Math 8202

Homework 2

PJW

Date due: February 9, 2009. There will be a quiz on this date. Hand in only the 5 starred questions.

- K^{*} (Fall 2002 qn. 5, part (a)) Let k be a field of characteristic p > 0, and K = k(t) where t is an element transcendental over k. Show that $X^p t$ is irreducible in K[X].
- L* (Fall 2001, qn. 6) (10%) Let \mathbb{F}_{p^k} be the field with p^k elements, where p is prime.
 - (a) Show that $x^4 + 1 \in \mathbb{F}_p[x]$ has a root in \mathbb{F}_{p^2} .
 - (b) Deduce that $x^4 + 1$ is reducible in $\mathbb{F}_p[x]$. For which values of p does a linear factor exist in $\mathbb{F}_p[x]$?

[You may assume standard facts about finite fields.]

- M Factor $x^8 x$ into irreducibles in $\mathbb{Z}[x]$ and in $\mathbb{F}_2[x]$.
- \mathbf{N}^* Prove that an algebraically closed field must be infinite.
- O Find an explicit isomorphism between the splitting fields of $x^3 x + 1$ and $x^3 x 1$ over \mathbb{F}_3 , identifying the images of the roots of the first polynomial in the splitting field of the second polynomial as expressions in the roots of the second polynomial.
- P* Suppose $K = \mathbb{Q}(\theta) = \mathbb{Q}(\sqrt{D_1}, \sqrt{D_2})$ with $D_1, D_2 \in \mathbb{Z}$, is a biquadratic extension and that $\theta = a + b\sqrt{D_1} + c\sqrt{D_2} + d\sqrt{D_1D_2}$ where $a, b, c, d \in \mathbb{Z}$ are integers. Prove that the minimal polynomial $M_{\theta}(x)$ for θ over \mathbb{Q} is irreducible of degree 4 over \mathbb{Q} but is reducible modulo every prime p. In particular show that the polynomial $x^4 - 10x^2 + 1$ is irreducible in $\mathbb{Z}[x]$ but is reducible modulo every prime. [Use the fact that there are no biquadratic extensions over finite fields.]
- Q Prove that one of 2, 3 or 6 is a square in \mathbb{F}_p for every prime p. Conclude that the polynomial

$$x^{6} - 11x^{4} + 36x^{2} - 36 = (x^{2} - 2)(x^{2} - 3)(ax^{2} - 6)$$

as a root modulo p for every prime p but has no root in \mathbb{Z} .

- R Prove that $x^{p^n} x + 1$ is irreducible over \mathbb{F}_p only when n = 1 or n = p = 2. [Note that if α is a root, then so is $\alpha + a$ for any $a \in \mathbb{F}_{p^n}$. Show that this implies $\mathbb{F}_p(\alpha)$ contains \mathbb{F}_{p^n} and that $[\mathbb{F}_p(\alpha) : \mathbb{F}_{p^n}] = p$.]
- S* (a) Show that in F₂[x] there are 3 irreducible polynomials of degree 4, and that one of them has roots which have multiplicative order 5.
 (b) Let α be a root of x⁴ + x + 1 in some extension field of F₂. Express α³ + α⁴ as a power of α.