Math 8202
Homework 12
PJW
Do not hand in this homework. Quiz 6 will be held on Monday May 4 on the topics of Homeworks 11 and 12.

Section 9.3 9.37
YY Find the Jordan canonical forms of the following matrices and find a matrix P which conjugates the matrix to its Jordan canonical form.

$$
\left(\begin{array}{ccc}
9 & 4 & 5 \\
-4 & 0 & -3 \\
-6 & -4 & -2
\end{array}\right) \quad\left(\begin{array}{ccc}
5 & 4 & 1 \\
-1 & 0 & 0 \\
-3 & -4 & 1
\end{array}\right) \quad\left(\begin{array}{ccc}
3 & 4 & 2 \\
-2 & -3 & -1 \\
-4 & -4 & -3
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

ZZ Determine which of the following matrices are similar:

$$
\left(\begin{array}{ccc}
-1 & 4 & -4 \\
2 & -1 & 3 \\
0 & -4 & 3
\end{array}\right) \quad\left(\begin{array}{ccc}
-3 & -4 & 0 \\
2 & 3 & 0 \\
8 & 8 & 1
\end{array}\right) \quad\left(\begin{array}{ccc}
-3 & 2 & -4 \\
2 & 1 & 0 \\
3 & -1 & 3
\end{array}\right) \quad\left(\begin{array}{ccc}
-1 & 4 & -4 \\
0 & -3 & 2 \\
0 & -4 & 3
\end{array}\right)
$$

AAAA Prove that for every matrix A, A is similar to its transpose A^{t}.
BBBB Show that if A is a matrix for which $A^{2}=A$ then A is similar to a diagonal matrix which has only 0 s and 1 s along the diagonal.

CCCC (Fall 2001 qn. 7) Let A and B be endomorphisms of a complex vector space V which commute with each other. We say that V is indecomposable if it cannot be written $V=V_{1} \oplus V_{2}$ where V_{1} and V_{2} are non-zero subspaces, each of which is mapped to itself by both A and B.
(a) (8) Suppose V is indecomposable. Show that A has only one eigenvalue.
(b) (7) Suppose now that there is no subspace V_{1} of V which is mapped to itself by both A and B and with $0 \neq V_{1} \neq V$. Show that $\operatorname{dim}_{\mathbb{C}} V=1$

DDDD (Spring 2001 qn . 3) Let $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be an invertible linear transformation of finite order. Show that \mathbb{C}^{n} has a basis with respect to which the matrix of T is diagonal.

EEEE (Spring 2002 qn. 6) Let V be a finite-dimensional complex vector space, and let $T: V \rightarrow V$ be a linear transformation.
(a) (6%) Give a condition on the minimal polynomial which is necessary and sufficient for T to be diagonalizable. Prove that your answer is correct.
(b) (6%) If the minimal polynomial of T is equal to the characteristic polynomial of T, then what can we say about the Jordan canonical form of T ? Be as specific as possible, and prove that your answer is correct.
(c) (6%) Prove that if $W \subseteq V$ is an invariant subspace (thus $T(W) \subseteq W$) and T is diagonalizable, then the restriction $\left.T\right|_{W}$ (considered as a linear transformation from W to itself), also is diagonalizable.

