Interest

Simple Interest: $A=P(1+r t)$
Compound Interest: $A=P\left(1+\frac{r}{n}\right)^{n t}$
where P is the principal, r is the annual interest rate expressed as a decimal, n is the number of times per year the interest is compounded, A is the balance after t years. Continuous Compounding: $A=P e^{r t}$

Enumeration

Fundamental Counting Principle: the number of ways to perform independent tasks T_{1}, \ldots, T_{k} where there are n_{i} ways to perform T_{i} is the product $n_{1} \cdots n_{k}$.

$$
\begin{gathered}
n!=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1=n \cdot(n-1)! \\
P(n, k)=n(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!} \\
C(n, k)=\frac{n(n-1) \cdots(n-k+1)}{k(k-1) \cdots 3 \cdot 2 \cdot 1}=\frac{n!}{(n-k)!k!}=C(n, n-k)
\end{gathered}
$$

Probability

A sample space S consists of outcomes s_{1}, \ldots, s_{n}. Each outcome s_{i} is assigned a probability p_{i} with

$$
0 \leq p_{i} \leq 1 \quad \text { and } \quad p_{1}+\cdots+p_{n}=1
$$

The probability of an event E is the sum of the probabilities of the outcomes in E. When all the outcomes are equally likely $p_{i}=\frac{1}{n}$ and $P(E)=\frac{|E|}{|S|}$.
It is always true that

$$
P(E \cup F)=P(E)+P(F)-P(E \cap F)
$$

If E and F are mutually exclusive then $P(E \cup F)=P(E)+P(F)$.
If E and F are independent then $P(E \cap F)=P(E) P(F)$.
Also $P(E)+P\left(E^{c}\right)=1$ where $E^{c}=S-E$ is the complement of E.
In independent experiments where $P($ success $)=p$ and P (failure) $=1-p$ we have

$$
P(k \text { successes in } n \text { experiments })=C(n, k) p^{k}(1-p)^{n-k}
$$

If E and F are events from the same experiment: $P(E)=P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)$. The expected value to you of a game in which you win w_{i} when s_{i} occurs is

$$
E=w_{1} \cdot P\left(s_{1}\right)+w_{2} \cdot P\left(s_{2}\right)+\cdots+w_{n} \cdot P\left(s_{n}\right)
$$

Logarithms

$\log _{a}(u v)=\log _{a}(u)+\log _{a}(v), \quad \log _{a}\left(u^{n}\right)=n \log _{a}(u), \quad$ Base Change: $\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)}$.

