
Math 8211 Homework 1 PJW

Date due: Monday September 17, 2012. In class on Wednesday September 19

we will grade your answers, so it is important to be present on that day, with

your homework.

For extra practice (for example, if you can’t see how to get started on the more

elaborate questions below) try some further questions from Rotman other than the ones

listed below; for example 1.1, 1.5, 1.7.

1. 1.4 of Rotman on page 33.

2. 1.6 of Rotman on page 33.

3. 1.15 of Rotman on page 35.

4. 1.16 of Rotman on page 35.

We say that a functor F : C → D is an isomorphism of categories if there is a functor

G : D → C so that GF = 1C and FG = 1D. We say that a functor F : C → D is

an equivalence of categories if there is a functor G : D → C so that GF is naturally

isomorphic to the identity functor 1C and FG is naturally isomorphic to 1D (meaning that

there are invertible natural transformations τ : GF → 1C and σ : FG → 1D).

5. Let G and H be groups, which we may regard as categories with one object in which

every morphism is invertible.

(1) Show that a functor F : G → H is ‘the same as’ a group homomorphism f : G →

H when G and H are regarded as groups in the usual way.

(2) Show that a functor F : G → G is naturally isomorphic to the identity functor

1G : G → G if and only if F is an isomorphism of categories of the form cg : G → G

for some g ∈ G (regarded as a group homomorphism), where cg(h) = ghg−1.

(3) Deduce that the group of equivalences G → G (when G is regarded as a category)

is the same as the group of usual isomorphisms G → G.

(4) Translate the imprecise statement, “a functor F : G → H is ‘the same as’ a group

homomorphism f : G → H,” into a precise statement of category theory.

6. Let I be the poset with two elements 0 and 1, and with 0 < 1. Recall from 1.12 that if

P and Q are posets then a functor P → Q is ‘the same thing as’ an order-preserving

map. Consider two order-preserving maps f, g : P → Q, and regard them as functors

where this makes sense. Show that the following three conditions are equivalent:

(1) there is a natural transformation τ : f → g,

(2) f(x) ≤ g(x) for all x ∈ P,

(3) there is a functor h : P × I → Q such that h(x, 0) = f(x) and h(x, 1) = g(x) for

all x ∈ P.

7. Given a poset P we may construct an abstract simplicial complex |P| (see page 11)

where the n-simplices are the sets of elements {x0, . . . , xn} ⊆ P such that (possibly

after reordering) x0 < x1 < · · · < xn.
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(1) Applying this to the poset I × I, how many simplices does the simplicial complex
|I×I| have? When |I×I| is realized as a topological space, what is its dimension?
Draw a picture of this space.

(2) Show that the construction | − | allows us to define a functor from the category
of posets with order-preserving maps as morphisms, to the category of abstract
simplicial complexes with simplicial maps as morphisms.

(3) Suppose that there is a natural transformation τ : f → g where f, g : P → Q
are order-preserving maps between posets. Show that the functorially induced
maps |f |, |g| : |P| → |Q| are homotopic. (For this you may assume that |P × I|
is homeomorphic to |P| × |I| when these are regarded as topological spaces.)

(4) Suppose that P is a poset with a unique maximal element. Show that |P| is
contractible (that is, homotopy equivalent to a point).
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to each continuous map X → Y , assign the chain map f# : S•(X) → S•(Y ).
The nth homology functor is the composite Top → Comp → Ab, where
Comp → Ab is defined by S•(X) "→ Hn(X) and f# "→ Hn( f ). Thus, in a
very precise way, we see that homology has a topological half and an algebraic
half, for the functor Top → Comp involves the topological notions of spaces
and continuous maps, while the functor Comp → Ab involves only algebra.
Homological Algebra is the study of this algebraic half.

Exercises

*1.1 (i) Prove, in every category C, that each object A ∈ C has a
unique identity morphism.

(ii) If f is an isomorphism in a category, prove that its inverse
is unique.

1.2 (i) Prove that there is a functor F : ComRings → ComRings
defined on objects by F : R "→ R[x] and on morphisms
ϕ : R → S by Fϕ : r0 + r1x + · · · + rnxn "→ ϕ(r0) +
ϕ(r1)x + · · · + ϕ(rn)xn .

