always, and Hom(G, k×) = 0, so
using the short exact sequence (2.3), we have an isomorphism

Cl(k[[V ]]G) ∼= H1(G, U1)

and (i) and (ii) are equivalent. The equivalence of (ii) and (iii) follows from
Lemma 2.4, noticing that we are writing the group U1 multiplicatively. �

Proposition 2.6. Suppose that for all m ≥ 1 the map

(SmpV ∗)G → (SmpV ∗/SmV ∗)G

is surjective. Then
UG

1 → (U1/U
p
1 )G

is surjective.

Here and elsewhere we use the fact that in characteristic p the map SmV ∗ →
SmpV ∗ which sends each polynomial to its pth power is an injective kG-module
homomorphism, and we identify SmV ∗ with its image. Observe also that Up

1

consists of power series with constant term 1 in the pth powers of elements of V ∗,
and these power series are only non-zero in degrees divisible by p.

Proof. Let u ∈ U1 be such that uUp
1 ∈ (U1/U

p
1 )G. We construct inductively

elements u(n) ∈ U1 so that u(n)Up
1 = uUp

1 , in all degrees d ≤ n we have g(u(n))d =
u(n)d for all g ∈ G and in all degrees d ≤ n− 1 we have u(n)d = u(n− 1)d. We
start with u(0) = u.

Note that since elements of Up
1 are only non-zero in degrees divisible by p, the

inductive condition for n− 1 implies that for every degree d strictly less than the
least multiple of p above n− 1 we have g(u(n))d = u(n)d = ud, so that if u(n− 1)
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has already been defined we may define u(n) = u(n − 1) unless n is divisible by
p. We thus assume n = mp for some m and deal with this case.

For each g ∈ G we have gu(n−1) = u(n−1) ·(1+vp +wp) for some v ∈ Sm and
where all terms of w lie in degrees higher than m. Thus gu(n−1)n = u(n−1)n+vp.
By hypothesis we can find v′ ∈ Sm so that u(n− 1)n + v′p ∈ (Sn)G. Now taking
u(n) = u(n− 1)(1 + v′)p produces an element u(n) with the desired properties.

Finally, the sequence of power series u(n) defines a power series which is fixed
by G and whose image in U1/U

p
1 is u. �

Theorem 1.1 follows immediately from Propositions 2.5 and 2.6, because in this
case the basis of monomials shows that the image of SmV ∗ under the pth power
map is a direct summand of SmpV ∗, so that invariants in the quotient lift. By
Proposition 2.6, UG

1 → (U1/U
p
1 )G is surjective. So H1(G, U1) = 0 and k[[V ]]G is

a unique factorization domain by Proposition 2.5.
To prove Theorem 1.2, we argue as follows. If k has characteristic zero then

U1 is a divisible group and so H1(G, U1) = 0. If k has prime characteristic
p, we observe that if S is a Sylow p-subgroup of G then the restriction map
H1(G, U1) → H1(S, U1) is injective. Since H1(S, U1) = 0, we have H1(G, U1) = 0.
In both cases, the exact sequence (2.3) reduces to

0 → Cl(k[[V ]]G) → Hom(G, k×) →
⊕
W

Hom(GW /OpGW , k×) → 0.

In particular, Cl(k[[V ]]G) = 0 if and only if every nontrivial homomorphism
G → k× has nontrivial restriction to some GW .

3. The Artin–Hasse exponential

Throughout this section, we assume that k is a perfect field of characteristic p.
The Artin–Hasse exponential [3] is the power series defined by

E(X) = exp
( ∞∑

r=0

Xpr

pr

)
= 1 + X + · · · . (3.1)

We shall develop the properties we need here, but for general background material
on the Artin–Hasse exponential, see Chapter 7 of Robert [12].

Initially, (3.1) is to be thought of as a power series with rational coefficients.
We write Z(p) for the ring of rational numbers with denominators prime to p.

Lemma 3.2. The coefficients of the power series E(X) are in Z(p).
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Proof. Let µ(n) be the Möbius function. Then we have∑
(i,p)=1

−µ(i)

i
log(1−X i) =

∑
(i,p)=1

(
−µ(i)

i

∑
m≥1

−X im

m

)
=

∑
n≥1

( ∑
(i,p)=1

i|n

µ(i)
)Xn

n
(where n = im)

=
∑
r≥0

Xpr

pr
.

The last equality holds since the inner sum is a sum over the divisors of the p′-part
of n, and is zero unless n is a power of p.

