\qquad
YOUR TA's NAME: \qquad

Math 1031 Practice Exam 3

December 2004

There are ten questions. Show your work in the space provided. You may not use your books or notes or a graphing calculator on this exam. You may use a regular scientific calculator.

1. For each of the following functions say whether it is even, odd, or neither even nor odd (circle one possibility).

(a) $f(x)=\|x\|$ is	even	odd	neither
(b) $f(x)=x$ is	even	odd	neither
(c) $f(x)=\frac{1}{1+x^{2}}$ is	even	odd	neither
(d) $f(x)=\frac{x}{1+x^{2}}$ is		even	odd
(e) $f(x)=\frac{1+x}{1+x^{2}}$ is	even	odd	neither

2. Let $f(x)=\sqrt{x-1}$ and $g(x)=\frac{1}{1+x^{2}}$. Write down expressions in terms only of x for $(f \circ g)(x)$ and $(g \circ f)(x)$.
Answer: $(f \circ g)(x)=$ \qquad , $\quad(g \circ f)(x)=$ \qquad
3. Page 223 number 45 .
4. Find the equation of the parabola which has x-intercepts $(1,0)$ and $(3,0)$ and whose vertex has y-coordinate 5 .
5. Sketch the graph of the quadratic function $f(x)=2 x^{2}+4 x-7$. Identify the vertex and intercepts.
6. Find the domain of the function $\frac{1}{x-1}+\frac{1}{\sqrt{x+1}}$.
7. Let f and g be the functions defined in the picture which is question 1 on page 192 of LHH.
(a) What is the range of g ?
(b) Sketch the graph of $f+g$.
(c) Sketch the graph of the composite $g \circ f$.
(d) What is the domain of $f \circ g$?
(e) Sketch the graph of $g(x-1)+3$.
8. Page 233 of LHH numbers 1-8: match the functions to the graphs.
9. In each part of this problem, find the inverse function $f^{-1}(x)$, or explain why no inverse function exists. Say also what the range of f is.
(a) $f(x)=x(x-1)(x-2)$,
(b) $f(x)=\frac{1}{1+x^{3}}$.
10. Consider the polynomial function $f(x)=x^{3}+2 x^{2}-8 x$.
(a) Solve for $x: f(x)=0$.
(b) Describe the right- and left-hand behavior of the function f. (How do you know?)
(c) How many turning points are there in the graph of f ? (How do you know?)
(d) Sketch the graph of f.
