Date due: Monday February 5, 2007

1. (D\&F 10.4, 4) Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ are isomorphic left \mathbb{Q}-modules. [Show they are both 1-dimensional vector spaces over \mathbb{Q}.]
2. (D\&F $10.4,5)$ Let A be a finite abelian group of order n and let p^{k} be the largest power of the prime p dividing n. Prove that $\mathbb{Z} / p^{k} \mathbb{Z} \otimes_{\mathbb{Z}} A$ is isomorphic to the Sylow p-subgroup of A.
3. ($\mathrm{D} \& \mathrm{~F} 10.4,6$) If R is any integral domain with quotient field Q, prove that $(Q / R) \otimes_{R}$ $(Q / R)=0$.
4. ($\mathrm{D} \& \mathrm{~F} 10.4,11$) Let $\left\{e_{1}, e_{2}\right\}$ be a basis of $V=\mathbb{R}^{2}$. Show that the element $e_{1} \otimes e_{2}+e_{2} \otimes e_{1}$ in $V \otimes_{\mathbb{R}} V$ cannot be written as a simple tensor $v \otimes w$ for any $v, w \in \mathbb{R}^{2}$.
5. (D\&F 10.4, 16) Suppose R is commutative and let I and J be ideals of R, so R / I and R / J are naturally R-modules.
(a) Prove that every element of $R / I \otimes_{R} R / J$ can be written as a simple tensor of the form $(1 \bmod I) \otimes(r \bmod J)$.
(b) Prove that there is an R-module isomrohpsm $R / I \otimes_{R} R / J \cong R /(I+J)$ mapping $(r \bmod I) \otimes\left(r^{\prime} \bmod J\right)$ to $r r^{\prime} \bmod (I+J)$.
6. Show that as a ring, $\mathbb{Q}(\sqrt{2}) \otimes \mathbb{Q} \mathbb{Q}(\sqrt{2})$ is the direct sum of two fields. [You may assume the ring structure from Proposition 19 of D\&F if you can't guess what it must be, and also question 25 from 10.4 of D\&F.]
7. (D\&F 10.5, 14(a)) Let $0 \rightarrow L \xrightarrow{\psi} M \xrightarrow{\phi} N \rightarrow 0$ be a sequence of R-modules.
(a) Prove that the associated sequence

$$
0 \rightarrow \operatorname{Hom}_{R}(D, L) \xrightarrow{\psi^{\prime}} \operatorname{Hom}_{R}(D, M) \xrightarrow{\phi^{\prime}} \operatorname{Hom}_{R}(D, N) \rightarrow 0
$$

is a short exact sequence of abelian groups for all R-modules D if and only if the original sequence is a split short exact sequence. [To show the sequence splits, take $D=N$ and show the lift of the identity map in $\operatorname{Hom}_{R}(N, N)$ to $\operatorname{Hom}_{R}(N, M)$ is a splitting homomorphism for ϕ.]
(b) is a similar statement obtained by applying $\operatorname{Hom}_{R}(-, D)$ to the short exact sequence. Do not bother with this part of the question.
8. (D\&F 10.5, 21) Let R and S be rings with 1 and suppose M is a right R-module, and N is an (R, S)-bimodule. If M is flat over R and N is flat as an S-module prove that $M \otimes_{R} N$ is flat as a right S-module.
9. (D\&F 10.4, 15) Show that tensor products do not commute with direct products in general. [Consider the extension of scalars from \mathbb{Z} to \mathbb{Q} of the direct product of the modules $M_{i}=\mathbb{Z} / 2^{i} \mathbb{Z}, i=1,2, \ldots$ Tensor products do commute with arbitrary direct sums - also an exercise you could do!]