Set λ(X) =
∞∑

r=0

Xpr

pr
. Then the calculation above shows that

E(X) = exp(λ(X)) = exp
( ∑

(i,p)=1

−µ(i)

i
log(1−X i)

)
=

∏
(i,p)=1

(1−X i)−
µ(i)

i .

We interpret −µ(i)/i as a p-adic integer, so that (1−X i)−µ(i)/i can be expanded as
a power series with p-adic integer coefficients. Specifically, if we write −µ(i)/i =∑

j≥0 ajp
j as a power series, where 0 ≤ aj ≤ p− 1 for all j, then

(1−X i)−
µ(i)

i =
∏
j≥0

(1−X i)ajpj

is a product of polynomials which allows us to compute the coefficients in the
expansion of the left side as p-adic integers. The fact that Zp ∩ Q = Z(p) shows
that the coefficients are in Z(p). �

It follows from the lemma that the Artin–Hasse exponential function E(X)
can be reduced modulo p to give a power series with coefficients in Fp, which we
continue to denote E(X). The main property of E(X) which we shall be using
is given in the following lemma.

Lemma 3.3. We have

E(X + Y ) = E(X)E(Y )φ(X, Y )

where every term in the power series φ(X, Y ) has total degree in X and Y divisible
by p.

Proof. Working in characteristic zero, we have

E(X + Y )

E(X)E(Y )
= exp

( ∞∑
r=1

(X + Y )pr

pr
− Xpr

pr
− Y pr

pr

)
,
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because the terms with r = 0 cancel. The coefficients on the left, and therefore
on the right, are in Z(p). So this formula can be reduced modulo p to prove that
the same property holds for E(X) over Fp. �

Theorem 3.4. Let V be a kG-module where k is a perfect field of characteristic
p. Suppose that m is coprime to p, and that

(SmpV ∗)G → (SmpV ∗/SmV ∗)G

is not surjective. Suppose, furthermore, that the cokernels of the pth power maps
SnpV ∗ → Snp2

V ∗ are projective kG-modules for all n ≥ 1. Then the map

UG
1 → (U1/U

p
1 )G

is not surjective.

Proof. Let U ′ be the subgroup of U1 consisting of power series whose terms have
degree divisible by p, and let U ′′ be the subgroup of U1 consisting of power series
whose terms have degree divisible by p2. We recall also that Up

1 consists of power
series in the pth powers of elements of V ∗. Consider the commutative diagram

0 // SmV ∗ //
��

��

SmpV ∗ //
��

E
��

SmpV ∗/SmV ∗ //
��

E
��

0

0 // U ′′Up
1 /U ′′ // U ′/U ′′ // U ′/U ′′Up

1
// 0

0 // Up
1

OOOO

// U ′

OOOO

// U ′/Up
1

OOOO

// 0

in which each row is a short exact sequence. The lower vertical arrows are ob-
tained from the factor homomorphism U ′ → U ′/U ′′. The middle upper vertical
arrow is obtained from the Artin-Hasse exponential E : SmpV ∗ → U ′ by compos-
ing with the factor map U ′ → U ′/U ′′. Since the image of Sm under the pth power
map followed by E is contained in Up

1 , we obtain the top right vertical map, and
hence also the top left vertical map, and we call the two top right maps E by
abuse of notation.

Observe that all maps in this diagram are homomorphisms of kG-modules,
since it is immediate from the definition of E that E(gf) = gE(f) for each
g ∈ G.

Starting from an element of (SmpV ∗/SmV ∗)G which does not lift to (SmpV ∗)G

we will produce an element of (U ′/Up
1 )G which does not lift to (U ′)G, and to

establish this we first present some lemmas.

Lemma 3.5. With the hypotheses of Theorem 3.4, the map

(U ′/Up
1 )G → (U ′/U ′′Up

1 )G
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is surjective.

Proof. We claim that for each n ≥ 1 there is an exact sequence of kG-modules

0 → Snp2

V ∗/SnpV ∗ → U ′/(U ′′ ∩ U(n+1)p2)Up
1 → U ′/(U ′′ ∩ Unp2)Up

1 → 0.

