Math 3593 Practice for the final exam.

You will not be allowed to use books, notes or a calculator on this exam. At the top of the exam you will be given the following formulas, as well as Taylor expansions of standard functions if you need them, but I don't think you do:

Formulas

Polar coordinates: $x=r \cos \theta, y=r \sin \theta ; d x d y=r d r d \theta$.
Cylindrical coordinates: $x=r \cos \theta, y=r \sin \theta, z=z ; d x d y d z=r d r d \theta d z$.
Spherical polars: $x=r \cos \phi \cos \theta, y=r \cos \phi \sin \theta, z=r \sin \phi ; d x d y d z=r^{2} \cos \phi d r d \phi d \theta$.

1. Prove that a subset of a set of volume zero has volume zero.
2. Find the surface area of the part of the graph of the function $z=y^{2}-x^{2}$ which lies above the circle $x^{2}+y^{2} \leq 1$ in the $x y$-plane.
3. Let A be the unit circle $x^{2}+y^{2} \leq 1$ and let $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation given by $\Phi\binom{x}{y}=\binom{2 x+y}{x-y}$. Find the area of $\Phi(A)$.
4. Find the length of the part of the helical spiral in \mathbb{R}^{3}, specified in cylindrical polar coordinates (r, θ, z) by $r=2, z=3 \theta$, for which $0 \leq \theta \leq 2 \pi$.
5. Find the area of the plane elliptical region which is the part of the plane $z=4-x-2 y$ that lies above the circle $x^{2}+y^{2} \leq 1$ in the $x y$-plane.
6. Let ϕ be the angle between a vector in \mathbb{R}^{3} and the z-axis. Find the volume of the region in \mathbb{R}^{3} bounded by the surface given in spherical polar coordinates by $r=3(1-\cos \phi)$.
7. THIS ONE APPEARED ON HW: Let $S=\partial B$ be the closed surface that is the boundary of the hemisphere

$$
B: \quad x^{2}+y^{2}+z^{2} \leq 1, \quad z \geq 0
$$

Thus S is the union of the flat unit disc S_{1} in the $x y$-plane given as

$$
S_{1}: \quad x^{2}+y^{2} \leq 1, \quad z=0
$$

and the curved surface S_{2} given as

$$
S_{2}: \quad x^{2}+y^{2}+z^{2}=1, \quad z \geq 0 .
$$

Suppose that S is oriented with normal vector pointing out from the hemisphere at each point, and let S_{1} and S_{2} have this same orientation. Let F be the vector field $F(x, y, z)=\left(x+\cos y+\cos z, y+\sqrt{x^{2}+1} \ln \left(z^{2}+1\right), z+3\right)$.
(a) (4) Compute $\int_{S} F \cdot d S$.
(b) (4) Compute $\int_{S_{1}} F \cdot d S$.
(c) (4) Compute $\int_{S_{2}} F \cdot d S$.
9. (20\%) Calculate

$$
\int_{\gamma}\left(y-\tan ^{-1} \sqrt{x+10}\right) d x+\left(3 x+e^{y^{2}} \sin y\right) d y
$$

where γ is the boundary of the region enclosed by the parabola $y=x^{2}$ and the line $y=4$.
10. Let C be the curve in \mathbb{R}^{2} parametrized by $\gamma(t)=\binom{t-t^{2}}{t-t^{3}}$ where $0 \leq t \leq 1$, taken with the orientation given by this parametrization. You may assume that this curve is a loop which does not cross itself, and that it is in fact the boundary of a 2-manifold with boundary, namely the region enclosed by C.
(a) Calculate $\int_{C} y d x$.
(b) By expressing the integral in (a) as a double integral (using Green's theorem), calculate the area of the region enclosed by C.
11. For each of the following sets, determine whether or not it is a smooth manifold, justifying your conclusion.
(1) The set of 2×2 real matrices A such that $A^{2}=I$.
(2) The set of points $\binom{x}{y}$ in \mathbb{R}^{2} for which x and y have the same sign, or are both zero.
(3) $\{x \in \mathbb{R} \mid x>0\}$
(4) $\mathbb{R}-\{0\}$
(5) The union of the coordinate axes $x=0$ and $y=0$ in \mathbb{R}^{2}.
12. Find the maximum and minimum values of $f\left(\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right)=x^{2}+x y+2 y^{2}-z^{2}$ on the ball $x^{2}+y^{2}+z^{2} \leq 100$.
Plus: the questions which have appeared on the previous practice handouts, and page 275 Section 2.10: nos $2,4,7,8,14,15,16$ page 278 Section 2.11: nos 2.29, 2.30, 2.31
page 367 Section 3.7: no 6 Take this function and find its maximum and minimum values on $x^{2}+y^{2}+z^{2} \leq 10$. (I have not done this modified problem and am not sure if it will work out appropriately.)
p. 386: 3.1, 3.2, 3.5, 3.10, 3.20
p. 404: 4.1.10, 4.1.14
p. $445: 4.5 .7,4.5 .8,4.5 .11,4.5 .12,4.5 .14,4.5 .15,4.5 .16,4.5 .18$
p. 474: 4.8.1, 4.8.2, 4.8.4, 4.8.13
p. 493: $4.10 .8,4.10 .12,4.10 .13,4.10 .14,4.10 .17,4.10 .18,4.10 .19$
p. 514: 4.11, 4.12, 4.13, 4.21, 4.23
p. 522: 5.1.1, 5.1.2
p. 540: 5.3.2, 5.3.6, 5.3.8, 5.3.9, 5.3.15, 5.3.18, 5.3.21
p. 547: 5.3, 5.4