(ii) Prove that there is a functor on Dom, the category of all
(integral) domains, defined on objects by R "→ Frac(R),
and on morphisms f : R → S by r/1 "→ f (r)/1.

1.3 Let A S−→ B T−→ C be functors. If the variances of S and T
are the same, prove that the composite T S : A → C is a covariant
functor; if the variances of S and T are different, prove that T S is a
contravariant functor

*1.4 If T : A → B is a functor, define T op : Aop → B by T op(A) =
T (A) for all A ∈ obj(A) and T op( f op) = T ( f ) for all morphisms
f in A. Prove that T op is a functor having variance opposite to the
variance of T .

1.5 (i) If X is a set and k is a field, define the vector space k X to
be the set of all functions X → k under pointwise opera-
tions. Prove that there is a functor G : Sets → kMod with
G(X) = k X .

(ii) Define U : k Mod → Sets to be the forgetful functor [see
Example 1.9(v)]. What are the composites GU : kMod →
kMod and U G : Sets → Sets?

*1.6 (i) If X is a set, define F X to be the free group having ba-
sis X ; that is, the elements of F X are reduced words on
the alphabet X and multiplication is juxtaposition followed
by cancellation. If ϕ : X → Y is a function, prove that
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there is a unique homomorphism Fϕ : F X → FY such
that (Fϕ)|X = ϕ.

(ii) Prove that the F : Sets → Groups is a functor (F is called
the free functor).

*1.7 (i) Define C to have objects all ordered pairs (G, H), where
G is a group and H is a normal subgroup of G, and to
have morphisms ϕ∗ : (G, H) → (G1, H1), where ϕ : G →
G1 is a homomorphism with ϕ(H) ⊆ H1. Prove that C
is a category if composition in C is defined to be ordinary
composition.

(ii) Construct a functor Q : C → Groups with Q(G, H) =
G/H .

(iii) Prove that there is a functor Groups → Ab taking each
group G to G/G ′, where G ′ is its commutator subgroup.

1.8 If X is a topological space, define C(X) to be its ring of continuous
real-valued functions, C(X) =

{
f : X → R : f is continuous

}
, un-

der pointwise operations: f + g : x %→ f (x) + g(x) and f g : x %→
f (x)g(x). Prove that there is a contravariant functor T : Top →
ComRings with T (X) = C(X). [A theorem of Gelfand and Kol-
mogoroff (see Dugundji, Topology, p. 289) says that if X and Y are
compact Hausdorff spaces and the rings C(X) and C(Y ) are iso-
morphic, then the spaces X and Y are homeomorphic.]

1.9 Let X be a set and let B(X) be the Boolean ring whose elements
are the subsets of X , whose multiplication is intersection, and whose
addition is symmetric difference: if A, B ⊆ X , then AB = A ∩ B,
A + B = (A − B) ∪ (B − A), and −A = A. You may assume that
B(X) is a commutative ring under these operations in which ∅ is
the zero element and X is the 1 element.

(i) Prove that B(X) has only one unit (recall that an element
u ∈ R is a unit if there is v ∈ R with uv = 1 = vu).

(ii) If Y " X is a proper subset of X , prove that B(Y ) is not a
subring of B(X).

(iii) Prove that a nonempty subset I ⊆ B(X) is an ideal if and
only if A ∈ I implies that every subset of A also lies in I .
In particular, the principal ideal (A) generated by a subset
A is the family of all the subsets of A.

(iv) Prove that every maximal ideal M in B(X) is a principal
ideal of the form (X − {x}) for some x ∈ X .

(v) Prove that every prime ideal in B(X) is a maximal ideal.
*1.10 Let R be a ring. Call an (additive) abelian group M an almost left

R-module if there is a function R × M → M satisfying all the



1.3 Singular Homology 35

axioms of a left R-module except axiom (iv): we do not assume
that 1m = m for all m ∈ M . Prove that M = M1 ⊕ M0 (direct
sum of abelian groups), where M1 = {m ∈ M : 1m = m} and
M0 = {m ∈ M : rm = 0 for all r ∈ R} are subgroups of M that are
almost left R-modules; in fact, M1 is a left R-module.