(recall that Un is defined just before Lemma 2.4) where in the left term we use
additive notation and in the middle and right terms we use multiplicative nota-
tion. We obtain such a sequence because the kernel of the right hand map may
be identified as

(U ′′ ∩ Unp2)Up
1 /(U ′′ ∩ U(n+1)p2)Up

1
∼= (U ′′ ∩ Unp2)/(U ′′ ∩ U(n+1)p2)(U ′′ ∩ Unp2 ∩ Up

1 )

(using the diamond isomorphism theorem and the modular law) and elements of

this quotient are represented by polynomials 1 + f where f ∈ Snp2
V ∗ is taken

up to pth powers. By hypothesis Snp2
V ∗/SnpV ∗ is a projective (or equivalently,

injective) kG-module, and so this sequence splits. Thus for each n, the invariants
in U ′/(U ′′∩Unp2)Up

1 lift to invariants in U ′/(U ′′∩U(n+1)p2)Up
1 . Observe that when

n = 1 we have U ′/(U ′′ ∩ Up2)Up
1 = U ′/U ′′Up

1 , and also that

U ′/Up
1 = lim←−

n

U ′/(U ′′ ∩ Unp2)Up
1 .

Starting with any element of (U ′/U ′′Up
1 )G we may lift it to a compatible family

of elements in the (U ′/(U ′′ ∩ Unp2)Up
1 )G, which define an element in the inverse

limit which is again G-invariant. �

Lemma 3.6. If m is not divisible by p then the homomorphism

E : SmpV ∗/SmV ∗ → U ′/U ′′Up
1

is injective.

Proof. The degree mp terms of elements of U ′′Up
1 are pth powers. This means

that if f ∈ SmpV ∗ is such that E(f) = 0 ∈ U ′/U ′′Up
1 then since E(f) = 1 + f +

(higher degree) it follows that f is a pth power. �

We now continue with the proof of Theorem 3.4. Let f be an element of
(SmpV ∗/SmV ∗)G which does not lift to (SmpV ∗)G. Its image E(f) ∈ (U ′/U ′′Up

1 )G

is the image of an element x ∈ U ′/Up
1 , by Lemma 3.5. If there were a G-invariant

lift of x to U1, say y, it would have to lie in U ′, and now the image yU ′′ of y
in U ′/U ′′ would be a G-invariant lift of E(f). Now the degree mp term of yU ′′

in SmpV ∗ would be a G-invariant element which lifts f , by Lemma 3.6, since its
image in U ′/U ′′Up

1 has the same degree mp part as E(f). This is not possible. �

Combining Propositions 2.5, 2.6 and Theorem 3.4 completes the proof of The-
orem 1.4.
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4. Cyclic groups of order p

In this section, we apply Theorem 3.4 in the case where G is cyclic of order
p, k has characteristic p, and V is an indecomposable kG-module. The relevant
information about the symmetric powers of V comes from papers of Almkvist [1],
Almkvist and Fossum [2].

We begin by fixing notation. Let G = 〈t | tp = 1〉 be a cyclic group of order
p and let k be a field of characteristic p. We write Vr for the r dimensional
indecomposable kG-module with 1 ≤ r ≤ p, and we note that V ∗r

∼= Vr. Let
x1, . . . , xr be a basis of V ∗r , so that k[Vr] = k[x1, . . . , xr] in such a way that
t(xi) = xi + xi+1 for 1 ≤ i ≤ r − 1 and t(xr) = xr. Set

N(x1) = x1 · t(x1) · t2(x1) · · · tp−1(x1),

so that N(x1) ∈ (SpV ∗r )G.

Lemma 4.1. For each integer n ≥ 1, the vector space SnpV ∗r decomposes as a
direct sum of a one dimensional kG-module spanned by N(x1)

n and a projective
kG-module spanned by x2 · Snp−1V ∗r , . . . , xr · Snp−1V ∗r .

Proof. It is clear that SnpV ∗r decomposes as a direct sum of the given submodules
because the second submodule is the span of all the monomials of degree np
except xnp

1 , and the coefficient of xnp
1 in N(x1)

n is non-zero. What is not clear
is that the second module is projective. But it is proved in Section III of [2]
that SnpV ∗r decomposes as a direct sum of a trivial module of dimension one
and a projective module. Since N(x1)

n spans a trivial direct summand, by the
Krull-Schmidt theorem the remaining direct summand is projective. �

Lemma 4.2. For all n ≥ 1, the cokernel of the pth power map SnpV ∗r → Snp2
V ∗r

is a projective kG-module.

