Date due: September 18, 2006

Some general questions

1. Let $N \triangleleft G=H \times K$. Prove that either N is abelian or N intersects one of the factors H or K nontrivially.
2. If $H \leq L \leq G$ and $N \triangleleft G$ show that the equations $H N=L N$ and $H \cap N=L \cap N$ imply that $H=L$.
3. a) (The modular law) Let H, K, and L be subgroups of G with $H \subseteq L$. Show that

$$
H K \cap L=H(K \cap L)
$$

b) Suppose we remove the requirement in a) that $H \subseteq L$. Give an example to show that the conclusion need not hold.
4. Let G be a finite group with a normal subgroup H such that $(|H|,|G: H|)=1$. Show that H is the unique subgroup of G having order $|H|$. [Hint: If K is another such subgroup, what happens to K in G / H ?]

Semidirect and wreath products

5. Let G be a group, and consider the usual homomorphism $\theta: G \rightarrow$ Aut G where $\theta(g)(x)=g x g^{-1}$, so $\theta(g)$ is conjugation by g. Using θ we may form the semidirect product $G \rtimes G$. Show that $G \rtimes G \cong G \times G$.
[Hint: Look for a subgroup of $G \times G$ which acts on G via θ.]
6. Let S_{G} be the group of all permutations of G (the symmetric group on G), and observe that $\operatorname{Aut}(G)$ is a subgroup of S_{G}. Let $\lambda: G \rightarrow S_{G}$ be the homomorphism given by the left regular representation of G, so for each $g \in G, \lambda(g)$ is the permutation of G given by $\lambda(g)(x)=g x$, and let $\rho: G \rightarrow S_{G}$ be the homomorphism given by the right regular representation of G, so for each $g \in G, \rho(g)$ is the permutation of G given by $\rho(g)(x)=x g^{-1}$.
(a) Show that $\langle\lambda(G), \operatorname{Aut}(G)\rangle=\langle\rho(G), \operatorname{Aut}(G)\rangle$ as subgroups of S_{G}, and they have the form $G \rtimes \operatorname{Aut}(G)$ (a group known as the holomorph of G).
(b) Show that $N_{S_{G}}(\lambda(G))=\langle\lambda(G)$, $\operatorname{Aut}(G)\rangle$.
(c) Deduce (for example) that

$$
\begin{aligned}
N_{S_{8}}(\langle(1,2)(3,4)(5,6)(7,8),(1,3)(2,4)(5,7)(6,8),(1,5)(2,6)(3,7)(4,8)\rangle) \\
\cong\left(C_{2} \times C_{2} \times C_{2}\right) \rtimes G L(3,2)
\end{aligned}
$$

[This question seems fairly hard, and you may wish to proceed using the following steps.
a) Establish the formula $\alpha \lambda(g) \alpha^{-1}=\lambda(\alpha(g))$ for all $\alpha \in S_{G}$ and $g \in G$.
b) Any $\beta \in N_{S_{G}}(\lambda(G))$ can be written $\beta=\lambda(g) \beta^{\prime}$ for some $g \in G$, where $\beta^{\prime}(1)=1$.
c) Given $\gamma \in N_{S_{G}}(\lambda(G))$ there exists $\alpha \in \operatorname{Aut}(G)$ with $\gamma \lambda(g) \gamma^{-1}=\lambda(\alpha(g))$ for all $g \in G$. Deduce that $\alpha^{-1} \gamma \in C_{S_{G}}(\lambda(G))$.
d) Show that if $\delta \in C_{S_{G}}(\lambda(G))$ and $\delta(1)=1$, then δ is the identity permutation of G.
e) Put the previous pieces together!]
7. Prove that the standard wreath product $\mathbb{Z} \imath \mathbb{Z}$ is finitely generated but has a non-finitely generated subgroup.
8. Prove that the standard wreath product C_{2} 乙 C_{2} is isomorphic to D_{8}.
9. Let

$$
G=\left\{\left.\left(\begin{array}{llll}
1 & a & b & c \\
0 & 1 & d & e \\
0 & 0 & 1 & f \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in \mathbb{Z} / 2 \mathbb{Z}\right\} \subseteq G L(4,2)
$$

Show that $G \cong C_{2}$ 2 $\left(C_{2} \times C_{2}\right)$ where the $C_{2} \times C_{2}$ acts regularly on a set of size 4 . [First show that $G=N \rtimes H$ where N is the subgroup specified by $a=f=0$ and H is the subgroup specifed by $b=c=d=e=0$.]

