1. (page 36 no. $2+$ an extra sentence) Let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{2 \pi i / 3}
\end{array}\right), C=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right)
$$

and let $G=\left\langle a: a^{3}=1\right\rangle \cong C_{3}$. Show that each of the functions $\rho_{j}: G \rightarrow G L(2, \mathbb{C})$ $(1 \leq j \leq 3)$, defined by

$$
\begin{aligned}
\rho_{1}: a^{r} \rightarrow A^{r}, \\
\rho_{2}: a^{r} \rightarrow B^{r} \\
\rho_{3}: a^{r} \rightarrow C^{r} \quad(0 \leq r \leq 2),
\end{aligned}
$$

is a representation of G over \mathbb{C}. Which of these representations are faithful? Construct a further representation in which $\rho_{4}(a)$ is neither a diagonal matrix nor a power of C.
2. (page 36 no. 5) Let $G=D_{12}=\left\langle a, b: a^{6}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle$. Define the matrices A, B, C, D over \mathbb{C} by

$$
\begin{gathered}
A=\left(\begin{array}{cc}
e^{i \pi / 3} & 0 \\
0 & e^{-i \pi / 3}
\end{array}\right), B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
C=\left(\begin{array}{cc}
1 / 2 & \sqrt{3} / 2 \\
-\sqrt{3} / 2 & 1 / 2
\end{array}\right), D=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{gathered}
$$

Prove that each of the functions $\rho_{k}: G \rightarrow G L(2, \mathbb{C})(k=1,2,3,4)$, given by

$$
\begin{aligned}
& \rho_{1}: a^{r} b^{s} \rightarrow A^{r} B^{s}, \\
& \rho_{2}: a^{r} b^{s} \rightarrow A^{3 r}(-B)^{s}, \\
& \rho_{3}: a^{r} b^{s} \rightarrow(-A)^{r} B^{s}, \\
& \rho_{4}: a^{r} b^{s} \rightarrow C^{r} D^{s} \quad(0 \leq r \leq 5,0 \leq s \leq 1),
\end{aligned}
$$

is a representation of G. Which of these representations are faithful? Which are equivalent?
3. (page 37 no. 6) Give an example of a faithful representation of D_{8} of degree 3 .
4. (page 37 no. 7) Suppose that ρ is a representation of G of degree 1. Prove that $G / \operatorname{Ker} \rho$ is abelian.
5. (page 37 no. 8) Let ρ be a representation of the group G. Suppose that g and h are elements of G such that $(g \rho)(h \rho)=(h \rho)(g \rho)$. Des it follow that $g h=h g$?
6. (Only if we get that far! Page 52 no. 3) Which of the four representations of D_{12} defined in Exercise 2 are irreducible?