Proof. The pth power map takes N(x1)
n to N(x1)

np. It also takes the submodule

of SnpV ∗r spanned by x2 ·Snp−1V ∗r , . . . , xr ·Snp−1V ∗r into the submodule of Snp2
V ∗r

spanned by x2 · Snp2−1V ∗r , . . . , xr · Snp2−1V ∗r and so the quotient of the last two
modules is isomorphic to the cokernel of the pth power map. Since projective kG-
modules are injective, the cokernel of an injective map of projective kG-modules
is projective. �

Lemma 4.3. Let 0 → M1
α−→ M2

β−→ M3 → 0 be a short exact sequence of kG-
modules, with G = Z/p. If M2

∼= k ⊕ P with P projective and β : MG
2 → MG

3 is
surjective then M1 has at most one nonprojective summand.

Proof. Let NG = 1 + t + · · · + tp−1. Then the hypothesis on M2 implies that
MG

2 /NGM2 is one dimensional, being the image of the trivial summand of M2.
Since β : MG

2 → MG
3 is surjective, so is the induced map

β̄ : MG
2 /NGM2 → MG

3 /NGM3.
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So MG
3 /NGM3 is at most one dimensional, which implies that M3 has at most

one nonprojective summand. The remaining projective summands of M3 lift to
summands of M2. If M3 is projective then the sequence splits and we are done. So
we may assume that β̄ is an isomorphism, which implies that the trivial summand
of M2 is not in the kernel of β. By removing the projective summands from M3,
without loss of generality M3 is a nonprojective indecomposable module. We
obtain a short exact sequence

0 → M1 → P → M3/β(k) → 0.

It follows that

M1
∼= Ω(M3/β(k))⊕ (projective).

Since M3/β(k) is indecomposable, this proves the lemma. �

Example 4.4. Let G = Z/7 and V = V3
∼= V ∗3 . Then S2V3

∼= V5 ⊕ V1 has two
nonprojective summands. It follows from Section III of [2] that

S14V3
∼= k ⊕ (projective).

So by Lemma 4.3, (S14V3)
G → (S14V3/S

2V3)
G is not surjective. Using Lemma

4.2, we can now apply Theorem 3.4 to see that UG
1 → (U1/U

p
1 )G is not surjec-

tive. Finally, applying Proposition 2.5, we see that k[[V3]]
Z/7 is not a unique

factorization domain.

We shall apply the method of the above example in general for 3 ≤ r ≤ p− 2
to show that k[[Vr]]

Z/p is not a unique factorization domain. The cases r = p− 2
and r = p − 3 require special treatment, as the symmetric powers have at most
one nonprojective summand in these cases.

Lemma 4.5. Suppose that 3 ≤ r ≤ p − 4. Then S2Vr has at least two nonpro-
jective indecomposable summands.

Proof. This follows from the description of the symmetric powers of Vr given in
Almkvist [1]. �

Lemma 4.6. Let p ≥ 5 and suppose that r = p− 2. Then the map

(S2pVr)
G → (S2pVr/S

2Vr)
G

is not surjective.

Proof. It follows from Almkvist [1] that S2Vr is isomorphic to k ⊕ (projective).
Let w ∈ S2Vr be a generator for the trivial summand. Since p ≥ 5 we have r ≥ 2,
and so by direct calculation of the effect of t−1 on all the monomials x2

i and xixj

we have

(t− 1)(x2
1 + · · · ) = 2x1x2 + · · · 6= 0.
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Thus the element w cannot involve the monomial x2
1. It follows using Lemma 4.1

that wp is in the projective summand of S2pVr = k ⊕ (projective). So

S2pVr/S
2Vr

∼= k ⊕ Vp−1 ⊕ (projective)

where the Vp−1 summand arises as the quotient of an indecomposable projective
module by the image of wp. A G-invariant element in Vp−1 is not in the image of
NG = 1 + t + · · ·+ tp−1, so it does not lift to a G-invariant element of S2pVr. �

Lemma 4.7. Let p ≥ 7 and suppose that r = p− 3. Then the map

(S2pVr)
G → (S2pVr/S

2Vr)
G

is not surjective.

Proof. It follows from Almkvist [1] that S2Vr is isomorphic to V3 ⊕ (projective).
Let w ∈ S2Vr be a generator for the V3 summand. Since p ≥ 7 we have r ≥ 3,
and so

(t− 1)3(x2
1 + · · · ) = (t− 1)2(2x1x2 + · · · )

= (t− 1)(2x1x3 + 2x2
2 + · · · )

= 6x2x3 + · · ·
6= 0.

So no element of V3 can involve the monomial x2
1, and in particular w does not

involve x2
1. It follows using Lemma 4.1 that wp is in the projective summand of

S2pVr = k ⊕ (projective), so

S2pVr/S
2Vr

∼= k ⊕ Vp−3 ⊕ (projective).