*1.11 Prove that every right R-module is a left Rop-module, and that every
left R-module is a right Rop-module.

1.12 If R and A are rings, an anti-homomorphism ϕ : R → A is an
additive function for which ϕ(rr ′) = ϕ(r ′)ϕ(r) for all r, r ′ ∈ R.

(i) Prove that R and A are anti-isomorphic if and only if A ∼=
Rop.

(ii) Prove that transposition B &→ BT is an anti-isomorphism
of a matrix ring Matn(R) with itself, where R is a commu-
tative ring. (If R is not commutative, then B &→ BT is an
isomorphism [Matn(R)]op ∼= Matn(Rop).)

*1.13 An R-map f : M → M , where M is a left R-module, is called an
endomomorphism.

(i) Prove that EndR(M) = { f : M → M : f is an R-map} is
a ring (under pointwise addition and composition as multi-
plication) and that M is a left EndR(M)-module. We call
EndR(M) the endomorphism ring of M .

(ii) If a ring R is regarded as a left R-module, prove that there
is an isomorphism EndR(R) → Rop of rings.

1.14 (i) Give an example of topological spaces X, Y and an in-
jective continuous map i : X → Y whose induced map
Hn(i) : Hn(X) → Hn(Y ) is not injective for some n ≥ 0.
Hint. You may assume that H1(S1) ∼= Z.

(ii) Give an example of a subspace A ⊆ X of a topologi-
cal space X and a continuous map f : X → Y such that
Hn( f ) )= 0 for some n ≥ 0 and Hn( f |A) = 0.

*1.15 Let F, G : A → B and F ′, G ′ : B → C be functors of the same
variance, and let τ : F → G and τ ′ : F ′ → G ′ be natural transfor-
mations.

(i) Prove that their composite τ ′τ is a natural transformation
F ′F → G ′G where, for each A ∈ obj(A), we define

(τ ′τ )A = τ ′
F AτA : F ′F(A) → G ′G(A).

(ii) If τ : F → G is a natural isomorphism, define σC : FC →
GC for all C ∈ obj(A) by σC = τ−1

C . Prove that σ is a
natural transformation G → F .
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*1.16 Let C be a category and let A, B ∈ obj(C). Prove the converse of
Corollary 1.18: if A ∼= B, then HomC(A, !) and HomC(B, !) are
naturally isomorphic functors.
Hint. If α : A → B is an isomorphism, define τC = (α−1)∗.

1.17 (i) Let A be the category with obj(A) = {A, B, C, D} and
morphisms HomA(A, B) = { f }, HomA(C, D) = {g}, and
four identities. Define F : A → Sets by F(A) = {1},
F(B) = {2} = F(C), and F(D) = {3}. Prove that F is a
functor but that im F is not a subcategory of Sets.
Hint. The composite Fg ◦ F f , which is defined in Sets,
does not lie in im F .

(ii) Prove that if F : A → B is a functor with F | obj(A) an
injection, then im F is a subcategory of B.

1.18 Let A and B be categories. Prove that A × B is a category, where
obj(A×B) = obj(A)×obj(B), where HomA×B

(
(A1, B1), (A2, B2)

)

consists of all ( f, g) ∈ HomA(A1, A2)×HomB(B1, B2), and where
composition is ( f ′, g′)( f, g) = ( f ′ f, g′g).

*1.19 (i) If A is a small category and F, G : A → B are functors
of the same variance, prove that Nat(F, G) is a set (not a
proper class).

(ii) Give an example of categories C,D and functors S, T : C →
D such that Nat(S, T ) is a proper class. [As discussed on
page 8, do not worry whether Nat(S, T ) is a class.]
Hint. Let S be a discrete subcategory of Sets, and consider
Nat(T, T ), where T : S → Sets is the inclusion functor.

1.20 Show that Cat is a category, where obj(Cat) is the class of all small
categories, where HomCat(A,B) = BA, and where composition is
the usual composition of functors. [We assume that categories here
are small in order that HomCat(A,B) be a set.]


