Math 8202
Homework 5
PJW
Date due: March 2, 2009. Hand in only the 5 starred questions (all of the questions - I apologize for not having a greater selection of questions this week! :-)).

DDD* Suppose $f(x) \in \mathbb{Z}[x]$ is an irreducible quartic whose splitting field has Galois group S_{4} over \mathbb{Q} (there are many such quartics). Let θ be a root of $f(x)$ and set $K=\mathbb{Q}(\theta)$. Prove that K is an extension of \mathbb{Q} of degree 4 with no proper subfields. Are there any Galois extensions of \mathbb{Q} of degre 4 with no proper subfields?

EEE* (Fall 2002, qn. 6) Let a be a nonzero rational number.
(a) (6%) Determine the values of a such that the extension $\mathbb{Q}(\sqrt{a i})$ is of degree 4 over \mathbb{Q}, where $i^{2}=-1$.
(b) (12%) When $K=\mathbb{Q}(\sqrt{a i})$ is of degree 4 over \mathbb{Q} show that K is Galois over \mathbb{Q} with the Klein 4 -group as Galois group. In this case determine all the quadratic extensions of \mathbb{Q} contained in K.

FFF* On page 211 of Rotman's book, for a finite extension $K=k\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of a field k, a normal closure of K / k is defined to be an extension $E \supseteq K$ of least degree which is the splitting field of some polynomial $f \in k[x]$. No assertion of the uniqueness of E is made. Show that if each of the minimal polynomials of the α_{i} over k is separable, then the normal closure of K / k is unique.

GGG* Let L be the normal closure of a finite extension $\mathbb{Q}(\alpha)$ of \mathbb{Q}. For any prime p dividing the order of $\operatorname{Gal}(L / \mathbb{Q})$ prove that there is a subfield F of O with $[L: F]=p$ and $L=F(\alpha)$.

HHH* Let F be a subfield of the real numbers \mathbb{R}. Let a be an element of F and let $K=F(\sqrt[n]{a})$ where $\sqrt[n]{a}$ denotes a real nth root of a. Prove that if L is any Galois extension of F contained in K then $[L: F] \leq 2$.

