Date due: September 18, 2006

Some general questions

- 1. Let $N \triangleleft G = H \times K$. Prove that either N is abelian or N intersects one of the factors H or K nontrivially.
- 2. If $H \leq L \leq G$ and $N \triangleleft G$ show that the equations HN = LN and $H \cap N = L \cap N$ imply that H = L.
- 3. a) (The modular law) Let H, K, and L be subgroups of G with $H \subseteq L$. Show that

$$HK \cap L = H(K \cap L).$$

- b) Suppose we remove the requirement in a) that $H \subseteq L$. Give an example to show that the conclusion need not hold.
- 4. Let G be a finite group with a normal subgroup H such that (|H|, |G:H|) = 1. Show that H is the unique subgroup of G having order |H|.

[Hint: If K is another such subgroup, what happens to K in G/H?]

Semidirect and wreath products

5. Let G be a group, and consider the usual homomorphism $\theta: G \to \operatorname{Aut} G$ where $\theta(g)(x) = gxg^{-1}$, so $\theta(g)$ is conjugation by g. Using θ we may form the semidirect product $G \rtimes G$. Show that $G \rtimes G \cong G \times G$.

[Hint: Look for a subgroup of $G \times G$ which acts on G via θ .]

- 6. Let S_G be the group of all permutations of G (the symmetric group on G), and observe that $\operatorname{Aut}(G)$ is a subgroup of S_G . Let $\lambda: G \to S_G$ be the homomorphism given by the left regular representation of G, so for each $g \in G$, $\lambda(g)$ is the permutation of G given by $\lambda(g)(x) = gx$, and let $\rho: G \to S_G$ be the homomorphism given by the right regular representation of G, so for each $g \in G$, $\rho(g)$ is the permutation of G given by $\rho(g)(x) = xg^{-1}$.
 - (a) Show that $\langle \lambda(G), \operatorname{Aut}(G) \rangle = \langle \rho(G), \operatorname{Aut}(G) \rangle$ as subgroups of S_G , and they have the form $G \rtimes \operatorname{Aut}(G)$ (a group known as the *holomorph* of G).
 - (b) Show that $N_{S_G}(\lambda(G)) = \langle \lambda(G), \operatorname{Aut}(G) \rangle$.
 - (c) Deduce (for example) that

$$N_{S_8}(\langle (1,2)(3,4)(5,6)(7,8),(1,3)(2,4)(5,7)(6,8),(1,5)(2,6)(3,7)(4,8)\rangle)$$

$$\cong (C_2 \times C_2 \times C_2) \rtimes GL(3,2).$$

[This question seems fairly hard, and you may wish to proceed using the following steps.

- a) Establish the formula $\alpha \lambda(g)\alpha^{-1} = \lambda(\alpha(g))$ for all $\alpha \in S_G$ and $g \in G$.
- b) Any $\beta \in N_{S_G}(\lambda(G))$ can be written $\beta = \lambda(g)\beta'$ for some $g \in G$, where $\beta'(1) = 1$.
- c) Given $\gamma \in N_{S_G}(\lambda(G))$ there exists $\alpha \in \text{Aut}(G)$ with $\gamma \lambda(g) \gamma^{-1} = \lambda(\alpha(g))$ for all $g \in G$. Deduce that $\alpha^{-1} \gamma \in C_{S_G}(\lambda(G))$.
- d) Show that if $\delta \in C_{S_G}(\lambda(G))$ and $\delta(1) = 1$, then δ is the identity permutation of G.
- e) Put the previous pieces together!]
- 7. Prove that the standard wreath product $\mathbb{Z}\backslash\mathbb{Z}$ is finitely generated but has a non-finitely generated subgroup.
- 8. Prove that the standard wreath product $C_2 \wr C_2$ is isomorphic to D_8 .
- 9. Let

$$G = \left\{ \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 1 & f \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid a, b, c, d, e, f \in \mathbb{Z}/2\mathbb{Z} \right\} \subseteq GL(4, 2).$$

Show that $G \cong C_2 \wr (C_2 \times C_2)$ where the $C_2 \times C_2$ acts regularly on a set of size 4. [First show that $G = N \rtimes H$ where N is the subgroup specified by a = f = 0 and H is the subgroup specified by b = c = d = e = 0.]