Math 8202
Homework 2
PJW
Date due: February 9, 2009. There will be a quiz on this date. Hand in only the 5 starred questions.

K* (Fall 2002 qn. 5, part (a)) Let k be a field of characteristic $p>0$, and $K=k(t)$ where t is an element transcendental over k. Show that $X^{p}-t$ is irreducible in $K[X]$.

L* (Fall 2001, qn. 6) (10\%) Let $\mathbb{F}_{p^{k}}$ be the field with p^{k} elements, where p is prime.
(a) Show that $x^{4}+1 \in \mathbb{F}_{p}[x]$ has a root in $\mathbb{F}_{p^{2}}$.
(b) Deduce that $x^{4}+1$ is reducible in $\mathbb{F}_{p}[x]$. For which values of p does a linear factor exist in $\mathbb{F}_{p}[x]$?
[You may assume standard facts about finite fields.]
M Factor $x^{8}-x$ into irreducibles in $\mathbb{Z}[x]$ and in $\mathbb{F}_{2}[x]$.
N* Prove that an algebraically closed field must be infinite.
O Find an explicit isomorphism between the splitting fields of $x^{3}-x+1$ and $x^{3}-x-1$ over \mathbb{F}_{3}, identifying the images of the roots of the first polynomial in the splitting field of the second polynomial as expressions in the roots of the second polynomial.
P^{*} Suppose $K=\mathbb{Q}(\theta)=\mathbb{Q}\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)$ with $D_{1}, D_{2} \in \mathbb{Z}$, is a biquadratic extension and that $\theta=a+b \sqrt{D_{1}}+c \sqrt{D_{2}}+d \sqrt{D_{1} D_{2}}$ where $a, b, c, d \in \mathbb{Z}$ are integers. Prove that the minimal polynomial $M_{\theta}(x)$ for θ over \mathbb{Q} is irreducible of degree 4 over \mathbb{Q} but is reducible modulo every prime p. In particular show that the polynomial $x^{4}-10 x^{2}+1$ is irreducible in $\mathbb{Z}[x]$ but is reducible modulo every prime. [Use the fact that there are no biquadratic extensions over finite fields.]

Q Prove that one of 2,3 or 6 is a square in \mathbb{F}_{p} for every prime p. Conclude that the polynomial

$$
x^{6}-11 x^{4}+36 x^{2}-36=\left(x^{2}-2\right)\left(x^{2}-3\right)\left(a x^{2}-6\right)
$$

as a root modulo p for every prime p but has no root in \mathbb{Z}.
R Prove that $x^{p^{n}}-x+1$ is irreducible over \mathbb{F}_{p} only when $n=1$ or $n=p=2$. [Note that if α is a root, then so is $\alpha+a$ for any $a \in \mathbb{F}_{p^{n}}$. Show that this implies $\mathbb{F}_{p}(\alpha)$ contains $\mathbb{F}_{p^{n}}$ and that $\left.\left[\mathbb{F}_{p}(\alpha): \mathbb{F}_{p^{n}}\right]=p.\right]$
S^{*} (a) Show that in $\mathbb{F}_{2}[x]$ there are 3 irreducible polynomials of degree 4 , and that one of them has roots which have multiplicative order 5 .
(b) Let α be a root of $x^{4}+x+1$ in some extension field of \mathbb{F}_{2}. Express $\alpha^{3}+\alpha^{4}$ as a power of α.

