Date due: November 17, 2008. There will be a quiz on this date. Hand in the 4 starred questions.

Section 3.6

3.58, 3.60*, 3.63, 3.64*, 3.66*

XX Find the g.c.d and the l.c.m in $\mathbb{Z}[i]$ of 85 and $1+13$ i. Find the g.c.d and the l.c.m in $\mathbb{Z}[i]$ of $47-13 i$ and $53+56 i$.

YY* (a) Prove that $\mathbb{Z}[\sqrt{2}]:=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$ is a Euclidean domain with respect to $N(a+b \sqrt{2})=\left|a^{2}-2 b^{2}\right|$, showing that N is a (multiplicative) norm.
(b)Show that there are infinitely many units in $\mathbb{Z}[\sqrt{2}]$.
(c)Find a pair of integers a and b, both larger than 100 , for which $a^{2}-2 b^{2}=1$.
(d)Find the g.c.d in $\mathbb{Z}[\sqrt{2}]$ of $1+5 \sqrt{2}$ and $2+3 \sqrt{2}$.
(e)Express $1+5 \sqrt{2}$ as a product of irreducible elements of $\mathbb{Z}[\sqrt{2}]$, proving that the elements in the product are indeed irreducible.

ZZ (a) How many essentially different ways are there to write $29 \cdot 37$ as a sum of square of two integers? We regard $a^{2}+b^{2}=b^{2}+a^{2}=(-a)^{2}+b^{2}$ etc as 'the same'.
(b) How many essentially different ways are there to write $29 \cdot 31$ as a sum of square of two integers?
(c) How many incongruent right-angled triangles are there with hypotenuse of length $17^{2}=289$ and sides of integer lengths? (Only consider triangles with non-zero area.)