A G-invariant element in Vp−3 is not in the image of NG = 1 + t + · · · + tp−1, so
it does not lift to a G-invariant element of S2pVr. �

Proposition 4.8. Let G = Z/p, and suppose that 3 ≤ r ≤ p− 2. Then k[[Vr]]
G

is not a unique factorization domain.

Proof. We first claim that the map (S2pVr)
G → (S2pVr/S

2Vr)
G is not surjective.

If 3 ≤ r ≤ p− 4, this follows from Lemmas 4.1, 4.3 and 4.5. The remaining cases
where r = p−2 or r = p−3 are dealt with in Lemmas 4.6 and 4.7. Using Lemma
4.2, we can now apply Theorem 3.4 to see that UG

1 → (U1/U
p
1 )G is not surjective.

Finally, using Proposition 2.5, we see that k[[Vr]]
G is not a unique factorization

domain. �

Proposition 4.9. Let G = Z/p. Then k[[Vr]]
G is a unique factorization domain

in the cases r = 1, r = 2, r = p− 1 and r = p.
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Proof. The case r = 1 is obvious, and the case r = p is dealt with in Theorem 1.1,
which is proved at the end of Section 2. So it remains to deal with the cases r = 2
and r = p− 1.

In the case r = 2, it is shown in Almkvist and Fossum [2] that if 0 ≤ s ≤ p− 1
then

Ss+npV2
∼= Vs+1 ⊕ (projective).

Now if 1 ≤ s ≤ p− 1 then xs
1N(x1)

n is an element of degree s+np which is killed
by (t−1)s+1 but is not in the image of (t−1). This is because N(x1) is invariant,
xs

1 ∈ Ss(V2) ∼= Vs+1, and the image of t − 1 contains no vector with xs
1 in its

support. So we can take Vs+1 to be the submodule generated by xs
1N(x1)

n . It
follows using Lemma 4.1 that the image of the summand Vs+1 of Ss+npV2 under
the pth power map is not contained in the projective summand of Sp(s+np)V2

described in that lemma. Therefore the quotient takes the form

Sp(s+np)V2/S
s+npV2

∼= Vp−s ⊕ (projective).

We may see this by observing that the pth power map

Vs+1 ⊕ (projective) → V1 ⊕ (projective)

may be written as the direct sum of an inclusion of projectives and a map Vs+1 →
V1 ⊕ Vp, using the injectivity of projectives and the fact that we may factor any
map Vs+1 → (projective) as Vs+1 → Vp → (projective) where the latter map
is a split injection. The component map Vs+1 → V1 is non-zero, so the factor
module (V1 ⊕ Vp)/Vs+1 is generated by the image of Vp, so is cyclic and hence
indecomposable. By counting dimensions, this factor is Vp−s.

The G-invariants in the projective part of the quotient lift automatically, and
the G-invariants in Vp−s lift to the trivial summand of Sp(s+np)V2. Combining this
with Lemma 4.2, we see that the conditions of Proposition 2.6 are satisfied, so
that UG

1 → (U1/U
p
1 )G is surjective. We now apply Proposition 2.5 to deduce that

k[[V2]]
G is a unique factorization domain.

The proof in the case r = p− 1 is similar. In this case, again using the results
of Almkvist and Fossum [2], Ss+npVp−1 is projective for 2 ≤ s ≤ p−1, so the only
case we need to worry about is s = 1. In this case, we have

S1+npVp−1
∼= Vp−1 ⊕ (projective).

The element x1N(x1)
n is killed by (t− 1)p−1 but not in the image of (t− 1), and

so we can take Vp−1 to be the submodule generated by this element. It follows
using Lemma 4.1 that the image of the summand Vp−1 of S1+npVp−1 under the pth
power map is not contained in the projective summand of Sp(1+np)Vp−1 described
in that lemma. Therefore the quotient takes the form

Sp(1+np)Vp−1/S
1+npVp−1

∼= V2 ⊕ (projective).
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The G-invariants in the projective part of the quotient lift automatically, and the
G-invariants in V2 lift to the trivial summand of Sp(1+np)Vp−1. Combining this
with Lemma 4.2, we see that the conditions of Proposition 2.6 are satisfied, so
that UG

1 → (U1/U
p
1 )G is surjective. We now apply Proposition 2.5 to deduce that

k[[Vp−1]]
G is a unique factorization domain. �

Combining Propositions 4.8 and 4.9, we have completed the proof of Theorem
1.3.
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